
Abstract. We present a formal verification methodology
that we have used on a computer system design project. The
methodology integrates a temporal logic model checker with a
conventional project design flow. The methodology has been
used successfully to verify the protocols within a distributed
shared memory machine.

We consider the following to be the four main benefits to
using the model checker. First, it ensures that there exists an
accurate high-level machine readable system specification.
Second, it allows high-level system verification early in the
design phase. Third, it facilitates equivalence and refinement
checking between the high-level specification, and the RTL
implementation. Finally, and most importantly it uncovered
many protocol specification and RTL implementation prob-
lems.

1. Introduction

The paper presents a formal verification methodol-
ogy that we have used on a real-life computer system
design project.

The methodology integrates thesmv temporal logic
model checker with a conventional project design flow.
The methodology has been used to verify the two main
protocols within a directory based distributed shared
memory machine [Len92, Tan95]. The two protocols are
the cache coherence, and the programming Input/Output
(PIO) protocols. The cache coherence protocol is the set
of rules that ensure that at any time, different processor
and I/O caches contain coherent values for the same
memory location, and that the order of writes to different
locations, as seen from the programmer, are in accor-
dance with the memory consistency model. Memory
mapped I/O devices are controlled by streams of write,
and read instructions to predefined locations of memory.
These streams are referred to as PIO streams, and the
protocol governing their operation as the PIO protocol.

A system model is formally verified by showing
with mathematical techniques that it conforms to the
specified properties. The properties we might wish to
verify for a protocol specification are, for example, the
absence of deadlock, and that a processor request always
receives the expected response. Formal verification
amounts to exhaustively, for all possible cases, verifying

that a particular model satisfies the specified properties.
In contrast to formal verification: conventional simula-
tion methodology can be viewed as verifying that a sys-
tem model conforms to the diagnostic test suite, i.e the
specification of the design in this cases consists of the
diagnostic tests. The inherent problem with the simula-
tion approach is writing diagnostic tests that sufficiently
cover all the “interesting” corner cases in the operation
of the system.

We chosesmv [McM93] to formally verify the pro-
tocol specifications. There are several reasons for this
choice. First,smv has been successfully used to verify
the specifications of other cache coherence protocols
[Cla93,Lon93,McM91]. Another reason is that source
code is available for the tool, in case any problems are
encountered. Finally, we chosesmv because it can be
integrated with a conventional project design flow; an
important consideration from an industry perspective.

We did evaluate several other approaches vis-a-vis
smv: thevoss [Bry91,Seg93] finite state machine trajec-
tory analysis tool, thecospan [Kur94] finite automaton
ω-language containment tool, and the HOL [Gor88]
higher-order logic proof assistant. Except forcospan, we
think that the strength of these tools is not a good match
for the type of systems we are interested in analyzing

Thecospan tool is built on powerful theory that uses
a property specific refinement capability to counter com-
putational complexity, and the state explosion problem.
We do plan to compare the utility ofcospan andsmv for
the type of properties we are interested in analyzing.

Thevoss tool was not chosen because it is designed
to verify implementations of interacting state machines,
and as such it lacks the proper behavioral and temporal
abstraction capabilities that are necessary to verify pro-
tocol specifications. The tool does not accept nondeter-
ministic state machines which are essential when
verifying abstract models. Also the tool restricts tempo-
ral specifications to the always-in-next-state AX opera-
tor, but does not have the CTL eventually operators that
are necessary to verify nondeterministic models.

Finally, the HOL approach was not considered
because it is manually intensive, and has mostly been
successful in reasoning about data paths, whereas the
protocol specification is control logic dominated.

The rest of the paper is organized as follows. We first
describe how the model checker is integrated into a con-

Integrating Formal Verification Methods with A Conventional Project Design Flow

Ásgeir Th. Eiríksson
Silicon Graphics Inc.,
Mountain View, CA

asgeir@sgi.com

33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

OS
issues

verilog
protocol fsmsmv

protocol fsm

ventional project design flow, then describe the model
checker run-time environment, and finally discuss open
issues and possible future enhancements.

2. Design Methodology

We employ top-down methods to maximize the ben-
efits of formal verification/analysis. An overview of the
project design workflow is shown in Figure 1.The input
to the analysis is an abstract design specification.

Thesmv model is derived from the design specifica-
tion. Temporal abstraction is used to minimize the gran-
ularity of the time scale, and functional dependency
analysis is used to eliminate as many state variables as
possible. For each state variable we analyze if can be
eliminated by re-writing it as a function of other state
variables. Finally, we selectively refine thesmv model,
using the RTL implementation.

