
EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

Entity Overloading for Mixed-Signal Abstraction in VHDL�

C.-J. Richard Shi

Department of Electrical and Computer Engineering

University of Iowa

Iowa City, Iowa 52242, U.S.A.

cjshi@eng.uiowa.edu

Abstract

In this paper we propose to extend VHDL with entity

overloading. With a minimal change to existing VHDL,

entity overloading provides a strong support for mixed-

signal, mixed-level, and mixed-domain abstractions. It

is particularly promising in resolving some issues in

VHDL-A language design. Furthermore, we illustrate

that entity overloading can be combined with certain

modeling rules to achieve polymorphic netlist.

1. Introduction

With the rapid development and convergence of

computer, consumer electronics and communication

technologies, mixed-signal (analog and digital) circuit

design is becoming increasingly important. While tools

exist to help designers to design digital circuits that

work right the �rst time, mixed-signal design still re-

mains an art. Among many issues, a hardware de-

scription language (HDL) capable of describing mixed-

signal circuits spanning through the whole design cycle

has been identi�ed as a key demand by IEEE, semi-

conductor industry, both European ESPRIT and U.S.

Department of Defense. As noted by Rob Rutenbar,

the availability of such a hardware description language

will help the development of analog synthesis [6].

The design of mixed-signal hardware description

languages, however, presents a great challenge. The

root of the di�culty comes mainly from the fundamen-

tal di�erence in how the behavior of analog and digi-

tal circuits are described|denotational vs operational.

Analog HDLs only specify a set of constraints (usually

�This work is sponsored by U.S. Defense Advanced Research

Projects Agency (DARPA) under grant number F33615-96-1-

5601 from the United States Air Force, Wright Laboratory, Man-

ufacturing Technology Directorate.

ordinary nonlinear di�erential equations) to be satis-

�ed, whereas digital HDLs are similar to traditional

programming languages. This di�culty is embodied

in several aspects of HDL design. In this paper, we

consider mainly the structure aspect. The particular

issue we address here is related to VHDL-A, a ma-

jor e�ort undergoing to extend VHDL to analog and

mixed-signal circuits [8, 12].

Consider a mixed-signal circuit. The same real-

world component may have several abstractions that

di�er not only in their architectures, but also in their

interfaces. In particular, the corresponding interface

signals for di�erent models of the same design entity

cannot be characterized by the same data type. Cur-

rent VHDL requires the user to de�ne di�erent named

entities. Further, VHDL does not provide a direct

mechanism to indicate that those entities correspond

to the same real-world component. This restriction

not only contradicts the naming convention of design-

ers, but also complicates design management.

A complete solution to this problem may need the

concept of object-oriented modeling or the use of more

sophisticated typing mechanisms. Both require signif-

icant changes to VHDL. In this paper, we describe

entity overloading|an approach that requires only a

minimal change to existing VHDL. We also discuss how

entity overloading may be used together with certain

modeling rules to achieve polymorphic netlist; i.e., a

netlist description that has multiple meanings depen-

dent upon the types and natures of its interface signals.

We note that MHDL have taken a di�erent approach

to language design in order to support mixed-signal,

mixed-domain abstraction [7]. Although our research

is targeted towards VHDL, we expect certain concepts

developed in this paper can be useful to other hardware

description languages as well.

This paper is organized as follows. In Section 2, we

introduce some concepts of hardware description lan-

guages. Our de�nitions are by no means precise nor

rigorous from a language lawyer's perspective, but our

intention is to give a uni�ed and intuitive treatment

of basic concepts related to both analog and digital

HDLs. In Section 3, we analyze the di�culty with the

current VHDL in supporting mixed-signal abstraction.

In Section 4, we propose entity overloading. Its im-

plications to language design are described intuitively

in Section 5. Section 6 shows how entity overloading

combined with certain modeling rules can be used to

achieve polymorphic netlist. Section 7 concludes the

paper.

