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Abstract� A divide-and-conquer algorithm for comput-
ing the parametric yield of large analog circuits is pre-
sented. The algorithm targets applications whose perfor-
mance spreads could be highly nonlinear functions of a large
numbers of stochastic process disturbances, and therefore
can not easily be modeled by traditional response surface
methods. This work addresses di�culties with modeling by
adaptively constructing the model piece by piece, namely,
by e�ciently and recursively partitioning the disturbance
space into several regions, each of which is then modeled
by a local linear model. Local linear models are used be-
cause they are less sensitive to dimension than polynomial
models. Moreover, the resulting model can be made to be
more accurate in some regions compared to others. The
number of simulations required in statistical modeling can
therefore be reduced since only critical regions, which de�ne
the boundary of the feasible region in the space of process
disturbances, are modeled highly accurately. The resulting
models are then used as cheap surrogates for circuit simu-
lation in Monte Carlo estimation of the parametric yield.
Examples indicate the e�ciency and accuracy of this ap-
proach.

1. Introduction

Circuit yield depends on the immunity of a design to both
defects and process uctuations. This paper is speci�cally
concerned with yield loss caused by stochastic disturbances
in the manufacturing process, refered to as parametric yield.
As we move towards deep submicron processes, these inher-
ent stochastic disturbances are becoming more di�cult to
characterize and model. And moreover, as designs become
more complex, the number of process disturbances which
cause signi�cant circuit performance spreads is increasing.
With the current high cost of submicron fabrication pro-
cesses, the need for high yielding designs with shorter prod-
uct development times drives the need for an e�cient and
accurate method for estimating the parametric yield prior
to manufacture.

�This work has been supported by NSF grant numbers MIP-
9211407 and MIP-9501912.

In order to compute parametric yield, it is necessary
to identify a set of disturbances that characterize process
uctuations and the speci�cations on circuit performances
which must be satis�ed. Many papers have focused on pro-
cess characterization for both analog and digital circuits
[1, 2]. This paper assumes that circuit speci�cations are
known and potentially critical process disturbances have
been identi�ed and focuses on the mathematics of comput-
ing parametric yield. Speci�cally, given n disturbance vari-
ables ~� = (�1; : : : ; �n) 2 Rn which may a�ect the circuit

performances, let A � Rn be the set of disturbances ~�, for
which the circuit satis�es all speci�cations. The parametric
yield, denoted as Y, is then

Y =

Z
A

f(~�)d~� =

Z
Rn

z(~�)f(~�)d(~�); (1)

where the function f(~�) is the joint probability density func-

tion of disturbances, and z(~�) = 1 if ~� 2 A and z(~�) = 0
otherwise.
Monte Carlo analysis can be used to estimate the para-

metric yield. In Monte Carlo analysis, a sample of distur-
bance variables,~� , is generated with the distribution,f(~�),

and yield is estimated by averaging z(~�) for the sample. An
alternative is to use surface integrals on the boundary of the
acceptability region,A, as suggested in [3]. Both approaches
require a very large number of expensive circuit simulations
since z(~�) needs to be evaluated for each set of disturbances,
~�, in the sample. Alternatively, statistical modeling meth-
ods have been proposed [4, 5] where each circuit perfor-
mance is approximated by a computationally cheap surro-
gate response surface model. These methods only work well
for low dimensional smooth circuit performances due to the
fact that the number of simulations required for building the
model and screening out the insigni�cant random variables
to reduce dimensionality expands exponentially with the
nonlinearity or order of the polynomial approximation and
the number of signi�cant variables. Recently, the GMDH
algorithm [6] and nonparametric regression [7] have been
proposed to model nonlinear functions. These approaches
can be computationally intensive due to their lack of ability
to sequentially sample and adaptively re�ne local regions of
the model.
Using the fact that a highly nonlinear performance func-

tion can be approximated to arbitrary accuracy, given a

su�ciently �ne partition of the domain de�ned by process
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disturbances and a su�cient number of simulations, we pro-
pose an approach to modeling performance functions which
could be highly nonlinear and have many variables by ef-
�ciently and recursively partitioning the disturbance space
into several regions, each of which is then modeled by a
linear function. More speci�cally, we approximate the true
performance function,H(~�),with a piecewise linear model

h(~�) =

mX
k=1

hk(~�)I(~� 2 Qk); (2)

where m is the number of disjoint hyper-rectangles, and
I(:) is a 0=1 valued function indicating if its argument is in
hyper-rectangle Qi. The union of these m Qi's is R

n. hk's
are linear functions of ~�, hk(~�) = a0 + a1�1 + : : : + an�n,
where ai; i = 1 : : : n, are constants.

