
- 1 -

 VHDL Development System and Coding Standard

Hans Sahm *, Claus Mayer *, Jörg Pleickhardt *, Johannes Schuck *, Stefan Späth **

* Lucent Technologies - Bell Labs Innovations
Thurn-und-Taxis-Str.10 D-90411 Nürnberg, Germany

** Philips ADC Nürnberg, Germany

Abstract
With the growing complexity of todays ASICs and the number

of designers involved in one VHDL ASIC project, the need for a
VHDL development system together with coding rules for simu-
lation and synthesis has emerged.
This paper describes the VHDL Coding Standard which has been
established and the VHDL development system including code
entry, code formatting, code compliance checkers, data manage-
ment and multi-user project set-up.

1. Introduction
Designing ASICs for telecommunication applications like

SDH (“Synchronous Digital Hierarchy”), ATM (“Asynchronous
Transfer Mode”), Subscriber access and GSM (“Global System
for Mobile communication”) results in design complexities of half
a million logic gates and code development of more than a hun-
dred thousand lines of code for VHDL testbenches, behavioral
level modeling for simulation and RT-level for synthesis.
The project teams, creating those complex designs, need definitely
assistance in a common set of rules to apply and in tool support
apart from a VHDL simulator and synthesis tool.
While the expressive power, flexibility, technology and process
independence and the ability of coding on different abstraction
levels [1],[4] significantly contributes to the success of VHDL,
these qualities may cause on the other hand severe problems,
when experience and project coordination is insufficient. Potential
problems are exchangeability, portability, reusability, understand-
ing of all available language constructs and unexpected behavior
in simulation and in synthesis results.

Given this situation, we decided to establish a VHDL Coding
Standard, which is the reference for VHDL modeling in our com-
pany and is intended to be as independent of any particular EDA
tool as possible. Basically the Coding Standard is organized as a
collection of rules and recommendations, which are used as refer-
ence for the VHDL development system on source code format-
ting and compliance checking for simulation and synthesis
models.
In order to cope with the huge amount of data created in the course
of a VHDL project, methods and techniques known from software
development [2],[3] have been adapted and enhanced with the
special features of VHDL on dependencies and primary design
units for overall data management and multi-user project set-up.

2. Overview
Figure 1 shows an overview of the structure of the VHDL de-

velopment system:
VGuide and the embeddedXEmacs language sensitive editor rep-
resent the graphical user interface.
Pci, pco, pdiff, plog andpstatus are revision control tools for ad-
ministration and project data management for multi-user designs.
Vfmt, vlint, vpr, andvlog are VHDL source code tools for code for-
matting, code compliance checks, pretty printing and statistics.

The underlying reference for all tools is the VHDL coding stan-
dard.

The concepts, major tools and VHDL coding standard will be pre-
sented in the following sections.

Figure 1: Overview of the VHDL development system

VGuide
XEmacs

pci pco pdiff plog pstatus vlint vfmt vpr vlog

Data management VHDL source code tools

VHDL Coding Standard

Graphical User Interface

Encapsulated Tools

Tasks

Reference

33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

- 2 -

3. Project set-up
Choosing an appropriate structure of project and user directo-

ries for storage and verification of project data is an essential pre-
requisite for successful project management.
The chosen approach is file based data management with strict de-
coupling of project and working directories, the project directory
structure being transparent to users and freely configurable.
Revision control is implemented based on RCS(“Revision Con-
trol System”) [3], since RCS offers several advantages like:

• lock mechanism to prevent interfering edits

• file storage with reverse deltas (fast access)

• availability of symbolic release pointers

• complete history of revisions including log messages.

