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Abstract

The testability of basic DSP datapath structures using pseudoran-
dom built-in self-test techniques is examined. The addition of vari-
ance mismatched signals is identified as a testing problem, and
the associated fault detection probabilities are derived in terms of
signal probability distributions. A method of calculating these dis-
tributions is described, and it is shown how these distributions can
be used to predict testing problems that arise from the correlation
properties of test sequences generated using linear-feedback shift
registers. Finally, it is shown empirically that variance match-
ing using associativity transformations can reduce the number of
untested faults by a factor of eight over variance mismatched de-
signs.

1 Introduction
Digital signal processing applications impose strict timing con-
straints on a test strategy. Often, even a single added layer of
logic can significantly impair performance. In these applications,
conventional built-in self-test techniques can result in unaccept-
able performance penalties. While the basic operations involved in
high-performance signal processing (e.g., shifts, additions, multi-
plications, registers) are by themselves highly testable, their compo-
sition into larger systems often is not. Test insertion strategies that
aim to improve the observability and controllability of these com-
posite structures without knowledge of their underlying behavioral
characteristics often result in unacceptable test overhead.

Here, we examine testability problems encountered in apply-
ing pseudorandom testing techniques to some fundamental DSP
structures with the aim of identifying these problems early in the
design process. A probabilistic analysis of the signal flow graph
provides a means of locating pseudorandom testability problems
prior to design synthesis. The designer can gauge the testability of
a design early, allowing the possibility of restructuring the design in
a way that improves its testability without impacting performance.
Many of the test problems discussed here can be ameliorated by
transformation of the signal flow graph, including width scaling
and associative operator reordering.

From the perspective of the test designer, the analytical tools
presentedhere enable more focused test insertion techniquesby pin-
pointing the cause of a missed fault. In addition, these techniques
can be used to examine the performance of linear-feedback shift-
register (LFSR) based pseudorandom pattern generators (PRPGs)
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Figure 1: The redundant sign bit problem. The circled minterms are
either don’t-cares or difficult tests.

by modeling the correlation properties of the generated test se-
quences. This offers the possibility of objectively evaluating pseu-
dorandom test generators based on their statistical and temporal
properties. Furthermore, by providing insight into which tests are
difficult to assert at the module level, it is possible to gauge the
impact that the underlying gate-level fault representation has on
reported fault coverage.

Over the past 20 years, the probabilistic behavior of logic circuits
has been extensively studied [1], most recently in connection with
estimation of power dissipation [2]. In linear networks, signal
behavior can be characterized most efficiently through analysis of
the signal flow graph, yielding insight into testing problems that
is harder to discern at the gate level. For example, in DSP design
it is common to encounter testing problems at the upper bits of
adders. One reason for this is redundant sign bits, upper bits that
always follow the most significant bit (MSB). The reason this is
a test problem can be seen in Figure 1, which shows the top two
adders in a ripple carry adder. The MSB and MSB-1 inputs to the
adder are sign bits. If the output next-to-MSB bit always follows
the output MSB, the carry logic of the next-to-MSB adder will be
untestable. In some designs, the next-to-MSB output almost always
follows the output MSB, but differs occasionally. In such designs
the next-to-MSB adder carry logic is testable, but may be difficult
to test using pseudorandom patterns.

Redundant sign bits can be identified using scaling [3, Sec.
6.9.2], a DSP design technique that is commonly used to adjust
multiplier gains so that overflow is avoided. There is a close rela-
tionship between scaling and testability: scaling not only identifies
redundant sign bits, but when these bits are removed, clears the
path for other logic optimizations that remove redundant faults
[4, 5]. Even after scaling, there may be upper adder bits that are
“near-redundant”, i.e. that almost always follow the MSB, and are
correspondingly difficult to test. Furthermore, as the test signal
passes through the datapath, it is altered in ways that may reduce
its ability to assert some tests.