Linear models are much less sensitive to the dimension
of the disturbance space compared to higher order polyno-
mial models. As the dimension of the problem increases,
we only need to increase the number of regions in the par-
tition, rather than the number of terms in the model. This
approach also allows us to model di�erent regions of the
model with di�erent accuracies. This makes the yield es-
timation e�cient, since for regions less important to yield
estimation, fewer partitions and simulations are necessary
and the models for these regions can be less accurate. In
fact, the criteria we use for determining the importance of
regions, combined with our partitioning approach, provides
us with incremental knowledge of the performance function
and the location of the boundary of A. As a result, we can
select a minimum number of points for simulation to adap-

tively build the piecewise model. The resulting model will

be more accurate for the regions closer to the boundary of

A and in regions close to nominal parameters.

Another advantage of our approach is that it can exploit
the low local dimensionality of the performance function;
it can automatically screen out those less important distur-
bances locally during the building of the model.

2. Model Building

To obtain a piecewise linear approximation,h(~� ), of the

performance function (e.g. voltage gain), H(~�), we begin
with N points, which are sampled using a Latin Hypercube
scheme, S = f( ~�1; y1); : : : ; ( ~�N ; yN)g, where yj = H( ~�j) and
~�j = (�1j; �2j; : : : ; �nj), for j = 1; 2; : : : ;N . Latin Hyper-
cube sampling gives us an approximately uniform distribu-
tion of points in the input domain. We de�ne our objec-
tive as �tting the sample data set S with the best piece-
wise linear surface. The best piecewise linear surface is one
with a minimum overall prediction residual sum of squares
(PRESS), which can predict the response at data points,
~�,not in S.

2.1. The Recursive Partition and Local Linear

Models

Formally, suppose at some stage of the model building pro-
cess, the disturbance space is split into m regions, each of
which has Nk data points in it, k = 1; 2; : : : ;m. The total

PRESS for this piecewise linear model is

PRESSt =

mX
k=1

PRESSk =

mX
k=1

NkX
j=1

(hk�fjg( ~�j)� yj)
2
; (3)

where hk�fjg( ~�j) is the predicted function value at ~�j with
~�j removed from S.
PRESS [8] essentially accumulates the importance of

each point to the regression and hence is a good index for
predictivity and a good criterion to �nd important variables
(dimensions) whose domain needs to be split in building a
piecewise-linear model. Such variables are locally signi�-
cant to the nonlinearity of the underlying function because
splitting their domain reduces the prediction error the most.
Choosing any of thesem regions to be split into two smaller
regions might not always decrease PRESSt . Therefore,
PRESS outperforms the residual sum of squares(RSS) as
a splitting criteria. If we can not reduce PRESS of a re-
gional model, this means, based on the sampled data in
this region, we cannot get a better predictive model. Then,
accuracy can only be improved through resampling, or the
estimate of yield for this region can be computed using tra-
ditional Monte Carlo methods. If resampling is performed,
we may continue the process of splitting the domain to fur-
ther reduce PRESSt .
Achieving the optimal splitting of the space is impor-

tant (Figure 1(a),(b)). Suppose the lth region is consid-
ered for splitting into two new regions l(1) and l(2) (Figure

1(c)). Suppose there are Nl data points, Dl = f( ~�j; yj)jj =
1; 2; : : : ;Nlg,in the lth region, and Nl(1) and Nl(2) points in
Dl(1) and Dl(2) respectively. The model for the lth region

is denoted as hl(~�) = a0+
Pn

i=1
ai�i. PRESS before split-

ting for this region is
PNl

j=1
(hl�fjg( ~�j)� yj)