Figure 2 outlines an example of directory structures for VHDL
projects chosen at our site.
The reference versions of all source files of a project are stored in
the project directory, which is maintained by a project administra-
tor, who has write permissions to the directory. All other project
members have only read permissions to files within the project
tree.
Below the project directory a subdirectory exists for each module.
All files related to the respective modules are stored there. Files
like VHDL sources and scripts, which are under revision control
are kept in a directory RCS according to RCS conventions[3].
Presynthesized modules, if existing, are stored within a directory
DB. Separate project trees are created for the behavioral level and

RT-level part of a project.
Three administration files have been defined:

TheHIERARCHY file represents the VHDL dependencies and
levels of hierarchy. A project tree like:

would result in aHIERARCHY file:

top_level := module1, module2;
module2 := package2;
module1 := module3, module4;
module3 := package1;

ThisHIERARCHY file is either automatically generated by the
VHDL development system [7] or could be edited by any text ed-
itor. Based on thisHIERARCHY file, compile scripts are generat-
ed, the design hierarchy is displayed graphically within the VHDL
development system and check-out operations are managed for
any level of hierarchy.

The second administration file is calledACCESS and defines

top_level

module1

module2 package2

module3

module4

package1

Project_dir

RCS

module1 .vlintmoduleNACCESS

module1.vhdl,v

Local_dir

sources compile_all

module1.vhdl module2.vhdl moduleK.vhdl

Check-Out

directory

file

created by pco

(pco)

DB

module1.db

Check-In
(pci)

HIERARCHY

CHANGELOG

RELEASES work.mod1.vl

HIERARCHY.release

created by pci

Figure 2: Set-up of project and user directories and data

module3.vhdl

DATABASE

- 3 -

the list of authorized check-in users or groups per module and the
list of users or groups, which are notified when modified modules
have been checked-in.

The third one is theDATABASE file, which may be used to de-
fine any user defined directory structure, any file type to be
handled, any particular dependency to be managed and name and
contents of script files to be generated together with check-outs.

4. Data management tools

The basic task of the data management tools is to allow the
project members to work on a common project directory in a co-
ordinated way, without the need for anybody involved in the
project to manually copy, move or delete any file on operation sys-
tem level. Within the VHDL development system, commands
based on check-in and check-out from RCS are used and a graph-
ical user interface is provided with a project window representing
the data management for project data(see figure 3) and a local win-
dow managing data within users local directories(see figure 4).
The general concept is to have all functionality available from the
graphical front-end (project and local window) as well as on com-
mand level of the operating system. Both ways of launching a
command are functionally equivalent and may be combined or al-
tered at any time.

The project window assists the designer in getting an over-
view of the project hierarchy, of the status of all files, releases and
RCS changelog information. It allows the creation and update of
all project administration tasks like defining and changing access

rights per module for users and groups and notification lists per
module for users. In addition it is the frontend for check-out oper-
ations of all modules either for read-only or editing purposes in-
cluding file locking at ‘check-out for edit’ and unlocking at check-
in time.
The local window of the VHDL development system is intended
for all tasks of creating, verifying, beautifying, and finally check-
ing-in the local modules of all designers involved in the project.
It is the frontend for a number of VHDL source code tools:

• XEmacs - language sensitive editor with VHDL mode

• vfmt- source code beautifier

• vlint - VHDL code compliance checker

• vpr - VHDL pretty printer

In addition the local window delivers all status information
and any available script file can be executed. The commands of the
local window are user configurable and expandable.

5. VHDL Coding Standard

VHDL as a hardware description language offers almost com-
plete freedom to the designer in how he may model his design. Ex-
perience shows different designers have preferences for different
modeling styles, data types, packages, commenting, naming styles
and design partitioning.

Figure 3: Project window of VHDL development system

- 4 -

The intention of the VHDL coding standard [5],[6] is to pro-
vide guidelines how VHDL models should be coded to ensure
portability of designs between different groups of designers and/
or different EDA platforms. Care has been taken to keep this doc-
ument as independent as possible of any particular VHDL imple-
mentation or EDA vendor. However, as indicated in the RTL
language section, because of the different capabilities of the dif-
ferent synthesis tools, this section can not be strictly tool indepen-
dent.

