Using Register-Transfer Paths in Code Generation for Heterogeneous

Memory-Register Architectures

Guido Araujo! and Sharad Malik

Department of Electrical Engineering
Princeton University
Princeton, NJ 08544

{guido,malik }@ee.princeton.edu

Abstract

In this paper we address the problem of code gener-
ation for basic blocks in heterogeneous memory-register
DSP processors. We propose a new a technique, based
on register-transfer paths, that can be used for efficiently
dismantling basic block DAGs (Directed Acyclic Graphs)
into expression trees. This approach builds on recent re-
sults which report optimal code generation algorithm for
expression trees for these architectures. This technique
has been implemented and ezperimentally validated for
the TMS320C25, a popular fized point DSP processor.
The results show that good code quality can be obtained
using the proposed technique. An analysis of the type of
DAGs found in the DSPstone benchmark programs re-
veals that the majority of basic blocks in this benchmark
set are expression trees and leaf DAGs. This leads to our
claim that tree based algorithms, like the one described
in this paper, should be the technique of choice for ba-
sic block code generation with heterogeneous memory-
register architectures.

1 Introduction

Digital Signal Processors (DSPs) are heterogeneous
register set architectures designed to meet performance
and area constraints imposed by data-intensive appli-
cations found in signal processing and communication
domains. In order to achieve this goal, designers choose
to implement a set of highly specialized functional units
that execute operations frequently required in these al-
gorithms. Examples of these type of units are: Multiply
and Accumulate Units (MAC) and Address Calculation
Units (ACU). It is also common for DSP designers to
use dedicated interconnections between a few special-
ized registers and the available functional units to re-
duce the cost of the design. This specialization of func-
tional units, registers, and interconnection is reflected
in the the processor Instruction Set Architecture (ISA).

!Work partially supported by CNPq and Dept. of Com-
puter Science, UNICAMP (Brazil)

Mike Tien-Chien Lee

Fujitsu Laboratories of America
San Jose, CA 95134

lee@fla.fujitsu.com

Frequently the ISA of DSPs, and Application Specific
Instruction Set Processor (ASIPs), have dedicated in-
structions which take operands and store results into
specific registers as opposed to using generic register
files.

This paper addresses the problem of generating code
for basic blocks in heterogeneous register set architec-
tures. Similar effective approaches for this problem have
been proposed in [1][2]. In general they combine pattern
matching algorithms with data-routing [3] and DAG
or tree scheduling techniques. Approaches exclusively
based on trees, like the one explored here, have not re-
celved much attention though.

This paper is divided into four sections as follows.
Sec.2 describes the class of target architectures we are
considering, its machine representation and the Regis-
ter Transfer Graph (RTG). The RTG is a structural
representation of the datapath, which is used subse-
quently in this paper. Sec.3 contains a formal definition
of the problem and an example illustrating its relevance.
Sec.4 shows how register-transfer paths can be used to
dismantle expression DAGs into trees. The results of
applying such an approach on typical digital signal pro-
cessing algorithms is presented in Sec.5. Finally in Sec.6
we list some important conclusions.

2 The Architectural Model

This paper proposes an approach for the code gen-
eration problem for basic blocks on a class of memory-
register DSPs architectures. Of the DSP architectures
which can be identified in this class we will consider the
TMS320C25 processor [4] as the representative target
architecture for the rest of this paper.