2. Hardware Description Language Con-

cepts and VHDL

There are two approaches to hardware modeling:

behavioral and structural. Behavioral modeling refers

to modeling the behavior of a hardware system. The

structure of behavioral modeling, i.e., the way a be-

havioral description is organized is irrelevant to an ac-

tual hardware. Structural modeling is to model the

real structure of a hardware design, which usually cor-

responds to a speci�c hardware implementation. In

order to model the structural composition of individ-

ual components to form a complete hardware system,

the composition/structure semantics of the description

must mimic or simulate the e�ect of real hardware con-

nection. Therefore, the notion of connection semantics

is often used for hardware description languages. In

general, a connection node in a hardware system has

two roles: as a carrier of information (structural as-

pect), and the actual information it carries (behavioral

aspect).

The basic built-in connection semantics in VHDL is

the notion of nets. The net semantics is achieved by

several language constructs. A fundamental assump-

tion used by VHDL for digital systems is that the dual

role of nets as the information carrier and information

itself can be uni�ed. Therefore, a net is implemented

as a SIGNAL in VHDL. Connecting two nets are equiv-

alent to binding two signals.

Perhaps the most useful mechanism for a HDL to

describe a complex system is design encapsulation. Ba-

sically, each physical component only relates to its en-

vironment (or say other components) through its in-

terface nets. From the outside perspective, such inter-

face nets are de�ned as PORTs in VHDL. Formally, a

port is the formal of a net, whereas a net is the actual.

The connection semantics is enforced when a port is

bound to a net. (The connection semantics in HDLs

is equivalent to the binding semantics in programming

languages.)

The connection semantics in VHDL is relatively sim-

ple, and is similar to the binding semantics of an ordi-

nary programming language. The complicated part is

the concept of resolution function, which basically de-

�nes how the value of a net will be determined if there

are several drivers for the net.

The connection semantics for analog circuits di�ers

signi�cantly from that of digital circuits (such as that

in VHDL). First of all, information carriers and infor-

mation have to be separated. Each connection point

(actual) is associated with a voltage (called node volt-

age), and each terminal (formal) is associated with a

current (called terminal current). For example, Fig. 1

a b

a b

Vdd

GND

ia ib

vbva

Figure 1: A CMOS inverter.

illustrates a CMOS inverter, where its logic abstraction

has two signals: a and b, but its KVL/KCL abstrac-

tion involves both voltages and currents. Then the

connection semantics implies that the following set of

equations be satis�ed:

1. Kircho� Current Law (KCL): The summation of

all the terminal currents entering a node must be

equal to zero.

2. Kircho� Voltage Law (KVL): The voltages of all

the terminals connected to a node must be the

same.

This is called the conservation-law (or KVL/KCL) se-

mantics. We note that separating the concept of formal

and actual of the information carriers from that of the

information itself provides a much cleaner de�nition.

Previously, both a voltage and either a current or an

array of currents are associated with a node.

We also remark on another di�erence between a

digital HDL and an analog HDL. For digital HDLs,

the connection semantics can be resolved/enforced lo-

cally, where the enforcement of KVL/KCL requires a

global evaluation. Digital HDLs share the same local-

ity for both description and evaluation, whereas ana-

log description can be local, but its evaluation must be

global.

For top-down analog modeling, another type of con-

nection semantics called signal-ow semantics is used.

Each net is associated with only one quantity, similar

to a digital signal. But the value of a quantity is deter-

mined by solving the set of equations. For such quanti-

ties, input and output modes can be de�ned similar to

digital MODE. However, it does not necessarily specify

the order of evaluation, but rather the order of depen-

dency. Analog simulators may exploit this feature for

e�cient simulation.

From the language perspective, signals and quanti-

ties are objects that have hardware meanings, whereas

variables, constants (and generics) are only auxiliary

objects that do not have hardware counterparts. A

type can be associated with an object, which speci�es

the property of the object. Due to the usefulness of

types in avoiding �rst-order modeling errors, VHDL

adopts the strong typing rule: only objects with the

same type can connect together. This reects in terms

of connection semantics: only nets with the same (more

precisely, closely related) type can connect together,

otherwise type conversion is needed.

Abstraction level vs abstraction domain. We pro-

pose to use abstraction level to refer to di�erent ar-

chitectures for one entity, that all share the same in-

terface signal de�nitions (at the same abstraction do-

main). We use abstraction domain to refer to those

abstractions for the same real world component but

with di�erent interface signal de�nitions. For exam-

ple, a register described at the world level and that

described at the bit level belong to two di�erent ab-

straction domains. A low-pass �lter described at the

time domain or that at the frequency domain belong to

two di�erent abstraction domains. On the other hand,

a transistor-level description of an operational ampli�er

and its macromodel belong to the same abstraction do-

main but di�erent abstraction levels. A behavior view

of a digital block and its structure view (if they share

the same interface) are in the same domain but at dif-

ferent abstraction levels.

