
Abstract - This paper presents the use of a Markov-based
model for analyzing iterative design processes. Techniques are
developed for collecting process metadata and calibrating the
model. An experiment is described that demonstrates the util-
ity and accuracy of the model for simulating design processes
and identifying design process bottlenecks.

I. Introduction

In today’s highly-competitive market, it is imperative not only
to deliver products that work, but also to deliver them on time.
While great effort and expense has been invested in developing—
and purchasing—more powerful point CAD tools, surprisingly
little work has been done in creating techniques for analyzing and
improving the design process itself. To address this need, we have
developed a system for measuring, diagnosing, and simulating
iterative, sequential design processes that utilizes a Markov-based
model. To demonstrate the efficacy of the system, an experiment
was performed with a group of designers, each working on the
same design problem (the development of a computer program),
wherein the methodologies used by each of the designers were
observed, quantified, and fit as parameters of the model.
Simulation results show that the model accurately represented the
time spent in each of the stages of the design process, as well as in
the process as a whole.

This paper also addresses several important issues related to the
application of the model. Specifically, we describe techniques for
collecting process metadata, and for analyzing the design process
after completion.

II. Related Work

In developing a system for design process modeling and
analysis, two components are critical: a means for collecting
process metadata and a methodology for analyzing this data. To
these ends, we view this work as an outgrowth of ideas from the
areas of CAD frameworks and management science.

In recent years, systems known asCAD frameworks have been
envisioned to provide designers and CAD system developers with
services such as tool integration, data management, process
management, and methodology management. In attempting to
achieve this goal, various framework efforts have brought us closer
to the stage where nearly all design activities may be performed in
a computing environment, and the actions and outcomes of the
design process may be archived. Of these,design methodology
management systems have addressed issues such as which CAD

tools and design data are used, how they are used, by whom, and in
what order. A popular approach to methodology management has
been through the use of designflows, which model the design
process as a sequence of transfers between tools and data. A
common feature provided in flow management systems such as
[1], [2], [3], and [4], is the ability to store and tracedesign
metadata, or information about the design, including the history of
activities. In particular, [6] focussed on issues relating workflow
management and schedule management. Another approach to
design management is expressed in [5], which views the design
process not in terms of flows, but rather as a series of design
problems to be solved. This work pays particular attention to how
both design actions and artifacts may be decomposed in order to
simplify problem solution.

The notion of measuring, analyzing, and improving the time
required to complete processes has long been a key issue in
management science. Graph-based process representations and
methodologies [7][8] have been developed to facilitate this. Of
particular interest is the body of work that addresses techniques for
managing the design of coupled systems. One representation that
has been heavily used is thedesign structure matrix [12], which is
essentially a nodal incidence matrix that captures input/output
couplings between tasks in a design process. The design structure
matrix representation has formed the basis for work such as [9],
which attempts to minimize the time required to complete the
process by finding an optimal ordering of the task sequences. In
[13], it was shown how these tools could be used to reduce the time
of a printed wiring board development cycle.

Of particular relevance to our work are the results described in
[11]. One of the main contributions of [11] was to improve upon
the design structure matrix to include individual task times and
coupling strength between tasks, which were represented as
probabilities. From this improved representation, it became
possible to obtain a more accurate approximation of the execution
time of a design process by evaluating the process as a reward
Markov chain [10]. This notion forms the basis for our work as
well, but we have expanded the model to account for external
design factors, and dealt with issues of metadata collection and
calibration with real design processes.

III. The Sequential Design Process Model

A design process may be defined as the set of activities involved
in taking a design problem from an initial specification to
producing a finished artifact that meets these specifications. Prior
to the application of the design process, we may say that the design
is in an initial state,S, and after the completion of the design
process, when all specifications have been met, we may say that
the design is in a final state,F. Between the initial and final states,
the design process may be broken down into a sequence of
fundamental, atomic operations calledtasks. In the context of an
ASIC design process, tasks may include such operations as
conceptual design, schematic entry, technology mapping, and

Application of a Markov Model to the Measurement,
Simulation, and Diagnosis of an Iterative Design Process

Eric W. Johnson, Luis A. Castillo, and Jay B. Brockman
Department of Computer Science and Engineering

University of Notre Dame
Notre Dame, IN 46556

33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

simulation, while in a software design process, tasks may include
coding, compilation, and testing. For the class of design processes
considered in this paper, we will assume that each task needs to be
performed sometime during the process.

While it may be theoretically possible to take a design process
from start to finish by executing each task exactly once in a
specified order, in practice, this is rarely the case. Typically, certain
tasks need to be repeated in a design process before all
specifications are met. The most common causes of repetition are
due to incomplete information or errors introduced early in the
design process that are not detected until a later task. Thus,
depending upon the outcome of a given task, the design process
may make a transition to one of several possible next tasks: either a
task that is further downstream and closer to the final state, or to
repeat a task earlier in the process.