2. We want to

obtain two linear models, fl(1) and fl(2), forming a more
accurate piecewise linear model for the lth region. If we
constrain splitting for the hth variable,�h(the hth compo-

nent of ~�), to coincide with a data point in the data set,
�hj ; j = 1; 2; : : : ;Nl, there are Nl ways of splitting the set
Dl and n choices of variables. As a result, Nl � n sets of
two linear models for the lth region are possible. Specif-
ically, for the hth variable,�h , suppose that one of its Nl

values,�hg = �g; g 2 1; 2; : : : ;Nl is chosen to split the set
Dl into Dl(1) and Dl(2). Then, the two linear models,hl(1) =

b0 +
PNl(1)

i=1 bi�i and hl(2) = c0 +
PNl(2)

i=1 ci�i are used

to �t Dl(1) = f( ~�j; yj)j ~�j 2 Dl; �hj � �gg and Dl(2) =

f( ~�j ; yj)j ~�j 2 Dl; �hj > �gg, respectively. Each �h and �g
are considered in turn and the best choice of the combina-
tion is made when PRESSl � PRESSl(1) � PRESSl(2) is

maximal, where PRESSl(k) =
PNl(k)

j=1 (hl(k)�fjg( ~�j)� yj)
2,

k =1,2 (Figure 1(c)). If the same procedure is recursively
applied to the l1th and l2th regions, we can gradually obtain
an accurate piecewise linear model. Since linear regression
is used, we can e�ciently compute PRESS without recom-
puting the model at ~�j, dropping yj [4].
In summary, the procedure starts with building a global

linear model, �t for all variables for the entire space. The
domain is then recursively split. PRESS is used to �nd the
splitting which is optimal in the sense that the predictivity
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Figure 1. The Splitting Of The Space

is best improved and over�tting is prevented. The linear
stepwise �t is applied to the leaf regions to improve the
accuracy when the splitting process stops.

2.2. Criteria for Resampling and Checking the

Overfitting

As we split the region into more pieces, each region will have
less sampled points, therefore the ability to accurately pre-
vent over�tting,i.e. too close �tting of the model resulting
in degraded estimates with poor predictive performance, is
reduced even with PRESS as the splitting criteria. As a
remedy, we propose using a checking data set. Suppose
~hc = h(~�) and ~Hc = H(~�) correspond to the checking data
set and are the predicted and true response vectors, respec-
tively. The correlation coe�cient,�check , as de�ned in [7],
and R2

press > 0:85 serve as two criteria for measuring the
accuracy of the model.
Essentially, we use splitting and resampling of regions to

improve the model accuracy sequentially. For e�ciency, re-
sampling a region is only considered when the model is not
accurate enough and the number of points is not su�cient
for splitting of the domain, and is only done if statistical
modeling is likely to be more e�cient than Monte Carlo
methods for computing yield for a given region. Speci�-
cally, the number of points used to estimate yield with the
Monte Carlo method is computed for a given region. If
this number is smaller than the number of simulations re-
quired for splitting and modeling,i.e. twice the number of
variables plus the number of sampled data currently in the
region, it is not worthwhile to build a statistical model for
the region. The algorithm is outlined in Figure 2.

3. Yield Estimation

3.1. Adaptively Refining the Model

If a circuit is required to satisfy q speci�cations, in the
presence of imperfect models, the yield can be estimated
by [5]:

Ŷ =
1

Nmc

NmcX
j=1

E(z( ~�j)) =
1

Nmc

NmcX
j=1

qY
t=1

Pt( ~�j) (4)

where Pt( ~�j) is the probability that a speci�cation,t, is sat-

is�ed at ~�j. The average variance associated with the com-
putation of E(z( ~�j)) for all Nmc points in all regions is

1

Nmc

NmcX
j=1

V ar(z( ~�j)) =
1

Nmc

NmcX
j=1

E(z( ~�j))(1� E(z( ~�j))): (5)
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Figure 2. Flow Chart For Model Building

If the piecewise linear model is accurate, this quantity
should be small. If this quantity is too large, then the model
for at least one speci�cation needs to be improved over some
critical regions. This inaccurate speci�cation should have
many points in the Monte Carlo sample that are close to
the boundary of A. Points that are close to the boundary
will have a larger than average contribution to (5). Let us
call this set of boundary points G,