In this section we describe the machine representation
used throughout this work. Initially, machine instruc-
tions are written in functional notation where operation
patterns are used to describe instructions of the proces-
sor ISA. This description is particularly useful for code
generation based on tree-grammar parsing as in [5].
Example 1 Consider, for example, the partial func-
tional description of the TMS320C25 ISA in Fig.1. The
symbol on the left side of the colon represents the loca-
tion in the datapath which will store the result of the
operation described on the right. On the far right the
numbers in parenthesis represent instruction identifiers
and after them are the mnemonics used to describe the
instruction which implements that operation. Storage

33rd Design Automation Conference O
Permission to make digital/hard copy of all or part of thiswork for personal or class-room use is granted without fee provided that copies are not made

or distributed for profit or commercial advantage, the copyright notice, the title of the publication'and its date e t
Servers or to redlstrélaute to lists, requires prior specific permssion and/or afee.

by permission of ACM, Inc. To copy otherwise, to republish, t
G VAL e i

pear, and notice is given that copying is

, t0 post on servi
AC 96 - 06/96 Las Vegas, N (11996 ACM, Inc. 0-89791-833-9/96/0006..53

: PLUS(a,m) (1) add m

a
a : PLUS(a,p) (2) apac

a : MINUS(a,p) (3) spac

p : MUL(m,t) (4) mpy m
p : MUL(%t,CONST) (5) mpyk k
a : CONST (6) lack k
a:p (7) pac

m: a (8) saclm
a:m (9) lac m
t:m (10) 1t m

Figure 1: Partial description of the TMS320C25 proces-
sor ISA

locations in the datapath are represented by lowercase
letters (a, p, t, m), where @ is an accumulator, p the
product register, m memory and ¢ is used to store one
of the operands of the multiplier. Capital letters are
used to specify operations (PLUS, MINUS, MUL) or
constants (CONST).

This paper uses a representation of the architecture

ISA, known as the Register Transfer Graph (RTG) [6].
The RTG is a structural representation of the datapath
topology which contains information about the instruc-
tions in the processor ISA. The nodes in the RTG de-
scribe locations in the datapath, such as registers, regis-
ter files and memories. Memories and register file nodes
are represented by double circles in order to distinguish
them from single register nodes. An edge between nodes
r1 and r3 in the RTG defines a path between these loca-
tions in the datapath. Labels on this edge correspond to
the identifiers of the instructions in the ISA which take
one operand from the location r; and store the result
into location rj.
Example 2 The RTG for the TMS320C25 architec-
ture in Fig.2 can be easily derived from the partial ISA
description of Fig.1. The instruction identifiers in Fig.1
were used to label each edge of the RTG. For exam-
ple, from Fig.2 one can see that accumulator @ has two
incoming edges numbered (1). One edge originating at
node a (self-loop edge) and another at node m, together
describe the transfer operations required by instruction
PLUS(a,m).

Figure 2: TMS320C25 RTG representation

One of the major problems in code generation is to
determine schedules which minimize resource conflicts
that occur when one instruction needs to use a data-
path register that contains a valid data. Traditionally
one deals with this problem by saving the contents of the
register into another location, usually memory, an op-
eration know as memory spilling. It has been shown [6]
that architectures which belong to the memory-register
class can generate expression trees which have spilling

free schedules, provided these architectures satisfy cer-
tain criterion based exclusively on their RTG. The cri-
terion is simple and can be stated as follows:

Definition 1 (RTG criterion) An architecture saiis-
fies the RTG criterion if there exists one memory node
on each cycle (not a self-loop) of the architecture RTG
(Fig.3) O

Figure 3: RTG criterion satisfied for a pair of registers
r1 and 7y

It is easy to check from Fig.2 that the TMS320C25 ar-
chitecture satisfies the RTG criterion. Observe that any
cycle between any pair of nodes in Fig.2 will have m on
it.

In the following sections we will show how the RTG
criterion can also be used in the task of dismanteling
the expression DAG.

3 Problem Definition

One of the first tasks in generating code for an ex-
pression DAG is to select the best set of instructions
which perform the DAG operations. This task, known
as instructions selection, subsumes the problem of DAG
covering which is known to be NP-complete [7]. In prac-
tical solutions to this problem, heuristics have been pro-
posed which divide the DAG into its component trees
by selecting an appropriate set of trees. However, this
dismantling of the DAG into component trees is not
unique and there are several ways in which this can be
done. Traditionally, the heuristic employed in the case
of homogeneous register architectures is to disconnect
multiple fanout nodes of the DAG.