We proceed in this fashion in order to try to increase
the computational efficiency of model checking, and to

side-step/avoid the state explosion problem.
It is important to minimize the granularity of the

time scale in order to minimize the steps required to
explore the reachable state space, and also to minimize
the number of iterations during fixed point calculations.

The model checking performed bysmv is Binary
Decision Diagram (BDD) [Bry86] based. The minimiza-
tion of the number of state variables tends to decrease the
size of the BDD data structures withinsmv. In our expe-
rience this is always successful for the BDD representing
the set of reachable states, but this decrease in the size of
the reachable state space BDD is sometimes offset by an
increase in the size of the intermediate partitioned transi-
tion relation BDDs [Bur91]. The cases where this re-
writing of BDD variables is successful, is when a BDD
variable can be eliminated by re-writing it as a determin-
istic, or nondeterministic, function of BDD variables that
are close together in the BDD variable order.

Refinement checking is effective at side-stepping

specification
document

verilog2smv

system model

ACTL Analysis

BDD
issues

refinement

equivalence
check

OS
design

performance
simulation

smv verilog
RTL

unit/system
simulation

implementation
manual entrytranslation

verilog2smv

translation

N
Y

correct

Modify

timing
issues

Y

N

optimal

Abstract
Specification

N

Y

manual entry

Figure 1: project design workflow

the state explosion problem because different parts of the
RTL can be refined separately. Refinement checking is
also compuatationally efficient, because it does not
involve fixed point calculations; the checking can be per-
formed while deriving the set of reachable states.

A high-level protocol specification consists of a col-
lection of multiple input, multiple output state machine
tables, that determine the response to incoming messages
in terms of state changes, outputs, and outgoing mes-
sages. The tables serve as input to a performance simula-
tion, formal verification withsmv, verilog RTL state
machine generation, and to a text processor specification
document generator.

During the early phases of a project, protocol design
alternatives are evaluated using a performance simulator.

After performance evaluation trade-off simulations
are completed, a protocol typically goes through numer-
ous revisions. The three primary driving forces behind
the changes are the following: Operating System (OS)
requirements, RTL synthesis timing issues, and protocol
problems, uncovered with formal analysis.

There is one accurate machine readable specifica-
tion. Having one source for the protocol specification has
several important benefits. The first is that the different
tools are always working with the same version of the
protocol. Another is that it is possible to verify any
design changes, e.g. due to RTL timing considerations,
with the formal verification tool. Finally, once formal
verification finds a problem in the protocol, andsmv ver-
ifies the proposed fix, the revised version of the protocol
is immediately available to the RTL simulation tools.

2.1 smv system model

The model checking performed by smv is BDD
based. The structure of the protocol system model is
therefore very important in making property verification
tractable [McM93,Eir95].

Two conflicting factors have to be taken into
account when developing the system model.

First, it is imperative to have all the components of
a protocol present in the system model. It is not suffi-
cient, for example, to verify only the processor part of a
cache coherence protocol. The system model also has to
contain the I/O section of the protocol, i.e. DMA reads
and writes. We uncovered several problems in the cache
coherence protocol in the area of processor and I/O inter-
action. If the system model wouldn’t have represented all
of the cache coherence protocol, these problems would
not have been found until system simulation of the pro-
cessor, memory and I/O sub-systems, at the tail end of
the project.

The other factor that has to be taken into account

when developing the system model, is that it is essential
not to introduce unnecessary detail in the model. First, so
as not to add unnecessary complexity to the verification,
and second so that the protocol is verified under the most
general possible conditions in which it is intended to
operate.

It is our experience that if careful attention is paid to
the development of the system model, thensmv is trac-
table up to 150-200 state variables. For the cache coher-
ence protocol this translates into a model with 3
processors (or 2 processors and 1 I/O, or 1 processor and
2 I/Os), each with 1 cache line, with a 1 bit data value,
and 1 directory entry. For the PIO protocol this translates
into 2 processors, and 2 I/O modules. Each processor in
this case has up to 4 outstanding requests, 3 writes, and 1
read.

We have access to machines with up to 2G bytes of
real memory. For larger models than above the problem
is not memory size, but rather thatsmv becomes CPU
bound. Once ansmv run-time image exceeds 1-1.2G
bytes of real memory, the run-time become prohibitively
large.