Abstraction vs simulation. Abstraction domain is

closely related to simulation mode. The types and na-

tures of interface signals determine the types of sim-

ulation it can be used for. Simulation of two real-

world components in the same abstraction domain but

at the abstraction levels do not involve any conver-

sion. However, simulation of two components in di�er-

ent abstraction domains involves certain conversions.

Such conversions may range from the simplest such as

\type conversion" to more complex such as \domain

conversion", (from time-domain to frequency-domain

or vice verse), to \nature conversion" (from mechani-

cal to thermal or to electrical), etc.

3. Issues with Mixed-Signal Abstraction

in VHDL

In current VHDL, a design/component may be de-

scribed by a single entity with multiple architectures.

This mechanism supports digital design well, where

a high-level speci�cation and various implementations

can be described as di�erent architectures. Then,

changing from speci�cation to implementation, or from

one implementation to the other, can be done nicely

with the use of the con�guration mechanism. However,

the ability of VHDL in supporting mixed abstractions

is limited: all architectures of an entity must share the

same interface|ports (generics) and their types must

be the same as speci�ed by the entity declaration. Thus

the current entity/architecture/con�guration mecha-

nism supports mixed abstractions at the same \data-

type" level but not designs described at the di�erent

\data-type" levels.

For example, consider a register declared as integer

type or bit type: the user must de�ne two di�erent

named entities. This not only causes the problem of

readability, but also leads to an undesirable situation:

replacing an integer-typed register with another regis-

ter with exactly the same functionality but bit-typed

requires updating the VHDL source code that uses the

register. Nevertheless, this is not a major problem

for VHDL, the entity/architecture/con�gurationmech-

anism supports most digital design applications.

The problem is getting worse for switch-level model-

ing [2, 10], and even serious for analog modeling [9, 11].

It is OFTEN the case for the same design/component,

there are many \architectures" that not only di�er in

internal speci�cations, but also di�er in types of inter-

faces (ports). In terms of the board-socket-chip anal-

ogy of Alec Stanculescu (see Perry's, 2rd, p. 189) [5], it

is often the case that, for a socket on the board, many

chips can be plugged into that socket, but the corre-

sponding pins can not be characterized by the same

type. (In other words, an implicit VHDL assumption

that those chips that can be plugged into one socket

must have the same interface (type) characterization,

is no long true.)

4. Notion of Entity Overloading

What seems a natural extension is to overload en-

tities. In terms of the board-socket-chip analogy, the

same (component) name and PORT MAP construct

will be used in describing a socket on the board (com-

ponent instantiation), regardless of what kinds of chips

(as long as they have the same intended function/use)

to plug in (component declaration). Then for those

chips that have the same pin/interface types, we de-

clare one entity with the COMPLETELY speci�ed

PORTs. As a result, for one socket, there may be sev-

eral entities|with the same name|to plug in.

More technically, we may declare several entities

with the same name, each with its own complete in-

terface de�nitions, and each may be associated with a

set of architectures that have the same interface. Then,

in order to instantiate a lower level overloaded entity

in a higher level architecture, a corresponding com-

ponent declaration must be given completely. If an

architecture instantiates the same named component

in several places, each with di�erent interfaces, then

several entity instances (several components with the

same name) must be declared.

Clearly, using the mechanism of entity overloading,

the user can use the exact same name for di�erent ab-

straction models for the design/component (the name

could be taken from the data book). Further, switch-

ing from one architecture of an instantiated component

to the other|even if they di�er in terms of interface

types|does not involve the change of the component

instantiation statement (netlist).

This extension preserves the upward compatibility

to VHDL'93. All the VHDL libraries and designs cre-

ated before will be valid under the extension. Indeed,

to VHDL beginners and programmers who do not want

to use this feature, entity overloading is an advanced

topic just like subprogram overloading. On the other

hand, the language factor should be considered much

higher than that of subprogram overloading [3].

5. Language Implementation of Entity

Overloading

Resolution of entity overloading can be done by the

compiler in the similar way as for subprogram over-

loading.