In order to divide a DAG into its component trees
one has to be able to disconnect, or to break, edges in
the DAG. For the code generation task, breaking a DAG
edge between nodes u and v (Fig.4(a)) requires the allo-
cation of a temporary storage (say mq) to save the result
of operation u while this is not consumed by operation
v. This storage location is traditionally the memory but
it can, in general, be any place in the datapath. Break-
ing the edge of an expression DAG also requires that a
constraint RAW (Read After Write) edge be introduced
between the two m; nodes in order to guarantee that the
original ordering of the operations will be maintained by
the scheduler. This edge is represented by a dashed line
in Fig.4(a). For the sake of simplicity, marking one edge
for breaking can be represented by a small line segment
transverse to the subject edge, as 1t is shown in Fig.4(b).

Heuristics for DAG code generation based on trees
in heterogeneous architectures have not received much
attention. This may largely have to do with the fact
that, until recently, optimality could not be guaran-
teed for trees on these architectures, and thus breaking
DAGs into trees was considered to probably generate
extremely inefficient code. Only recently, optimal code
generation algorithms for expression trees have been
proposed in [6].

The key idea in this paper is a heuristic which uses ar-
chitectural information from the RTG in the selection of

@ RAW

o1

@ C)]

Figure 4: (a) Breaking the edge; (b) Simplified notation

component trees of a DAG, such that the resulting code
quality is improved. Consider for example the DAG of
Fig.5. Notice that three different approaches can be
used to decompose this DAG into its component trees,
depending which edge (e; or ez) is selected to break.
As one can see in Fig.5(b) one extra instruction cor-
responding to a 17% overhead is generated when the
dismantling heuristic is based on breaking edge e; in-
stead of e;. Coincidentally the code in Fig.5(a) is also
the best sequential code one can generate from the sub-
ject DAG. Observe from the TMS320C25 architectural
description in Fig.1l, that the multiplication operation
requests its operands in memory (m) and ¢t and that
the result of the addition operation always produce its
result into the accumulator a. Notice also from Fig.2
that to bring any data in a to register ¢ one has to go
through m. By carefully analyzing Fig.b one can see

lac m2 lac m2
add m3 add m3
sacl mb sacl mb
1t ml 1t ml
mpy mb5 mpy mb5
add m4 lac mb

add m4

(a) (b)

Figure 5: (a) Breaking edge e1; (b) Breaking edge e;

that the result of the addition operation my + mgz has
to be stored into @ and must be moved to m or ¢ in order
to be used as an operand of the multiplication opera-
tion. But to move data from a to ¢ one has to go though
memory (m). Suppose the memory position selected to
store this temporary result is ms. Hence, by breaking
DAG edge e; one is just assigning in advance a mem-
ory node which will appear on that edge, during the
instruction selection phase of the code generation. No-
tice that the existence of a register-transfer path which
always goes through memory whenever data is moved
from a to t, is a property of the target datapath. Sim-
ilarly the register-transfer path from a to p must also
pass through memory.

Notice also that when edge e; is broken, pattern
PLUS(a,m) (instruction add m4) can not be used to
match the addition of m4 with the result of my +m3 in
the accumulator a. In this case, instruction lac ms at
the bottom of the code of Fig.5(b) has to be issued in
order to bring the data from ms back to the accumu-
lator adding a new instruction to the final code. The
question one can ask at this point is if the above ob-
servations can be generalized. We will see in the next
sections that this is indeed possible.

4 Problem Solution

The heuristic we propose to address the problem just
described is divided into four phases. In the first phase
(Sec.4.1) partial register allocation is done for those dat-
apath operations which can be clearly allocated before
any code generation task is performed in the DAG. Dur-
ing the second phase (Sec.4.2), architectural information
is employed to identify special edges in the DAG which
can be broken without introducing any loss of optimal-
ity for the subsequent tree mapping stages. In the third
phase (Sec.4.3) edges are marked and disconnected from
the DAG. Finally component trees are scheduled and
optimal code generated for each component tree.