2.2 smv protocol finite state machines

The smv version of the protocol specification tables
is created by translating the tables intosmv case state-
ments. Thesmv case statement is priority encoded, so
the first case that is valid for a particular input condition,
is evaluated.

The RTL case statements are either synthesized
using these same sequential semantics, or using parallel
semantics. The latter case relies on the property that the
different case are mutually exclusive, i.e. there is at most
one case valid for any input combination; the cases are
one-hot encoded.

2.3 ACTL Analysis

The goal is to verify the following properties of the
high-level specifications: there are no deadlocks, the dif-
ferent types of requests, always receive the correct
response, there is never unsolicited response, and the
safety invariants are never violated.

If for performance reasons the protocol is imple-
mented with one-hot encoding, we also verify that there
is always at most 1 row activated in a table. This is
accomplished with the following specification:
AG(Σrowi≤1), where rowi is one of the input conditions
in the table (the AG means that the property should hold
true in every state within the reachable state set). It is
common that the large tables, the largest table has >600
rows, have problems in this area.

It is also important to check the converse condition,

i.e. that each row is activated for some state of the proto-
col. This property is verified with an EF(rowi) specifica-
tion (the EF means that there should exist a sequence of
states, from the initial state, to a state where the property
is true). The most common cause of a problem in this
area is due to problems in thesmv system model, i.e. it
doesn’t generate requests in all cases where it should. If
not detected this in turn might mask protocol problems.

The following four types of safety properties are
verified: expected state machine input conditions, proto-
col message invariants, protocol state invariants, and a
special case of deadlock.

The specification of a protocol only contains the
valid input conditions to each of the different state
machines. A state machine input error function is derived
from each state machine specification; the error function
returns false for the valid input conditions, but true oth-
erwise. The first type of AG specification verifies that an
invalid input condition never occurs in the set of reached
states.

A protocol message invariant, for example, is the
property of the cache coherence protocol that a particular
processor can only have at most one outstanding request,
targeting a particular cache line.

A protocol state invariant, for example, is the prop-
erty that if a particular processor has an exclusive cached
copy of a cache line, then no other processor, or I/O can
have a cached copy of the same cache line.

The version ofsmv that we use verifies the safety
properties while the state space is being explored. It is
therefore most efficient to verify the safety properties
first, and then the deadlock and correctness properties.

The absence of deadlock is verified using a two
pronged approach.

The first approach uses a specification of the form
AG EFcondi, where condi is a possible value for ansmv
state variable (the AG in front of the EF means every
state should be considered the initial state). This is not an
ACTL property (see McM93 for example), and therefore
doesn’t hold for refined state variables, but is still very
helpful in finding missing transitions in protocol state
variables.

Another approach to find deadlock, is verifying that
if there is a requests outstanding, then a protocol should
always have some messages in flight. The transformation
of deadlock detection to a safety properties in this fash-
ion is important because safety properties are checked
during the reachable state space exploration, and the
check is therefore more computationally efficient then an
AG EF specification that entails a fixed point calculation.

Finally, the correctness properties are verified using
a specification of the form AG(rq→ A(rq-status U
resp)), or AG(rq->AF resp), where rq is a protocol
request, rq-status is the state maintained by the initiator

during the transaction, and resp is the expected
response.The first specification above specifies that
whenever rq is asserted, the rq-status always is true, until
resp becomes true. The latter specification specifies that
whenever rq is true, resp always eventually becomes
true. An example is a read-shared request by a processor
in a cache coherence protocol. In this case rq=read-
shared, rq-status is that a request buffer is allocated for
this request, and resp is the expected read-shared
response, e.g. a shared cache line.

2.4 equivalence checking

We usesmv to ensure that the verilog version of a
protocol table is equivalent to thesmv version of the
same table.

The boolean equivalence of the two tables is verified
using the methodology shown in Figure 2. Let frtl,i,
i=1..N, where N is the number of the next-state and out-
put functions, be the translated verilog version of the
next-state, and output functions [McM95a,Bai95]. The
inputs to this model are represented with I. The corre-
spondingsmv model is fsmv,i, with inputs I.

Boolean equivalence is verified by having I as free
variables, and verifying that the specification
AG(frtl,i=fsmv,i), is satisfied for each i=1..N.