The VHDL coding standard is written in the form of rules and
recommendations, each one identified by a symbolic name, which
allows for automatic rule compliance checks of VHDL sources
and trace back of the violations to the corresponding rule[8].
See figure 5 for an automatic compliance check example.

The VHDL coding standard is divided into the following main
parts:

• General principles

This section covers the basic ideas behind the coding standard
including file management, revision control and mapping between
design units and files.

• Code layout

All formal aspects of VHDL coding are treated in this section.
Rules and recommendations from traditional programming lan-
guages [2] have been adapted. Among the topics covered therein
are: naming conventions, naming strategies, readability aspects,
commenting requirements, commenting styles, indentation, align-

ment and spacing.
A large part of this section consists of predefined templates for all
major VHDL constructs, which will be included by the language
sensitive editor on keyword expansion [7].

• Language usage

This is the most comprehensive section and deals with all
items concerning VHDL language usage. Subsections exist for ab-
stract behavioral modeling, for register transfer level modeling
and a general usage subsection, which is applicable for both kind
of models. The behavioral modeling part deals with language
rules for behavioral simulation, testbench models and board sim-
ulation models. Main topics are the definition of data types, pro-
cess partitioning, performance modelling and model portability.
The RTL modeling part deals with design decomposition, data
types, process partitioning and non synthesizable constructs.
It was written with Synopsys synthesis in use, but having other
sites of our company using synthesis tools of two different EDA
companies.

• Reference section

This final part contains definition and type declarations of
standard and additional packages, which are part of the VHDL de-
velopment system. For the definition of logic values the IEEE
std_logic_1164 package is used. String and conversion packages
are proprieatary packages. For arithmetic functions an industrial
package [9] has been adapted according to our standard. When
balloting on IEEE numeric packages is concluded, they will re-
place the proprieatary arithmetic package.

Figure 4: Local window of VHDL development system

- 5 -

The VHDL coding standard has been in use within our com-
pany for 3 years. It has been continuously improved through valu-
able feedback from current VHDL projects and is controlled by a
VHDL Steering Group updating and distributing improved ver-
sions on a regular basis.
In addition the standard is currently in open review within the eu-
ropean community ESPRIT project OMI (Open microprocessor
systems initiative) [6].

6. Vlint compliance checker
However, a stand-alone VHDL coding standard with hun-

dreds of rules and recommendations is of limited use, if no sup-
porting tools are available to check automatically the VHDL
sources of a project against those rules.This is the main task of
vlint.

Vlint includes a full VHDL scanner/parser and therefore can
be used to check VHDL sources for syntactical and semantic er-
rors. The significant difference compared with VHDL compilers
for simulation and/or synthesis is the required analyze time and
the improved error reporting. The main subject ofvlint is code
compliance checking against the rules of the VHDL coding stan-
dard. Figure 5 shows an extract of a VHDL architecture and the
resulting vlint messages.
One mode is rule checking for synthesis, which refers to RTL rules

and general rules, the second mode is rule checking for simulation
referring to behavioral modeling and general rules. Violated hard
rules of the coding standard cause error messages issued byvlint,
ignored recommendations lead to warnings fromvlint.
In additionvlint checks a number of items, which are potential
sources of errors, like:

• declared but unused objects or ports

• NULL ranges

• consistency of sensitivity lists and signals read in a pro-
cess

• dead code

• whether declaration and usage of port modes are consis-
tent (eg INOUT, only used as IN or OUT).

All vlint output messages include the mnemonic rule identifier
and a verbose problem description to reduce the need to read the
corresponding coding standard section.
It is obvious that a VHDL checker tool cannot analyze a source file
without the knowledge of its design context, because every non-
trivial model contains references to objects declared externally in
different source files or packages.
Since it would be very inefficient to locate and reparse every ref-

Figure 5:Vlint checks withinXEmacs editor

- 6 -

erenced VHDL file and package,vlint uses a mechanism to store
all vlint related data permanently within binary vlint libraries[8].