In Section 3, the observations regarding redundant sign bits
will be extended to identify in a general way adder tests that are
difficult. The probability of asserting the difficult tests will be de-
rived using signal probability distributions, and variance matching
is proposed as a technique for improving the random-pattern testa-
bility of designs. Section 4 will discuss how signal distributions
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Figure 2: An example of the variance gap problem.

can be computed in general networks consisting of adders, shifters,
and registers. Section 5 will then show how this analytical tech-
nique can be applied to identify test problems that arise out of the
correlation properties of linear-feedback shift-registers. Section 6
describes experimental results, including fault simulation results
for four filters. The effectiveness of design transformations that
improve testability are demonstrated, showing in excess of an order
of magnitude decrease in the number of untested faults in these
designs.

2 Notation & Conventions
We will assume two’s-complement arithmetic throughout. Unless
otherwise specified, an N -bit signal b0; b1; : : : ; bN�1 is assumed
to represent a number in the range range �1 � x � 1 � 2�N+1,
where x is given by

x = �b0 +

N�1X
i=1

bi2
�i

and b0 is the MSB, bN�1 is the LSB. Although signals take on only
discrete values, their probability mass functions are plotted here for
clarity as continuous density functions on the interval [-1,1). The
area under density functions is normalized to 1.

3 The Variance Gap Problem
Many high-performance signal processing datapaths consist pri-
marily of networks of shift, add, and delay elements. In our exam-
ination of large DSP datapaths constructed out of these primitives,
we found that most of the difficult faults were located in the upper
bits of the carry chains of adders and subtractors. This seems to
be consistent with the anecdotal accounts of designers, who report
difficulty in fully exercising the carry chains of adders. We found
the problem to be most severe in adders where signals of greatly
differing amplitudes are combined.

An example is shown in Figure 2, where a 7-bit number is
added to a 12-bit number. The smaller B input is sign-extended to
conform to the width of the adder, represented by the sxt operator in
the register-transfer level (RTL) schematic. The B input may not be
immediately recognizable as a 7-bit signal; for example, it might be
a full 12-bit wide signal that only uses 7 bits of its dynamic range.

In an adder with a variance gap, it is difficult to generate the
tests X10 and X01 at upper adder slices, where the cube specifies
the values of the ai, bi , and carry inputs, respectively, and the B
input is the lower variance input. The upper bits of the B input
follow the sign of B. If a particular test requires the carry input
to an upper adder slice to differ from the sign of B, a number of
the upper bits of the A input will be constrained. This is shown in
Figure 3, where the test 001 is to be applied to the next-to-MSB full
adder. The MSB adder is assumed to not generate a carry.

This test is difficult in the sense that it is dependenton the differ-
ence between the input widths, and requires fairly specific values to
appearat the A input. If the A input values are uniformly distributed,
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Figure 3: Implications of applying test 001 to bit 10 of variance
mismatched adder (5 bit variance gap). Demonstrates the difficulty
of testing the carry logic of upper bits in variance mismatched adders.
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Figure 4: Difficult tests.

the waiting time for the test follows a geometric distribution, the
mean of which is exponentially dependent on the number of bits
that span the gap between the input widths. The test time to reach
full coverage can be expected to double for each additional bit of
variance gap.

It is not always necessary to generate all the difficult tests, since
there may exist an easier test for the failure mode in question, and
not all difficult tests may be essential. For example, if a failure mode
of a full-adder has the effect of removing the cube 11X from the
on-set of the carry function, the easier test 111 can be chosen over
the difficult test 110. Which tests are essential is dependent on the
adder structure and fault model used. Under most gate-level single-
stuck fault models of full-adders, testing the carry logic presents
the greatest difficulty since the carry logic tends to have essential
tests that are difficult, while the sum logic fault model generally
includes an easier test among the alternative tests for each fault.

The difficult tests are shown circled in Figure 4, along with the
logic function for the carry logic. The A input values required to
assert each difficult test are shown in the accompanying table.

At a minimum, the failure modes of the carry logic typically
include faults where the carry output on-set expands to include the
cubes X1X or XX1. For these failure modes, the difficult tests
010 and 001 are essential. A gate-level model for such an adder is
shown in Figure 5.