We refer to a design process where there exists the possibility of
at least one task being repeated as aniterative design process.
Further, if all tasks are executed one-at-a-time, the process is
sequential. In order to model the time that it takes to complete an
iterative, sequential design process, it is thus necessary to consider
two things: the times that it takes to complete each individual task
and the likelihood that tasks will be repeated during the process.
An iterative, sequential design process may be represented by a
directed graph(V, E, S, F), where the vertices
correspond to tasks, the edges correspond to transitions
between tasks, andS and F are the initial and final states,
respectively.

The information needed to determine the expected time required
to complete a design process may be represented as weights on the
vertices and edges, where the weight of a vertex represents the
duration of task and the weight of an edge represents the
probability that transition is taken at any given point in time.
Note that the sum of the probabilities of all edges emanating from
a given vertex must equal 1. Taken together, the set of values

 constitute the set ofperformance parameters of a design
process. In general, both the durations and the transition
probabilities may in practice vary with time; in order to simplify
the model, however, we will regard the values of both of these sets
of quantities as being static throughout the execution of the
process. On the other hand, these values typically cannot be known
with certainty and thus should be represented by random variables.
Thus, we will regard each of the process performance parameters

 as being distributed with some mean value and variance.
Given the individual task durations and transition probabilities

, we may express the total process time asτ, where
. The value ofτ may be determined by viewing the

process graph as aMarkov chain, where each state in the chain
corresponds to the completion of one task in one instance [11]. In
general, the cost of the chain can be evaluated through simulation,
but given the restrictions of time-invariant durations and
probabilities, it has been shown in [11] that the expected value of
the total cost may also be evaluated through the solution of a
system of linear equations.

IV. Process Model Calibration

To effectively analyze the design process, it is crucial to
accurately model both the task durations and transition rates. A
basic premise of this work is that these parameters can be
estimated using process metadata. In contrast to design metadata,
process metadata describes information about the design process
itself, such as how long it took to complete the process or when
iterations in the process occurred. We define the extraction of
performance parameters from process metadata as process model
calibration. In this section we outline the two issues associated
with the calibration procedure; the collection of the process
metadata and the extraction of the process parameters.

Collecting Process Metadata

In collecting metadata, care must be taken to ensure that the
data is both accurate and complete. Therefore, the most important
phase of metadata collection is the development of a model that
can be used as a basis for collection. The model is a set of objects
that together provide an abstraction of the design process and that
will ultimately be used to define containers in a database to store
the metadata. With a model in place, techniques for collecting the
process metadata can then be developed.

Ideally, all metadata should be collected in a manner that is
transparent to the designer, so as not to interfere with the design
process. In practice, however, we have found that several different
techniques must be employed to ensure that the metadata captured
is complete. These techniques includepassive monitors, run-time
tracking forms,and surveys. Passive monitors are background
processes that collect process metadata automatically using
routines that monitor design activity during process execution.
Monitors help to ensure accuracy, because designers cannot
rationalize specific design decisions or the amount of time spent on
each task prior to reporting results. An example of a system that
uses passive monitors is described in [3]. Complementing the
passive monitors are run-time tracking forms. Tracking forms
prompt the user for additional information, such as the reason for
an iteration,during process execution. Further information may be
gathered through surveys after the design process is complete. We
note that while run-time tracking forms and surveys are less
accurate than passive monitors, their use may be justified when
automatic metadata collection is too difficult or inconvenient to
implement.

Model Parameter Determination

Calibrating the process models is accomplished by using
process metadata to calculate the model’s performance parameters.
Because we have assumed the performance parameters to be time
invariant, the individual task durations are computed by finding the
average time spent in each task by the designer. The transition
rates are calculated as the ratio of the number of transitions for a
specific path exiting a task to the total number of transitions
leaving that task.

V. Experimental Results

An experiment was conducted to validate the process model
using a sequential design process. The main purpose of the
experiment was to illustrate how to effectively gather process
metadata, and how to calibrate the process model in a small-scale
environment. The experiment outlined in this section consisted of
the following steps:

• Identification of the tasks and transitions that represent the
process.

• Execution of the process by a group of designers and collec-
tion of a set of sample metadata.

• Calibration of the process models using the metadata.

• Application of the models to analyze the process.