7. VHDL beautifier
The need for a VHDL beautifier either in conjunction with a

language sensitive editor or as a stand-alone formatter was identi-
fied by VHDL designers.
The result is vfmt, a source code beautifier.

Figure 5 shows an extract ofvfmt formatted code withinXemacs
editor window (upper window).

On one hand it is very easy to use since a default configuration file
is used to generate code fully compliant with the code layout sec-
tion of the coding standard. On the other hand the configuration
file gives so much flexibility, that it may be adapted easily to any
user requirements.
A few examples on the configuration abilities are:

• character case conversion

KeywordCase = UpperCase;
IdentifierCase = AsIs;
AttributeCase = Capitalized;

would tellvfmtto convert all VHDL keywords to upper case and
leave all user defined identifiers untouched and change the pre-
defined attribute names to capitalized.

• code layout changes

Linewidth = 80;
Indentation = 4;

Vfmthandles proper indentation and wraps long lines exceeding a
maximum line length. Wherever possible, structures are vertically
aligned for better readability.

• code modifications

Modifications are safe, since only additions for automatic re-
peating of entity names or process labels at the corresponding end
statement are done, if they are missing.

• comment handling

Block CommentCharacters = “-=*”;
CommentStartColumn = 41;
ExtendComments = True;

Comments are indented to the same level as the corresponding
code, trailing comments are vertically aligned.

• header file inclusion

ProcessHeaderFilename = “/path_to_my_headers”

Vfmt includes the predefined headers for documentation pur-
poses and automatically expands variables to those headers like
filename, date, time, name of unit or process, organization, author,
simulator version, synthesis version etc.

• piece-wise formatting

--vfmt off
--vfmt on

Current work in progress on vfmt includes the feature of for-
matting selected ranges of the VHDL source code using meta-
comments.
Applications are sources which contain manual pre-formatted sec-
tions or tables which should remain as they are.

8. Conclusions

The previous sections have outlined the methods we estab-
lished for VHDL designs in terms of coding rules and the support-
ing tool environment.
By analyzing the statistical data on ASIC designs over the last few
years, the impact of VHDL top down design on design productiv-
ity, silicon first time right and design quality is significant. For
SDH ASICs the rate of first time right designs has increased to
80%, which is significantly higher compared with designs where
previous design methods have been applied and compared with in-
dustrial average.
The VHDL development system is an environment which gives
useful tool support to designers in their daily tasks of VHDL
source code entry, verification, data management and project set-
up.
The vision of the authors is to improve this VHDL development
system by further requested functionality on design reuse, verifi-
cation and system functionalities.

9. References

[1] ANSI/IEEE Standard 1076-1993 VHDL Language Reference
Manual, New York, 1994, IEEE Press
[2] Straker,D.: C-Style: Standards & Guidelines, Englewood
Cliffs, 1992, Prentice Hall
[3] Tichy,F.W. RCS - A system for version control, Software Prac-
tice & Experience, Vol 15, 1985, pp 637 - 654
[4] Lipsett,R., Schaefer,C. and Ussery,C.: VHDL: Hardware De-
scription and Design, Boston, 1989, Kluwer Academic Press
[5] Sahm, H., Mayer,C., Pleickhardt,J. and Späth,S.:
VHDL Coding Standard, Rev. A-0-9, 1996, Lucent Technologies
document
[6] Sahm, H., Mayer,C., Pleickhardt,J. and Späth,S.:
OMI-326 VHDL Draft Standard for open review, 1996, OMIMO,
Brussels http://www.omimo.be/standard
[7] Mayer, C.: VHDL Development System Documentation,
1996, Lucent Technologies Online documentation
[8] Hack, W. and Mayer, C.: Supporting Tools for a VHDL Coding
Standard, 1994, VHDL Forum for CAD in Europe,Tremezzo, Pro-
ceedings pp 117 - 121
[9] Synopsys, Inc.: VHDL System Simulator Packages Manual,
Version 2.2, 1991

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