Two common full-adder gate-level models are shown in Fig-
ures 5 and 6. The first design is optimistic under the single-stuck
fault model in that two of the four difficult tests are non-essential,
and consequently it is likely that these tests will not be applied
even if 100% fault coverage is reported by fault simulation. The
table shows the essential tests for the carry logic (labeled “e”), and
the test equivalence classes for test cubes that do not include an
essential test (labeled “1” and “2”). The carry logic is fully tested if
each of the three essential tests are applied and a test from each of
the two equivalence classes is applied. The second design is more
conservative from a testing perspective, in that all four difficult tests
are required. The first circuit may be too optimistic for use as a
general full-adder model in fault simulation; if test generation is
stopped as soon as 100% coverage is reported, it is quite possible
that some adders with large variance gaps will not have had the 110
and 101 tests applied, which may be required to detect real faults
in fabricated devices.

Thus, it is possible to identify—relatively independent of im-
plementation structure—that (at least) the tests 010 and 001 will be
problems in an adder where signals of widely differing amplitudes
are combined.

The testing problem described here is compounded by another
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effect that commonly arises in DSP datapaths. Rather than the
adder A input taking on a uniform distribution of values, samples
tend to be more densely distributed around the mean. This is a
consequence of the Central Limit Theorem [6]; at internal nodes
signals will tend to take on a normal distribution. This is illustrated
in Figure 7, where a continuous density function has been used
to represent the discrete probability function of the A input. The
figure shows the approximate locations of vectors that will assert
the indicated difficult tests. As the variance gap is increased, the
width of each of the eight gray regions narrows. Fortunately, the
tests that would be asserted at the tails of the input distribution (010,
101) are also asserted by vectors that lie close to the mean. The
problem is typically worse for the tests that lie around�0:5, at least
if the standard deviation (�) of the signal is small compared to the
full dynamic range available. The problem can be much worse for
certain test signal generators, as will be shown in Section 5.

3.1 Fault detection probabilities
The previous section gave conditions required for the difficult tests
to be asserted at the upper bit slices of a variance-mismatchedadder.
These conditions, while necessary, are not sufficient to ensure that
the tests are asserted. The additional conditions are on the sign of the
B (low variance) input and the carry output of the lower bits, which
will be referred to as the lower block (bits 0–5 in the example).
Specifically, the probability of a single vector asserting a difficult
test at the next-to-MSB adder in an N -bit variance-mismatched
adder with variance gap of M bits is

pD = PfaN�2 = k1; bN�2 = k2; cN�2 = k
0

2g

= PfA 2 V (k1; k2); clb = k
0

2; sign(B) = k2g

where k1; k2 2 f0; 1g, clb is the carry out of the lower block,
sign(B) is the value of the sign bit of the B input, and V (k1; k2) is
a cube determined as follows:

V (k1; k2) = Xk1

M�1z }| {
k
0

2 � � �k
0

2

N�M�1z }| {
X � � �X

If the B input is fed by a uniform distribution, such as gener-
ated by an LFSR, Pfsign(B) = k2g = 0:5. Approximating the
distribution of the A vectors in the lower block by a uniform dis-
tribution, independent of the upper bits, the probability that the
lower block generates a carry is the same as the probability that the
sum of two uniformly distributed, unsigned L-bit binary numbers
is greater than or equal to 2L, where L is the width of the lower
block (L = N �M � 1):

Pfclb = 1g =
2L � 1
2L+1
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Figure 7: A hypothetical probability density function for the A input
to a variance mismatched adder showing the zones the input vector
must fall in for the difficult tests to be asserted.
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Figure 8: Variance matching transformation.

This function is 0.25 for L = 1, and rapidly increases towards its
upper bound of 0.5 as L is increased.

pD gives the probability of a test being applied at a given vector,
representing a Bernoulli trial with probability of success p = pD .
The probability of first asserting the desired test at vectorn follows
a geometric distribution, pD(n) = qn�1p (where q = 1� p; n =

1;2; : : :). The expected number of vectors for first assertion of the
test is 1=p, with variance q=p2 .