4.1 Partial Register Allocation

A general property of heterogeneous register architec-
tures is that the result of specific operations are always
stored in well defined datapath locations. Take for ex-
ample operations edd and mul in the target processor
TMS320C25. Notice that they implicitly define the pri-
mary storage resources that are used for the operation
result. In the case of the TMS320C25 (Fig.1), no regis-
ter allocation task is required to determine that registers
a and p are respectively used to store the immediate re-
sult of operations add and mul. Thus, partial allocation
of the registers used to store the result of operations can
be performed well in advance, even before the task of
breaking the edges of the expression DAG takes place.

Figure 6: Expression DAG after partial register alloca-
tion was performed and natural edges identified

4.2 Natural Edges

We saw from Sec.3 that some edges have specific prop-
erties originating from the target architecture, which al-
low us to disconnect them from the DAG without com-
promising the optimality of the subsequent code gener-
ation for trees. These edges, termed natural edges, are
defined as follows.

Definition 2 (Natural Edges) If the insiruction se-
lection matching of edge (u,v) always produces e se-
quence of data transfer operations in the datapath which
pass through memory, edge (u,v) is referred to as a nat-
ural edge.

Now given an expression DAG D, and a target ar-
chitecture which satisfies the RTG criterion, it can be
shown that a number of edge are natural edges. In order
to do that let us state a set of simple lemmas.

Let 7; and r; be a pair of registers in the datapath of
a memory-register architecture which satisfies the RTG
criterion according to Fig.3. Alsolet L : D — RUM,
be a function which maps nodes in D into the set of
datapath locations RUM, where R is the set of registers
in the datapath and M the set of memory positions.

r, ;) .
" oF

(@) (b)

Figure 7: (a) (u,v) is natural; (b) (u,v) is natural if »;
has no self-loop in RTG

Lemma 1 (ry — r3) Every edge (u,v) in D for which
L(u) = r1 and L(v) = ry is o natural edge.

Proof. Observe in Fig.3 that a path from registers
r1 to ro will be traversed whenever instruction selection
is performed on edge (u,v). Thus a memory operation
will always be selected during instruction selection on
(u,v) and therefore (u,v) is a natural edge (Fig.7(a)).

Lemma 2 (r; — ;) Edges (u,v) for which L(u) =
L(v) = 7, 1= 1,2 are natural edges only if no self-loop
ezists on register node r; in the RTG representation of
the target architecture (Fig.7(b)).

Proof. If an architecture satisfies the RTG criterion
then any loop in the RTG, which is not a self-loop, will
contain a memory node. Thus if register r; has no self-
loop in the RTG then any loop starting at r; will contain
a memory node. Therefore a memory operation will be
selected whenever instruction selection is performed on
edge (u,v). Hence (u,v) is a natural edge. O
Notice that the task of breaking natural edges does
not introduce any new operations into the DAG be-
cause, as the name implies, during the instruction selec-
tion phase a memory operation is naturally selected due
to constraints in the architecture datapath topology. As
a result no potential optimality is lost by breaking nat-
ural edges.
Example 5 Consider each one of the lemmas above
and the RTG of TMS320C25 in Fig.2.

(1) From Lemma 1 one can see that when r; = a and
r9 = p every edge (u,v) such that L(u) = a and
L(v) = p is natural edge.

(2) Consider now Lemma 2. First take the situation
when r; = p. By looking at the RTG of Fig.2 one
can see that register p has no self-loop. Since the
TMS320C25 satisfies the RTG criterion then any
DAG edge (u,v) such that L(u) = L(v) = pis a

natural edge. Now consider the case when r; = a.
From the RTG one can see that register a contains
a self-loop and thus nothing can be said regarding
these edges.