In the simplest case, entity overloading resolution

can be achieved by types/natures of signals. When

there is another overloading function, subprogram, or

entity involved, then a restriction rule similar to the

rules in VHDL'93 for overloaded subprograms applies.

A central concept here is that the user must provide

enough information such that the compiler can �gure

out which entity should be used.

One additional issue arises in case of entity over-

loading: when we de�ne an architecture, we have to

say which interface (entity declaration) the architec-

ture is going to use. This can be done in two ways.

One is to request the user to put all the architectures

corresponding to one interface together with the in-

terface declaration in one VHDL �le. The other is to

introduce a new language structure mechanism (called

model/group/cluster for example) to group together

those architectures with their interface (entity) decla-

ration.

6. Towards a Polymorphic Structural De-

scription

Netlist reuse is motivated by the following three ob-

servations:

1. In a hierarchical and structured design environ-

ment, there are many levels of netlist description.

2. Many levels of netlist descriptions can be shared

among di�erent abstractions.

3. Parameter instantiation does not occur every-

where. For example, in the standard cell design

environment, one component is used with the same

geometry, and used many places in the layout de-

sign, it is reasonable to assume that all such com-

ponents have the same parameters; for example,

delays.

For example, consider a digital circuit that has been de-

signed with many hierarchies. Ideally, the description

of these hierarchies should be usable for logic, switch-

level and electrical simulation; only the models of the

leaf cells need to be changed. This is what we mean by

netlist reuse.

In general, netlist reuse can happen at several dif-

ferent phases. One is at the analysis phase. When one

abstraction is switched to another, no re-analysis of the

netlist, but re-elaboration is needed. This mechanism

may be called ad hoc netlist overloading. It can hap-

pen at the elaboration phase. By using late typing, or

deferred typing, the types and natures of interface lists

are only bound at the elaboration phase. We may call

this netlist overloading. Finally, it can happen at the

simulation phase, i.e., the types and the natures of in-

terfaces should be determined by its input signals dur-

ing simulation. We may call it netlist polymorphism,

due to its similarity to the concept of polymorphism

in programming languages. The latter two approaches

are generally di�cult to exploit in current VHDL (re-

quires signi�cant language re-design). In this section,

we shall restrict ourself to netlist reuse at the analysis

phase. We illustrate that it can be achieved by using

entity overloading and certain modeling (coding) rules.

We need to introduce a notion of signi�cant port. A

signi�cant port refers to a port that can be used across

various abstractions. Note that signal carriers on a

signi�cant port can vary for di�erent abstraction. For

example, a port can carry only one analog quantity at

the signal-ow abstraction or one digital signal at the

logic-level abstraction, but it carries both voltage and

current (two quantities) at the electrical abstraction

level. Typically, either voltage or current from the elec-

trical abstraction level is selected for abstraction at the

higher level. Using this de�nition, ports used for power

and ground at the electrical abstraction domain are in-

signi�cant, since they do not have the corresponding

higher domain (logic domain) abstractions. See Fig.1

for example.

There are two application scenarios. The �rst sce-

nario is that among several abstraction domains, only

the types and natures of signal carriers are di�erent.

The second scenario is that not only the types and na-

tures of signal carriers vary, but also ports are di�erent.

We also need to distinguish two types of information

associated with an interface list: abstraction-dependent

and abstraction independent. Clearly, GENERICs are

often tightened together with a speci�c abstraction do-

main (even a speci�c abstraction level).

In order to make a netlist re-usable, we suggest the

following modeling rules:

1. Bind the abstraction-level dependent formals us-

ing the con�guration mechanism.

2. Organize the abstraction-domain related informa-

tion into con�guration.

3. Avoid the use of GENERIC MAP in component

instantiation. Use defaults in ENTITY de�nition

or in COMPONENT statements if possible, other-

wise consider using con�guration. For example, in

case of a netlist which contains two inverters that

only di�er in their delays, use the con�guration

mechanism.

4. Do not mix the behavioral description (that will

involves the information related to abstraction)

and the structural description in one architecture.

In case that some calculation related to the behav-

ior of a netlist has to be performed, for example,

parameter assertion for timing checking or power

consumption calculation in analog simulation, en-

capsulate such \passive" statements into entities

(interfaces), instead of architectures.