In practice we’ve observed three sources of prob-

lems in this step. First, when the verilog RTL is not up to
date with the current version of the protocol specifica-
tion. Second, because of errors in the scripts that trans-
late the protocol specification tables to verilog. Finally,
some cases, where a designer has manually updated the
verilog version of the tables, to supposedly reflect a
change in the specification, but hasn’t done this correctly.

Equivalence checking is computationally efficient.
The largest protocol specification table, has 640 rows,
with 74 next-state and output functions. The equivalence
check of all the verilog andsmv files, using onesmv exe-
cutable, requires <10 min, and uses 300M bytes of mem-
ory.

2.5 smv/rc refinement analysis

To make the high-level protocol models tractable
within smv, it is necessary abstract away as much detail
as possible. The abstraction is usually achieved by
replacing logic blocks with non-deterministic functions.
Scheduling or arbitration for example, is typically mod-

frtl

fsmv

I

Figure 2: verifying boolean equivalence

elled with a free nondeterministic variable, that can have
a value corresponding to each of the possible choices.
We usesmv to selectively refine the abstract model,
using the verilog RTL implementation.

Refinement checking formally analyses that a par-
ticular implementation preserves the ACTL properties
that have been proven for the abstract model. The meth-
odology used is shown in Figure 3.

Assume that there is a function fabs in the model M.
This function can be either deterministic or nondetermin-
istic, and either combinational or sequential. Further
assume that the function fabs is implemented in the ver-
ilog RTL with the function frtl. The function frtl typically
is a function of the variables in M, and also introduces
additional state variables.

The function frtl is a refinement of fabs if the follow-
ing ACTL specification is true: AG (frtl ⊆ fabs). To verify
this propertysmv verifies that for each state in the reach-
able state space, the value of frtl is one of the values of
fabs, all other state variables having the same value.

The refinement check is either performed bysmv, or
therc tool [McM95b]. The rc tool automatically creates
the required AG specification, but we revert to using smv
when it is necessary to specify the order of the BDD vari-
ables during the refinement checking.

Refinement analysis is time consuming because in
order to make it tractable, it requires that the person per-
forming the refinement analysis have a thorough under-
standing of the design. This can only be accomplished if
there is close co-operation between this person and the
hardware designer(s). At this point we have only used
this approach for a few critical blocks. In each case this
has uncovered subtle RTL problems.

Refinement checking performed in this fashion is
computationally tractable because only one function is
refined at a time.

3. Run-Time Environment

A regression run that verifies all the properties of the
two protocols, for all the different configurations, con-
tains 250-300 CTL properties. The memory requirement
of smv for the different configurations is from 30-800M,
and the run-time from 10 min - 24 hours, pr. property
(150MIPS machine). We have access to 200 machines,

rtl state frtl

M fabs

Figure 3: refinement checking

I

with up to 2G bytes of real memory.
To minimize the time required for mini, and full

regressions, only 1 property is verified pr.smv run, and
a batch scheduling utility is used to schedule the different
smv invocations on the available machines.This setup
allows a 2 day turn around on a full regression.

The regression runs are managed with manually cre-
ated make files. The decision as to which regression to
run after a particular design change is also manual. An
improvement would be if the decision could somehow be
integrated with the formal verification tool being
employed.

4. Conclusions
A formal verification methodology, is based on, and

therefore ensures that there exist an accurate high-level
machine readable system specification. This is never the
case in a conventional project design flow. Invariably in
that environment, the simulation diagnostics become,
over time, the only accurate system specification!

An unexpected advantage to having an accurate
machine readable specification, is that it enables the gen-
eration of simulation diagnostics directly from the spec-
ification. This is used extensively in practice.

If there is access to a large pool of large machines,
then model checking withsmv has sufficient capacity to
analyze complete abstract specifications of real-life pro-
tocols within the aggressive time schedule of a computer
design project.

Refining abstract models using the RTL implemen-
tation is feasible in practice. This step is time consuming,
and requires a thorough understanding of the design by
the person performing the refinement analysis. Each time
that we’ve refined a model using the RTL design we’ve
uncovered subtle design problems.

Our experience with refinement analysis, leads us to
conclude that formal verification/analysis can not be an
independent activity separated from the design process;
as is typically the case in conventional system verifica-
tion methodology. The design and the analysis has to be
integrated as closely as possible to maximize the bene-
fits.