In the following two lemmas we show that DAG edges
can sometimes interact such that natural edges will de-
fined. This will introduce us to the concept of pseudo-
natural edges.

(@ (b)

Figure 8: (a) One of the edges is always natural; (b)
Edge (w,v) is a natural edge

Lemma 3 (r; op 7; — r;) Consider operation v and
its operand nodes u and w in Fig.8(a). If partial reg-
ister allocation of these operations is such that L(u) =
L(v) = L(w) = r;, ¢ = 1,...|R| then one of the edges
(u,v) or (w,v) is ¢ natural edge.

Proof. Notice that no binary operation v can take both
its operands simultaneously from the same register. We
have to consider here two situations:

(a) If node 7; has a self-loop in the architecture RTG,
one of the edges, e.g. (u,v) could be matched by an
instruction which takes one operand from r;. On
the other hand when this same instruction matches
the other edge, i.e. (w,v), it will make use of a
register which is contained in an RTG loop (not a
self-loop) that goes from »; back to r;. Similarly
as in Lemma 2 matching (w,v) will introduce a
sequence of transfer operations which necessarily
goes through a memory node in the RTG, making
(w, v) a natural edge.

(b) If no self-loop node r; exist in the architecture
RTG then both edges are natural edges according
to Lemma 2. O

Lemma 4 (r; op r; — 7;) Consider operation v and
its operand nodes u and w of Fig.8(b). Let the partial
register allocation of these nodes be such that L(u) =
L(w) = r; and L(v) = 7;. If all RTG paths between
each pair of nodes are such that only one path does not
go through ¢ memory node, then one (u,v) or (w,v) is
a natural edge.

Proof. The proof is trivial and follows from the fact
that since operation v cannot take both of its operands
from the same register r; at the same time, it has to
use two paths in the RTG to bring data from register
r;. Since only one path from r; to r; does not go through
memory, then the other path ilas to pass through mem-
ory and therefore the corresponding edge is a natural
edge. ad

From these lemmas, we see that we need to decide
which edge between (u,v) and (w,v) is to be discon-
nected from the DAG. Different instruction selection

costs might result depending on which edge is selected.
In this case we call the corresponding natural edges
pseudo-natural edges to distinguish them from natu-
ral edges. Pseudo-natural edges are identified using a
double line segment to distinguish them from natural
edges. Unlike natural edges, breaking pseudo-natural
edges might result in compromising the optimality of
code generation for the component trees. However,
there is a good chance that this might not happen in
actual practice.

Example 6 Consider Lemmas 3 and 4 above and the
RTG of Fig.2:

(3) Lemma 3 is satisfied for the case when r; = a or
r, =p.

(4) In this case if r; = p and r; = a only one path exists
in the RTG from p to a which does not go through
a memory node. Therefore one of the edges is a
pseudo-natural edge.

After rules 1-4 of Examples 5 and 6 are applied, the
expression DAG of Fig.6 results. Each marked edge in
Fig.6 has on its side a number corresponding to a rule
in Examples 5 and 6.

4.3 Dismantling Algorithm

The task of dismanteling an expression DAG may po-
tentially introduce cyclic RAW dependencies between
the resulting tree components leading to an impossible
schedule. Consider, for example, the reconvergent paths
from nodes u to v and the component trees T and T3 of
Fig.9(a). Dismantling the DAG of Fig.9(a) requires that
at least one of the edges of the multiple fanout nodes
v and T, be disconnected. Assume that edges (u,T?)
and (T2, v) have been selected as the edges to break. In
this case nodes u, v and tree T can be collapsed into a
single component tree T3, breaking the DAG into trees
T3 and T4. As we have mentioned before if an edge
between two nodes is broken then a RAW edge should
be introduced between them. In this case the resulting
RAW edges form a cycle between component trees T3
and T4, which results in an infeasible schedule for the
component trees. Notice that dismanteling is also possi-