G = f ~�j jV ar(z( ~�j)) >
1

Nmc

NmcX
j=1

V ar(z( ~�j))g: (6)

From this subset of the Monte Carlo sample set, the speci-
�cation that needs improvement most maximizes

V ar(Spect) =
X
~�j2G

Pt( ~�j)(1� Pt( ~�j)): (7)

If the speci�cation, t, is most critical,i.e. maximizing (7),
we improve the model in the most critical region, i.e. region
with the largest contribution to (7). Speci�cally, suppose
that for the speci�cation, t, the space has been partitioned
into m regions and the lth region is the most critical region,
then this region maximizes

V ar(Rl) =
X

�j2G\Rl

Pt( ~�j)(1� Pt( ~�j)); (8)

where ~�j 2 Rl. This quantity would be large if either there
are many Monte Carlo sampling points in the region or

many points in this region are close to the boundary of A.
Therefore V ar(Rl) measures the importance of a region and
identi�es regions where the model needs to be re�ned.



3.2. The Yield Estimation Algorithm

The algorithm is outlined in Figure 3. In the �rst stage,
rough piecewise linear approximations are made of all per-
formance functions over the entire disturbance space by the
model building method described in section 2. R2

press and
�check are used to measure the goodness-of-�t. Then, yield
(4) and average yield variance due to statistical modeling
(5) are estimated. If the variance is higher than desired,
the model is re�ned e�ciently, i.e. only the most criti-
cal functions, identi�ed using (7), are approximated more
accurately in the most critical regions, determined using
(8). This process continues until average modeling variance
(5) is su�ciently small. In this adaptive way, the algorithm
builds a piecewise linear model which approximates the true
function to an arbitrary desired accuracy.

4. Computational Complexity

The computations in building the model involve computa-
tions in performing linear regression, calculating PRESS,
�check, R

2, and in performing stepwise linear regression.
These computations are applied to each region and are re-
cursively repeated for each region of the domain splitting
until the model is accurate enough. Linear regressions are
performed to compute PRESS and then �nd the optimal
split. Once the optimal split is found, we perform stepwise
linear regression for the two new regions after the split to
get further improvement of the accuracy. Let us begin by
analyzing the complexity involved in a single splitting. Sup-
pose N is the size of the data set and n is the dimension.
Setting up the normal equation for the linear regression in-
volves O(Nn2) multiplications. Solving requires O(n3) mul-
tiplications, and evaluating the PRESS of the model needs

O(Nn2) operations. Note that the matrix X(X
0

X)�1X
0

al-
ready obtained from �tting the linear model can be used to
compute PRESS using the method mentioned in section 2.
Evaluating R2 and �check requires O(Nn) multiplications.
Finding a best split involves considering Nn splits, hence
the cost of �nding the best split and �tting two models is
O(N2n3 + Nn4). The number of best splits in building
the model is one less than the number of regions, speci�ed
as m, in the �nal model. Since the complexity of �tting
a stepwise linear regression equation is O(n2N + n3) [9],
the total cost of performing stepwise linear regressions is
O(mn2N+mn3). Note thatm can not be known in advance
because it depends on the nonlinearity of the function and
the accuracy of the model to be achieved. Therefore, the
overall cost for building the model is O(m(N2n3 +Nn4)).
Overall N might be large. Nevertheless, computations are
only based on local small subsets of the whole data set since
recursive splitting of the space is involved. Hence, this com-
puted complexity is an upper bound.
Compared with the polynomial regression approach, the

number of �nal regions in the piecewise linear model in-
creases much slower than number of terms used in poly-
nomial regression, because for an n dimension problem, a
pth order polynomial requires (n + 1)(n + 2):::(n + p)=p!
terms. This makes our approach use much fewer circuit
simulations. Furthermore, in estimating the yield, some re-
gions need not be modeled very accurately, and this makes
the number of �nal regions even smaller since some unim-

portant regions can be left unmodeled. Besides, we avoid
other problems with polynomial regression such as the ob-
servations that the design matrix tends to be ill-conditioned
as the order of polynomial increases, and that higher-order
polynomials tend to loose predictivity ability. In general,
the use of high-order polynomials (> 2) should be avoided
[10].