Finally, we observe that formal verification helped
to uncover many protocol specification and RTL imple-
mentation problems. The designers have acknowledged
that some of these problems would never have been
found in simulation, and a few due to there subtle symp-
toms, would not have been found on the test floor.

smv
list of

properties

resultsbatch
utility by

email

Figure 4: running smv in batch mode

5. Open Issues & Future Enhancements

When a design specification is changed, it is neces-
sary to re-verify the modified design specification. This
is a critical time consuming task. It would increase the
efficiency of the regression if the formal verification tool
could derive which properties need to be re-verified in
response to a particular design change.

The state explosion problem prevented us from run-
ning large protocol configurations, i.e. >3 processors for
the cache coherence protocol, and >2 processors for the
PIO protocol. We plan to investigate, if integrating for-
mal verification closely with the design process can
increase the capacity of the analysis. We have observed
in practice, that it is possible in some cases to make
design changes that have no affect on performance, but
that increase the capacity of formal analysis.

6. Acknowledgments

We are indebted to Ken McMillan ofCadence Ber-
keley Labs, who suggested to us the refinement method-
ology that we used, provided us with the newest version
of smv, consulted extensively on thesmv system model
development, refinement analysis, and graciously shared
his experience from prior formal verification projects.
We would also like to thank the members of theLeg Hub
team atSilicon Graphics Inc.; in particular Jim Laudon,
Dan Lenoski, Kianoosh Naghshineh, and Alex Silbey.
This formal verification methodology, would not have
been successful without their input, and strong support.

7. References

[Bai95] Stan Bailes, v2smv, Internal SGI Inc., verilog to
smv translator.

[Bry86] R. E. Bryant, “Graph Based Algorithms for
Boolean Function Manipulation”, IEEE Trans.
on Comp., C-35, pp. 677-681, 1986.

[Bry91] R. E. Bryant, D. L. Beatty, and C. J. Seger, “For-
mal Hardware Verification by Symbolic Ternary
Trajectory Evaluation”, Proc. 28th ACM/IEEE
Design Automation Conf., 1991

[Bur91] J.R. Burch, E. M. Clarke, and D. E. Long,
“Symbolic Model Checking with Partitioned
Transition Relations”, VLSI 91: Proceedings of
the IFIP TC 10/WG 10.5 International Conf. on
VLSI, Edinburgh, Great Britain, 1991

[Cla93] E. M. Clarke, O. Grumberg, H. Hirashi, S. Jha,
D.E. Long, K.L. McMillan, and L. A. Ness,
“Verification of the Futurebus+ cache coherence
protocol”, Proc. 11th Intl. Symp. on Computer.
Hardware Description. Lang. and their Applica-
tion, 1993

[Eir95] Ásgeir Th. Eiríksson, and Ken L. McMillan,
“Using Formal Verification/Analysis Methods

on the Critical Path in System Design: A Case
Study”, Proc. Computer Aided Verification
Conf. ,Liege, Belgium, LNCS 939, Springer
Verlag, 1995.

[Gor88] M. J. C. Gordon (ed), “HOL: A Proof-Generat-
ing System for Higher-Order Logic”, Kluwer
SECS 35, pp. 73-128, 1988.

[Kur94] R. P. Kurshan, “Computer-Aided Verification of
Coordinating Processes: The Automata-Theo-
retic Approach”, Princeton University Press,
1994

[Len92] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D
Weber, A. Gupta, J. Hennessy, M. Horowitz, M.
Lam, “The Stanford Dash Multiprocessor”,
IEEE Computer, vol. 25, pp. 63-79, March
1992.

[Lon93] D. E. Long, “Model Checking, Abstraction and
Compositional Verification”, Ph.D. Thesis,
CMU 1993

[McM91] K. L. McMillan, J. Schwalbe, “Formal Verifica-
tion of the Encore Gigamax cache consistency
protocol.”, Int. Symposium on Shared Memory
Multiprocessors, 1991.

[McM93] K. L. McMillan, “Symbolic Model Checking”,
Kluwer Academic Publishers, 1993

[McM95a] K. L. McMillan, vl2smv: verilog to smv transla-
tor, Cadence Berkeley Labs, 1995.

[McM95b] K. L. McMillan, rc: refinement checker,
Cadence Berkeley Labs, 1995.

[Seg93] C. J. Seger, R. E. Bryant, “Formal Verification
by Symbolic Evaluation of Partially-Ordered
Trajectories”, Tech. Report 93-8, Dept. of Com-
puter Science, University of British Columbia,
Aug. 1993.

[Tan95] A. S. Tanenbaum, “Distributed Operating Sys-
tems”, Prentice-Hall, 1995

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