For the earlier example, N = 12, M = 5, L = 6, k1 = 0,
k2 = 0, giving

pD = PfA 2 X01111XXXXXX; clb = 1; sign(B) = 0g

� 0:25
�
PfA 2 001111XXXXXXg

+ PfA 2 101111XXXXXXg
�

If the A input is uniformly distributed, pD = 0:25 � 2�5, and the
mean waiting time for application of the test is 128 vectors, with
standard deviation � = 127. In realistic applications, the uniform
assumption breaks down, and it is necessary to either calculate or
estimate the probability distributions of the inputs. Calculation of
probability distributions will be discussed in Section 4.

3.2 Variance matching transformation
The variance gap problem can sometimes be reduced by restructur-
ing additions using associativity. Ideally, the two smallest variance
sources to be added are combined first, followed by the next two,
and so on, in a manner analogous to the construction of a Huffman
code tree. From a layout perspective this approach has drawbacks
due to the potential irregularity of the resulting layout. Often, a
linear chain of adders is preferred to a tree structure since this
maximizes the regularity of the layout.

In large filters, it is common to have a high variance datapath
into which smaller variance signals are added. In this case, one
possible compromise between regularity and testability is to add
small variance signals in their own chain before adding the result
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into the larger variance chain. This approach is illustrated in Fig-
ure 8. The top design will be referred to as the chain architecture,
while the lower design will be referred to as the variance-matching
architecture. The effect of this transformation on the pseudorandom
testability of the design will be examined empirically in Section 6.

4 Computing Probability Distributions
For signal processing datapaths consisting of networks of shift, add,
and delay elements, it is possible to efficiently compute the signal
probability distribution at any adder output using the convolution
property of discrete, lattice-type random variables (RVs) [6].

Given the probability distributions of two discrete, lattice-type
independent RVs, X and Y, pX (n) = PfX = ng, pY (n) =

PfY = ng, the distribution of the sum is given by the linear con-
volution of the distribution functions, pX+Y = pX(n) � pY (n).
In two’s-complement arithmetic, the addition is performed using
normal unsigned integer arithmetic, modulo 2N . To account for the
effect of overflow, L-point circular convolution is used in place of
linear convolution, denoted pX(n) fL pY (n), L = 2N ,

pX+Y (n) =

L�1X
i=0

pX(i)pY ((n� i) mod L);

for n = 0; 1; : : : ; L� 1.
The circular convolution can be computed efficiently using the

Discrete Fourier Transform (DFT) or the Fast Fourier Transform
(FFT),

pX+Y (n) = DFT �1fPX(k)PY (k)g

where PX(k) = DFT fpX(n)g, PY (k) = DFT fpY (n)g.
Thus, when adder inputs are independent, the output distribution

can be most efficiently computed in terms of the input distributions.
This is applicable to acyclic networks where adder outputs do not
reconverge.

A more general model assumes that the network is acyclic, but
that adder inputs are not independent (e.g., adder outputs may re-
converge). In this case, the impulse response is computed for the
adder’s output (assuming a linear network), and the output probabil-
ity distribution is computed from this. This is done by generating
a distribution corresponding to each non-zero component of the
impulse response, and convolving the results (or, more efficiently,
multiplying together the FFTs of each distribution and taking the
inverse FFT of the product). The generated distributions are sim-
ply suitably scaled versions of the PRPG source distribution. This
approach assumes a single PRPG source, but can be extended to
the case of multiple independent PRPGs by convolving the distri-
butions computed for each independent source.

In the case of cyclic networks, the distributions can generally
be approximated by truncating infinite impulse responses at a point

where the energy in the tail is small compared to the total energy of
the impulse response.

For the experimental studies described in this paper, we have
implemented the single-source, acyclic version of the algorithm
that supports reconvergent adder outputs.