5. Experimental Results

Our algorithm has been applied to model a a variety of high
dimensional and highly nonlinear functions using a SUN
SPARC II IPX machine.

5.1. Example 1

This is a 10-dimensional function used in [7] with 5 noise
variables independent of the response, a high-order interac-
tion between x0 and x1, and a nonlinear function of x2,

yi = 0:02e4x0+3x1 + 5sin(
�

2
x2) + 3x3 + 2x4 + 0x5

+0x6 + 0x7 + 0x8 + 0x9

where �1:5 � xi � 1:5.
To observe the adaptability of our approach for estimat-

ing the yield, we assume this function models some real
performance function of a circuit, and the speci�cation is
yi � 5. The initial global linear �t was very inaccurate
with R2=0.49 andR2

press=0.21, which shows that the func-
tion is highly nonlinear for this range of the xi's. From
Table 1, we can see that the model improves as splitting
and resampling are performed. The variables chosen for
splitting are either x0 or x1, which means our approach in-
deed identi�es the most signi�cant nonlinearity relating to
these two variables. In total, we used 160 data points to
obtain the �nal model which has 6 leaves, four of which
are critical regions with R2 above 0.95. The time needed
was 40 seconds, which is much less than 100 seconds on the
same machine in [7]. Our yield estimation algorithm, based
on 2000 Monte Carlo points, gives us a yield of 98%. The
Crude Monte Carlo estimate gives us the yield of 96%.

5.2. Example 2

We use the same example as in [7] to check how well our ap-
proach handles functions with abrupt changes, which could
occur in circuit performances as process variations deviate
too far from normal values and devices change their regions
of operations. Abrupt functions are highly nonlinear and
not additive, therefore, recent nonlinear nonparametric ap-
proaches [7, 11] based on additive models are unsatisfactory.
The function is z = f(x; y)

z = 1 ifx
2 + y

2
� 0:5

z = 0 ifx
2 + y

2
> 0:5

where �1:0 � xi � 1:0 as in [7].
Both R2

press and R2 of the initial global linear model
are 0, therefore 30 additional data were used as checking
data initially. Using splitting and resampling, this approach
gives us a �nal piecewise-linear model with 13 leaf regions,
each of which is perfectly �t with the sampled data. Figure
4 shows the true function, an intermediate model with 7
regions, and the �nal model with 13 regions. The model is



accurate and captures the sharpness very well due to the
partitioning ability of our approach. Compared with the
result from [7], it can be seen that a regression spline ap-
proach produces error in almost all regions and large errors
near the sharp changes, while our approach adaptively re-
�nes the model near the sharp regions. The resampling and
checking data set are generated locally several times during
modeling. The number of data used is 195, which is very
close to 200 in [7].

5.3. Example 3

This next example is a third-order Butterworth analog low-
pass �lter (Figure 5). This �lter contains one two-stage
CMOS operational ampli�er with a cascaded �rst stage and
several resisters and capacitors outside the ampli�er. The
speci�cations are:
Frequency at gain=-3dB > 900 Hz
Power Supply Rejection Ratio (PSRR) @ 1kHz > 72dB
These two performances vary nonlinearly due to manu-

facturing process uctuations which, for this circuit, were
characterized by 45 independent normally distributed dis-
turbance variables, including 17 variables modeling inter-
die variations and 28 variables modeling mismatch between
transistors. Interdie and intradie variations were described
by variations in channel length (L), width (W ), zero-bias
threshold voltage (Vto), oxide thickness (Tox), doping den-
sity of substrates (Nsub) , lateral di�usion length (ld), the
surface mobility (uo), resistors (R1 , R2, R3), and capaci-
tors (C1, C2, C3).
Given this characterization and the desired average mod-

eling variance of at most 0.0012, our algorithm automati-
cally modeled the performances and computed the para-
metric yield. Initially, 148 data points were generated,
simulated, and poorly �t by a linear model with R2=0.86
and R2