(b)

Figure 9: (a) Cyclic RAW dependency; (b) Constraining
the tree scheduler

ble if edge (T2, w) is broken instead of (T3, v) (Fig.9(b)).
When this occur RAW edge (u, T3) is brought into the
resulting component tree (75). As a consequence, the
potential optimality of the tree scheduler algorithm in
[6] can not be guaranteed anymore, since now it has to
satisfy the constraint imposed by the new RAW edge in-
side T53. From the two situations analyzed above, we can

conclude that edges on both reconvergent paths have to
be disconnected in order to guarantee proper schedul-
ing of operations inside component trees and between
component trees.

An algorithm which dismantles the DAG should dis-
connect edges by using as much as natural and pseudo-
natural edges as possible. We have designed such an
algorithm, which we call Dismantle. The Dismantle al-
gorithm starts by first breaking all natural edges, since
breaking these edges adds no cost to the total cost of
the final code. After that Dismantle proceeds indentify-
ing reconvergent paths. It traverses paths in the DAG
looking for edges marked as pseudo-natural edges. If a
pseudo-natural edge can be used to break an existing
reconvergent path the edge is broken. Otherwise the
outgoing edge which starts the reconvergent path at the
corresponding multiple fanout node is broken. At this
point all reconvergent paths in the expression DAG have
been disconnected. Finally, additional edges are broken
such that no node ends up with more than one out-
going edge. Broken edges are then disconnected from
the DAG, temporary memory nodes created and RAW
edges introduced between component trees. After algo-

Figure 10: Resulting component trees after dismantling

rithm Dismantle is executed, the DAG is decomposed
into its component trees 7; as in Fig.10. Each compo-
nent tree 7; is represented by a circle containing DAG
edges and nodes. Broken edges which are not natural
or pseudo-natural edges are identified by a dark circle
mark. Topological ordering is then performed in order
to schedule the component trees. At this point optimal
code is generated for each component tree individually
using the technique proposed in [6].

5 Results

In Tab.1 we list a series of 13 expression DAGs ex-
tracted from typical digital signal processing programs.
These are profiled sections of kernel programs from the

DSPstone benchmark suite [8]. We have selected the
largest DAG found on each kernel for the purpose of

comparison with hand-written code. Hand-written as-
sembly and compiled code were generated for each DAG
and the resulting number of cycles for a single loop
execution reported in Tab.1l. Compiled code was also
generated using a standard heuristic which dismantles
the DAG by breaking all edges at multiple fanout nodes
(column Standard Heuristic). The costs reflect the num-
ber of processor cycles and the overhead with respect to
hand-written code. Notice that the overhead is due only

DAG DAG | Hand- Standard Our Basic | Trees Leaf Full
Origin Type | written Heuristic Approach Blocks DAGs | DAGs
#Instr. | #Instr. | Overhead | #Instr. | Overhead

real_update T 5 5 0% 5 0% 1 1 0 0
complex_update L 16 18 12% 18 12% 1 0 1 0
dot_product L 5 5 0% 5 0% 1 1 0 0
matrix_1x3 T 5 5 0% 5 0% 4 3 1 0
matrix T 5 5 0% 5 0% 6 4 2 0
iir_one_biquad F 15 17 13% 16 7% 1 0 0 1
convolution L 5 5 0% 5 0% 2 1 1 0
fir L 4 5 20% 5 20% 3 1 2 0
fir2dim T 5 5 0% 5 0% 9 6 3 0
Ims F 7 9 28% 8 14% 4 1 2 1