5. Avoid the use of propositional binding of interface

list, or specify the signi�cant ports �rst, and then

insigni�cant ports.

6. Map insigni�cant ports using the con�guration

mechanism.

7. Organize signal and component declarations using

packages. Automatically switch packages during

analysis and elaboration.

In summary, the main consideration is to use con�g-

uration (not architecture) for that information related

to the abstraction domain. For example, in-signi�cant

port map, generics map, type conversion, and domain

conversion (connection type conversion, nature conver-

sion). This leads to pure structural descriptions. Com-

bined with entity overloading, it enables us to achieve

netlist reuse.

7. Conclusions

While entity overloading o�ers a lot of convenience

and exibility, its impact to language design is mini-

mal. Entity overloading can be resolved in the same

(even simpler) way as subprogram overloading. Its

adoption into VHDL will enhance VHDL's ability in

supporting mixed abstractions in general, switch-level

and analog modeling in particular. This extension is

up-compatible to VHDL'93.

Acknowledgment: Some ideas presented in this

paper originate from the AHDL project sponsored by

United States Air Force Rome Laboratory, under con-

tract F30602-93-C-0209. Several people contributed to

the development of the concept of entity overloading

into its current form. In particular, the author wishes

to thank Jean-Michel Berg�e, Ernst Christen, Steve

Drager, Doug Dunlop, Dan FitzPatrick, Jim Hanna,

Erich Marschner, Alain Vachoux, and Martin Vlach

for their support and helpful discussions.

References

[1] J. Barby, A. Mantooth, C.-J. Shi and P. Subra-

maniam, \AHDL modeling for analog and mixed-

signal top-down design," Tutorial Handouts, 32rd

IEEE/ACM Design Automation Conference, June

16, 1995.

[2] K. Khordoc, M. Biotteau and E. Cerny, \Swich-

level models in multi-level VHDL simulations",

pp. 43-62 in VHDL for simulation, synthesis and

formal proofs of hardware, Jean Mermet (ed.),

Kluwer Academic Publishers, 1992.

[3] Oz Levia, S. Maginot and J. Rouillard, \Lessons

in language design: cost/bene�t analysis of VHDL

features", pp. 447-453 in Proc. IEEE/ACM 31st

Design Automation Conference, June 1994.

[4] IEEE Standard VHDL Language Reference Man-

ual, ANSI/IEEE Std 1076-1993, IEEE, NY, 1994.

[5] D. L. Perry, VHDL, 2rd, McGraw-Hill, 1994.

[6] R. A. Rutenbar, \Analog design automation:

where are we? where are we going", pp. 13.1.1-

13.1.8 in Proc. IEEE Custom Integrated Circuits

Conference, 1993.

[7] David L. Rhodes, \Analog modeling using

MHDL", Modeling in Analog Design, Jean-Michel

Berg�e, Oz Levia and Jacques Rouillard, eds.

(Kluwer Academic Publishers, 1995): 47-92.

[8] C.-J. Shi, E. Christen, P. Liebmann, S. Krolikoski,

and W. Zhou, \VHDL-A: Analog extension to

VHDL", IEEE International ASIC Conference &

Exhibit, Sept. 1994: 160-165.

[9] C.-J. Shi and A. Vachoux, \VHDL-A design objec-

tives and rationale", Modeling in Analog Design,

Jean-Michel Berg�e, Oz Levia and Jacques Rouil-

lard, eds. (Kluwer Academic Publishers, 1995): 1-

30.

[10] Alex Stanalescu, \Switch-level modeling in

VHDL", pp. 74-98 in Applications of VHDL to

Circuit Design, R. E. Harr and A. G. Stanculescu

(eds.), Kluwer Academic Publishers, 1991.

[11] B. R. Stanisic and M. W. Brown, \Behavior mod-

eling of mixed analog-digital circuits", pp. 74-98

in Applications of VHDL to Circuit Design, R. E.

Harr and A. G. Stanculescu (eds.), Kluwer Aca-

demic Publishers, 1991.

[12] Alain Vachoux and Jean-Michel Berg�e, \VHDL-

A: Analog and mixed-mode extensions to VHDL",

pp. 475-480 in Proc. EUROSIM'95, Elsevier Sci-

ence B.V. Publishers, Sept. 1995.

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