Experiment Description

For this experiment, we investigated the development of a
software program (postfix calculator). A simple sequential process
flow was defined for this application and is shown in Fig. 1. The
process consists of four tasks—conceptual design, program
coding, program compilation, and program testing—with six
possible transitions between tasks. For this experiment, we
constrained the methodology so that the conceptual design of the
problem was completed before any coding was started. This

V1…Vn
E1…Em

Ti
Vi Pi

Ei

T P,{ }

T P,{ }

T P,{ }
τ τ T P,()=

constraint was imposed purely to facilitate capturing the time spent
in that task and could be removed with improved metadata
collection technology. Although the structure of the process was
predefined, various execution options were offered for individual
tasks. For example, two editors were available for design coding,
and testing could involve either executing the program or using a
debugger. The purpose of these options was to give the individuals
a series of methodology choices that could be used to investigate
how design decisions impacted their overall process time.

A group of nineteen designers participated in this experiment.
During process execution both passive monitors and run-time
forms were employed to collect process metadata. Passive
monitors were used to track when files were created or updated in
the working directory and to tag when tasks were started and
completed. These monitors were implemented as background
processes and were transparent to the designers. Designers
executed tasks in the environment by selecting a specific task in a
task window which either invoked the appropriate tool or gave the
user a set of tool choices. At certain stages in the process,
designers were also asked to select options from a form describing
why certain tasks would be executed or what results occurred.
Finally, upon completion of the design projects, each designer was
asked to submit a survey designed to collect additional information
not gathered by the passive monitors. This included information
about the clarity of their design, their programming experience,
and other the design decisions made throughout the process.

Process Calibration

Following the design exercise, the metadata was collected and
tabulated to extract the amount of time spent in each of the tasks,
identify when and where transitions were taken, and track the
reasons for iterations for each designer. Table 1 summarizes the
average and standard deviations associated with the performance
parameters for one of the designers and for the group as a whole.
The large standard deviation for the coding task duration resulted
from the fact that in some iterations code was being developed
while in others, compilation errors were simply being corrected.
This variation could be reduced by modeling the initial code
development and correction as separate tasks.

Once the parameters were determined, two tests were
performed to verify that the process model provided an accurate

representation of the process time. First, using the information
from Table 1, a Monte Carlo simulation was run to compare
average completion time generated by the simulator to the actual
process completion time of the designer. The second test involved
calibrating the process model for the overall group and again
performing a Monte Carlo simulation to predict the average
process completion time. These results are illustrated in Table 2.

The simulation results show for this experiment, the parameters
of the process model—task durations and transition rates—
accurately capture the time spent in the process for the individual
designer and the group.

VI. Process Parameter Analysis

One advantage of collecting process metadata is that it can be
used to perform a post-mortem analysis on the design process of
individual designers. We have begun to investigate two types of
analyses: first, analyzing the performance parameters associated
with individual designers and then determining how different
factors influenced the overall process time.

Designer Analysis

In both industrial and academic environments, it has been
observed that some designers are better than others at creating
high-quality designs in short periods of time. Through analysis of
the calibrated task durations and transition rates, insights may be
gained that can lead to improved designer performance.

Consider the designer whose performance parameters are
illustrated in Table 1. Although the average durations for each task
as compared to the group are lower, his overall process time was
greater than that of the group because both of the iteration rates are
higher. Therefore, it would seem logical that if the designer could
reduce the total number of iterations, the overall process time
would decrease. Since the designer spent comparatively little time
in conceptual design, our initial action was to investigate the
relationship between conceptual design time and testing iteration
rate for the entire group. The group metadata supported the
expected trend that the more time spent in conceptual design, the
lower the rate. Therefore, if the designer would have spent more
time in conceptual design, he could have possibly reduced overall
process time. Although investigating the performance parameters
alone may provide some insight into reducing the completion time,
further analysis cannot be accomplished without studying how
specific design factors influence the individual performance
parameters.

Factor Analysis

Design factors are those characteristics associated with the
process, the resources used with the process, or the design artifact
itself that influence the overall process completion time. For our
experiment, we identified eighteen distinct factors in the seven
different areas: artifact performance, artifact quality, tool selection,
experience, impasse resolution strategy, development
methodology, and environment factors. These factors were
identified by determining which characteristics have an influence
on the overall software process and the individual tasks associated
with the process.

A simple yet informative method for analyzing the influence of
design factors is to investigate their relationship to the performance

TABLE I. Parameter Values for Single Designer and Group

Example Designer Group

Parameter Ave. Std. Dev. Ave. Std. Dev.