Table 1: Experiments with DAGs (T = Tree; L = Leaf DAG; F = Full DAG)

to the DAG dismantling technique. DAGs were classi-
fied in trees, leaf DAGs and full DAGs. Leaf DAGs are
DAGs for which only leaf nodes have multiple fanout
edges. We classify a DAG as a full DAG if it is not a
tree nor a leaf DAG. As one can see our approach per-
forms better than the standard heuristic for the cases
which are full DAGs. The average overhead when com-
paring the compiled and the assembly reference code
was 6%. Although the overhead for DAGs is still high,
the existence of a large number of low overhead trees
compensates that. Leaf nodes are treaded the same way
in both heuristics. They are simply duplicated into dif-
ferent nodes - one for each outgoing edge. As a conse-
quence both heuristics have the same performance for
the case of leaf DAGs. Notice that the average overhead
for the case of full DAGs was higher (11%) than for the
case of leaf DAGs (8%). The discrepancy is certainly
due to the existence of memory-register and immediate
instructions in the processor ISA, which can have zero
cost multiple fanout operands when these are memory
references or constant values. An analysis of the source
programs from which DAGs in Tab.l were extracted
showed indeed that a large number of common expres-
sions are simply program variables and constants.

We also performed an experiment on the DSPstone
kernel benchmark in order to determine the type of
DAGs found on basic blocks of typical digital signal
processing programs. As one can see from Tab.l, the
results revealed that of all 32 basic blocks analyzed 56%
were trees, 38% leaf DAGs and only 6% full DAGs. An-
other experiment was performed, this time using the
DSPstone application benchmark adpcm, a well known
speech encoding algorithm. As before, basic blocks were
analyzed to determine the frequency of trees, leaf DAGs
and DAGs. In this case 94% of the basic blocks in this
program are trees, 3% leaf DAGs and 3% full DAGs.
If adpcm represents the average mixture of typical DSP
programs then the weighted-average overhead due to the
dismantling is smaller than 1%. Although the heuris-
tics mentioned above might have similar impact in the
final code quality, using an approach based on natural
edges can considerably improve the code quality of crit-
ical parts of the program (e.g. loop body).

6 Conclusions

This paper proposes a tree based heuristic for code
generation with memory-register architectures which

satisfy the RTG criterion. It shows that decomposing
DAGs into trees using the concept of natural edges and
performing tree code generation is an effective approach
for this type of architecture. The fundamental reasons
that support this claim can be summarized as follows:
(a) for memory-register architectures some DAG edges
can be natural edges, making memory spilling a nat-
ural operation for this type of target architecture; (b)
the experiments have shown that the majority of the
DAGs in the DSPstone benchmark are trees, for which
an optimal O(n) code generation algorithm [6] exist.

References

[1] C. Liem, Trevor M, and Paulin P. Instruction-set match-
ing and selection for DSP and ASIP code generation.
In European Design and Test Conference, pages 31-37,
1994.

[2] P. Marwedel. Tree-based mapping of algorithms to pred-
iffined structures. In Int.Conf. on Computer-Aided De-
stgn, pages 586-593, 1993.

[3] Lanner D., Cornero M., Goosens G., and De Man H.
Data routing: a paradigm for efficient data-path synthe-
sis and code generation. In High-Level Synthesis Sympo-
stum, pages 17-22, 1994.

[4] Texas Instruments, Inc. Digital Signal Processing Appli-
cations with the TMS320 Family, 1990.

[5] A.V. Aho, M. Ganapathi, and S.W.K Tjiang. Code gen-
eration using tree matching and dynamic programming.
ACM Trans. Prog. Lang. and Systems, 11(4):491-516,
October 1989.

[6] G. Araujo and S. Malik. Optimal code generation for
embedded memory non-homogeneous register architec-
tures. In Proc. 8" International Symposium on System
Synthesis, pages 36—41, September 1995.

[7] M.R. Garey and D.S. Johnson. Computers and In-
tractability. W. H. Freeman and Company, New York,
1979.

[8] V. Zivojnovic, J.M. Velarde, and C. Scliger. DSPstone,
a DSP benchmarking methodology. Technical report,
Aachen University of Thecnology, August 1994.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