press=0.72. Therefore, 70 additional data points were
generated and simulated as the checking data set. For the
corner frequency, after the �rst split, we found a highly
nonlinear region and a weakly linear region. This two piece
linear model was accurate enough to estimate the variance
of the predicted response. Since the highly nonlinear region
had only a few points for Monte Carlo yield estimation, it
was not worthwhile to re�ne the model and instead circuit
simulation was used for yield estimation.
The performance, PSRR, was found to be nonlinear and

more critical than the corner frequency speci�cation for
yield estimation. Therefore it was re�ned using another
180 simulations. The �nal model has 4 leaves in which
R2, R2

press, and �check are all above 0.98. A comparison
of results from di�erent approaches to estimating yield is
shown in Table 2. Note that, for such a high dimension,
at least 1081 simulations are required to model just one
performance function using a quadratic polynomial model.
Consequently, a comparison is only made with linear mod-
eling and crude Monte Carlo analysis.

6. Conclusions

In this paper, we presented an algorithm that can e�ciently
compute the yield and its variance for analog circuits relying
on an adaptive approach to modeling in which the model
can be improved locally as more data is obtained sequen-
tially in critical regions and no functional form of the model

needs to be assumed a priori. Partitioning the space, sim-
ple �rst-order model �tting, and traversing the binary tree
are very fast, easy to automate, and consequently introduce
trivial computational overhead over the cost of circuit sim-
ulations. Consequently, the approach provides an e�cient
way of estimating yield for high dimensional problems. Ex-
amples indicate a signi�cant speed-up over standard Monte
Carlo methods and the models of performance functions are
more accurate than is possible with regression.
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Stage 1

INPUT     V ( the desired variance of the yield estimate )
INPUT     N ( the initial number of points to be generated and simulated )
For each specification {
          While ( R        < 0.85 and            < 0.85 ) {
                        Build the piecewise-linear model
           }
}
Compute the parametric yield (4) and its variance (5)
A few real circuit simulations are invoked by the Monte Carlo algorithm
only for regions not worth modeling

While ( yield variance > V ) {
            Determine the specification with the largest variance using (7)
            For this specification {
                          Determine the critical regions in disturbance space using (8)
                          Latin Hypercube points are generated in these critical regions
                          Resume the model building process to refine the models in 
                          these regions
            }
}
OUTPUT   parametric yield and yield variance

press

Stage 2

ρcheck

Figure 3. Yield Estimation Algorithm
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Figure 4. The Modeling Process For Example 2

Method Estimated Time No. of
yield simulations

used

Monte Carlo 56.5% 334 min 4000
(Crude)

Linear 69.7% Modeling: 296
Model 12 sec

Simulation:
24 min

Piecewise 57.2% Modeling: 706
Linear 15.8 min

Simulation:
58.5 min

Table 2. Yield Estimation in Example 3
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Figure 5. The Butterworth Low-Pass Filter

Initial global linear model:
Press=3264.8, R2=0.4878, R2

press=0.2143

Piece-wise linear model:
6-region model resulting from alternating splits of x0 and x1

Leaf Press R2 R2
press �y MCz

no:

1 72.0316 0.9550 0.9127 0.9539 1607

2 87.9873 0.9568 0.8067 0.9392 266

3 71.6457 0.9712 0.8966 0.9490 83

4 19.5349 0.9712 0.9478 0.9423 21

5 19.8087 0.9951 0.9878 0.4021 2

6 0.0205 1.0 1.0 -0.217 21

Region 1 : x0 < 0.3561
Region 2 : 0.3561 � x0 < 0.9457, x1 < 0.1957
Region 3 : 0.3561 � x0 < 0.7048,0.1957� x1 < 1.0376
Region 4 : 0.7048 � x0 < 0.9457,0.1957� x1 < 1.0376
Region 5 : 0.3561 � x0 < 0.9457,1.0376� x1
Region 6 : 0.9457 � x0

Overall modeling time : 40 sec
Data used in modeling: 160
Data used in yield estimation: 183
y: Corr. coef. for 2800 Latin Hypercube points
z: No. Monte Carlo data points (out of 2000)

Table 1. Summary of the Modeling Result for Example 1


	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index