T1 (Concept) 900 - 2735 2556

T2 (Code) 246.4 391.2 408.8 290.5

T3 (Compile) 5.0 4.7 8.1 5.8

T4 (Test) 72.5 36.7 105.9 51.4

P3 0.36 - 0.33 0.14

P6 0.96 - 0.88 0.11

Fig. 1. - Experimental Process Flow

P1 P2

P3

P4 P5

P6

Code
T2

Conceptual
Design

T1

Compile
T3

Test
T4

TABLE II. Simulated vs. Actual Process Duration

Simulated Actual % error

Designer 12554 12587 0.2

Group 8839 10075 12.2

parameters and identify group trends. For example, using these
trends, we could further investigate why the aforementioned
designer took longer on the design project than the group average.
Metadata collected from the survey showed that the designer did
not use a debugger when testing, and utilized class notes when
solving specific programming problems. Experimental trends
suggest that if the designer utilized the on-line help facility instead
of his notes, his coding time would decrease. Similarly, if the
designer had used a debugger when testing his code, he could
decrease the testing iteration rate. Both of these improvements
should cause a decrease in the overall process time.

While these findings may seem obvious to an experienced
designer, they do provide valuable recommendations to those
designers who are more inexperienced. These recommendations
allow inexperienced designers to increase their task-relevant
maturity and therefore improve their efficiency on future design
processes.

VII. Conclusions

In this paper we have described a Markov-based model that can
be used for measuring, diagnosing, and simulating sequential,
iterative design processes. The model represents these processes
using two sets of parameters, task durations and transition rates. To
demonstrate the model’s potential, we performed an experiment in
which a group of designers worked on the same design problem
using a specified design process. Passive monitors, run-time forms
and surveys were used to collect metadata representing the actions
of the designers during process execution and information about
the designers themselves. After the metadata was tabulated, Monte
Carlo experiments were run to compare the actual overall process
time with the simulated time. The results showed that the Markov-
based model parameters exhibit considerable promise for
benchmarking iterative design processes. In this paper we also
showed that the system could be used to perform a post-mortem
analysis of the design process by investigating how designers
could improve their design skills and how different design factors
influence the overall process time. Although the experimental
process was associated with software design, we believe that the
same techniques could be utilized with the design of integrated
circuits and extended to larger designs.

Our future work will focus on two main areas. First, using the
present experiment results, we will investigate the use of
sensitivity analysis to determine how the performance parameters
influence the overall process time. Second, using the experience
gained from this experiment, we hope to extend our model to
include both concurrency and group interaction. This extension
will allow us to investigate processes that are both
multidisciplinary and distributed.

VIII. Acknowledgments

This effort was supported in part by an ACM/IEEE Design
Automation Scholarship and NASA Research Grant NAG-1-1561.

IX. References

[1] K. O. ten Bosch, P. Bingley and P. van der Wolf, “Design
flow management in the NELSIS CAD Framework,” In
Proceedings of the 28th ACM/IEEE Design Automation
Conference, 1991, pp. 711-716.

[2] J. B. Brockman, and S. W. Director, “The schema-based
approach to workflow management,” InIEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, vol. 14, no. 10, October 1995, pp. 1257-1267.

[3] A. Casotto and A. Sangiovanni-Vincentelli, “Automated
design management using traces” InIEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 12, August 1993, pp. 1077-1095.

[4] P. van den Hamer, and M. A. Treffers, “A data flow based
architecture for CAD frameworks,” InProceedings of the
IEEE International Conference of Computer-Aided Design,
1991, pp. 482-485.

[5] M. F. Jacome and S. W. Director, “Design process
management for CAD frameworks,” InProceedings of the
29th IEEE Design Automation Conference, June 1992, pp.
500-505.

[6] E. W. Johnson and J. B. Brockman, “Incorporating design
schedule management into a flow management system,” In
Proceedings of the 32nd IEEE Design Automation
Conference, June 1995, pp.82-87.

[7] J. J. Moder, C. R. Phillips and E. W. Davis,Project
Management with CPM, PERT, and Precedence
Diagramming, Van Nostrand Reihold, 1983.

[8] A. B. Pritsker,Modeling and Analysis using Q-Gert
Networks, John Wiley and Sons, 1977.

[9] J. L. Rogers, “A knowledge-based tool for multilevel
decomposition of a complex design problem”, NASA
Technical Paper 2903, May 1989.

[10] S. M. Ross,Stochastic Processes, John Wiley and Sons, New
York, 1983.

[11] R. P. Smith and S. D. Eppinger, “A predictive model of
sequential iteration in engineering design”,MIT Sloan School
of Management Working Paper, No. 3160-90-MS, 1994.

[12] D. V. Steward, “The design structure system: A method for
managing the design of complex systems,”IEEE
Transactions on Engineering Management, vol. EM-28, no.
3, August 1981, pp. 71-74.

[13] C. Yeh, and R. E. Fulton, “A multidisciplinary approach for
PWB design process optimization,” From theFourth AIAA
Symposium on Multidisciplinary Analysis and Optimization,
1992, pp. 110-118.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