DFT resolution and computational considerations: For wide
signals, there is an issue of how many bits to use in the DFT
representation of the signal. For our tests, we have found that 8 to
10 bits of resolution show most of the detail in the distributions, and
should be adequate for estimating fault detection probabilities at the
upper bits of adders, where stubborn faults are typically found. For
networks with no reconvergent adder outputs, the DFT only needs
to be computed twice and the inverse DFT once for each adder.
For adders on reconvergent paths, the impulse response approach
is used, requiring one DFT for each non-zero component of the
impulse response, followed by one inverse DFT. This is potentially
computationally expensive if a filter has a long impulse response.
For the large filt64 example that will be introduced in Section 6, the
impulse response method was found to use 66 CPU seconds on a
486-66MHz processor for 256-point (8-bit resolution) FFTs.

Nonlinear operations: The discussion here assumes a linear net-
work model. However, truncation is a common non-linear oper-
ation found in DSP applications. This can be handled under a
linear network model by representing truncation (or, equivalently,
right-shifting) as division by a power of two combined with a noise
source. For the experiments here, we ignore the noise introduced
by truncation.

5 Modeling LFSR Correlation Properties
Common pseudorandom pattern generators (PRPGs) based on LF-
SRs do not produce statistically independent test vectors;significant
correlation exists between successive tests. A typical LFSR-based
PRPG might shift its contents from LSB to MSB for each test, in-
troducing a new bit at the LSB. For this type of PRPG, each output
sample (interpreted as a two’s-complement number) is closely re-
lated to twice the preceding sample. The sign-extended output of
an N bit LFSR can be expressed in terms of its previous output as

x[n+ 1] =

(
2x[n] + �; �2N�2 � x[n] < 2N�2

2x[n]� 2N + �; 2N�2 � x[n] < 2N�1

2x[n] + 2N + �; �2N�1 � x[n] < �2N�2

The first case occurs on average 50% of the time, with the other
two cases each occuring 25% of the time (� is the one-bit un-
signed 0/1 signal shifted into the LFSR LSB). This representation
shows why correlation effects might be a problem in a datapath
structure: for example, if the datapath implements the function
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curve uses the LFSR model shown in Figure 10. Compared with
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properties on signal distributions.

y[n] = 41x[n� 1]� 22x[n] (corresponding to Figure 9, if trunca-
tion is ignored), the output signal distribution will degenerate into
narrow regions given by

y[n] �

(
�3x[n]; �2N�2 � x[n] < 2N�2

�3x[n]� 22 � 2N ; 2N�2 � x[n] < 2N�1

�3x[n] + 22 � 2N ; �2N�1 � x[n] < �2N�2;

where the typically small effect of � has been neglected.
For PRPGs generating statistically independent samples, signal

distributions are typically smooth after a few signals dependent on
different PRPG samples are combined. However, PRPG correlation
effects can destroy this property, introducing a large amount of
fine structure in the signal distributions. This sort of correlation
effect can be examined using the analytical techniques described
in Section 4, where the PRPG input signal is replaced by a linear
model of an LFSR, shown in Figure 10. The input to the LFSR
model, w(n), is an independent RV taking values 0 and �1, each
with probability 0.5. The SHLEXT operator shifts its input left by
the indicated amount, producing a signal wide enough to hold the
shifted quantity.

For the datapath segment shown in Figure 9, an idealized PRPG
producing statistically independent samples would produce the out-
put distribution shown in Figure 11. By replacing the input to the
circuit with the LFSR model of Figure 10, the curve labeled “LFSR-
theory” in Figure 12 is produced, in agreement with the histogram
produced by simulating the actual LFSR sequence. When com-
pared with the test zones indicated in Figure 7, it can be seen that
this signal would not be able to effectively test an adder with even
a small variance gap in the following filter stage since tests 001 and
110 would not be activated.

This problem exists independent of the LFSR seed and polyno-
mial (at least for the class of LFSRs that use external XOR feedback
networks). This result shows how signal distributions are able to
provide insight into testing problems that cannot be identified with
gross measures, such as signal variance or maximum signal range.

widths
design adders regs in coef. out

filt11 15 11 16 10 16
filt25 44 25 12 14 14
filt60 173 60 12 14 14
filt64 193 64 12 14 14

Table 1: Design statistics.

adder scaling register scaling
design #add. #bits #reg #bits

filt11 7 30 4 20
filt25 15 44 9 26
filt60 49 161 18 63
filt64 91 281 30 97

Table 2: Scaling of chained-adder architecture.

adder scaling register scaling
design #adds #bits #regs #bits

filt11 8 36 4 20
filt25 26 80 9 26
filt60 123 640 18 63
filt64 157 1016 30 97

Table 3: Scaling of variance-matching architecture.

design orig scaled VMA

filt11 5370 4590 4316
filt25 13496 12380 10926
filt60 52670 48814 34450
filt64 58726 52024 31476

Table 4: Number of adder faults simulated.

6 Experimental Results

Four filter specifications were selected from the literature: a 64-tap
filter [7], a 60-tap filter [8], a 25-tap filter [8], and an 11-tap filter [9].
The design statistics are shown in Table 1, including the number
of adders, the number of state registers, the input signal width, the
coefficient width, and the output signal width. Ripple adder chain
structures were used to implement the fixed width datapath baseline
designs, where all addition and subtraction operations are the width
of the filter output. Scaling was then applied to remove redundant
sign bits, shrinking portions of the datapath and enabling further
redundancy elimination using logic optimizations [4, 5].

The scaling results are shown in Table 2, where the number
of adders and registers scaled is shown, along with the number of
adder and register bits removed via scaling. L1 scaling was used
[3, Sec. 6.9.2], which guarantees that the behavior of the design
is not changed. For comparison purposes, the designs were also
constructed using the variance matching architecture described in
Section 3.2. The scaling results for the variance matching architec-
ture are shown in Table 3.

The resulting designs were fault simulated using LFSR-generat-
ed test vectors. The total number of adder faults simulated in each
design is shown in Table 4. Registers in these designs are highly
testable, consequently their faults are excluded from consideration
here. The fault simulation curves are plotted in Figures 13–16,
showing the number of untested faults for the original (unscaled)
chain architecture, the scaled chain architecture, and the scaled
variance matching architecture. Variance matching results are not
plotted for filt11 since it had too few adders per tap to allow signif-
icant optimization.
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Figure 14: Fault coverage for the filt25 design. Original (non-scaled),
scaled, and variance-matched (VMA) versions shown.
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Figure 15: Fault coverage for the filt60 design, original, scaled, and
variance matched versions.
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Figure 16: Fault coverage for the filt64 design, original, scaled, and
variance matched versions.

All the designs were found to be highly testable in terms of
percent fault coverage (all in the high 90s) but the original unscaled
designs using the adder chain architecture have a significant num-
ber of untested faults even after several thousand test vectors (on
average as many as 4 per adder in filt64). Redundancy elimina-
tion using scaling and logic optimization significantly reduced the
number of untested faults in these designs, but a large number of
stubborn faults remained in the cases of filt60 and filt64, as indi-
cated by the high rate at which faults are still detected after 2000
vectors have been applied. For these filters, the variance matching
architecture yielded significant gains in terms of reduced test time
and fewer untested faults. In all designs, the best optimized design
offered more than an order of magnitude reduction in the final num-
ber of untested faults over the unoptimized design. The results are
summarized in Table 5 in terms of the average number of untested
faults per adder after applying a maximum-length LFSR sequence
(or 4k vectors for filt11).

arch filt11 filt25 filt60 filt64

orig 2.67 1.87 3.03 3.93
scaled 0.07 0.32 1.48 1.40
VMA – 0.02 0.18 0.16

Table 5: Final average untested faults per adder.

7 Conclusion
The testability properties of large DSP datapath structures under a
pseudorandom self-test paradigm have been examined. Addition
of variance-mismatched signals was identified as a testing problem,
and the probability of detecting difficult faults in these structures
was derived in terms of signal probability distributions. A method
of calculating these distributions was described, and its ability to
predict testing problems associated with LFSR correlation proper-
ties was demonstrated. Variance matching was empirically shown

to improve the testability of the two largest designs, reducing the
number of untested faults by at least a factor of eight over the
scaled and optimized designs that did not use variance matching.
In addition, test length was significantly reduced.
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