
Improved Tool and Data Selection in Task Management
John W. Hagerman and Stephen W. Director

Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, PA 15213

Abstract

Task management involves task creation and execution. These
are facilitated using atask schema as exemplified in the Hercules
Task Manager. Experience with Hercules has shown the task
schema to be very useful for task creation, but less than ideal for
taskresolution, i.e., the selection of tool and data resources to be
used in execution. Tool/data interactions often lead to resource
selection constraints that cannot be captured using dependency
relationships in the schema. We have addressed this by adding
conditions to the task schema which use task-level meta-data to
constrain resource selection. With examples we show that condi-
tions are useful for handling a wide variety of real constraints.

1. Introduction

Task management is an important feature of design frameworks.
A task is a set of steps leading from one set of data to another.
For example, a task in the EDA domain might be to synthesize a
circuit from a specification and then to use simulation to estimate
circuit performance. Task management involvestask creation
(building a task tree),task resolution (selecting tools and data),
andtask execution (running the tools).

One approach to task management is to use atask schema which
captures the relationships among tools and data. This approach is
taken by the Hercules Task Manager [1]. Through Hercules we
have found the task schema approach to be very useful in a wide
variety of design situations. However, we have also found that
the task schema does not handle the subtleties of task resolution
very well. Specifically, the interactions among tools and data that
must be considered during resolution often cannot be captured as
simple dependency relationships. This is subtle because although
the interactions can be captured as relationships, the relationships
are not of the kind used in the original task schema formulation.
We have addressed this by enhancing the task schema with the
addition ofconditions, which are Boolean expressions that use
information attached to tools and data to constrain selection. In
this paper we describe how we added conditions to the Odyssey
framework [2] and show how conditions can be used to capture
the constraints needed for tool ordering enforcement, multi-func-
tion tool management, tool/data matching, and data coherence.

We begin with a review of the Odyssey framework, Hercules,
and task schemata. Then we describe the addition of conditions
to Hercules, including the changes made to the task-level data-
base, the schema, the resource manager, and the Hercules User
Interface. Then we present results, and close with conclusions.

2. Background

Odyssey is a design framework test-bed developed at Carnegie
Mellon University. In Odyssey, framework responsibilities are
handled in a layered manner, as shown in Figure 1. Hercules is
the task management layer. Tool and data details such as file
locations and formats are hidden from Hercules by the Cyclops

resource manager [3]. Tool and data resources areencapsulated,
and Cyclops presents a uniform view of resources to Hercules.
Thus, Cyclops mediates between encapsulations and Hercules.

A designer can interact directly with Hercules to manage tasks.
Hercules also provides task management to the Minerva design
process management layer currently under development [4]. The
designer gives problem specifications and goals to Minerva, and
Minerva helps the designer break the problem into sub-problems
and map them onto tasks. This paper focuses on Hercules.

2.1 The Task Schema

In order to manage tasks, a framework must be aware of the rela-
tionships among tools and data. At the task level the unnecessary
distinction between tools and data is removed by representing all
resources asentities. (This is important for the accurate modeling
of entities such as scripts that act as tools at some times and data
at other times.) A hierarchy of entityclasses (types) is defined.
Each actual resource is aninstance of some class. Atask schema
is an entity-relationship graph: vertices represent classes, and
directed edges represent dependencies. An edge X→Y means
that X depends on Y, that is, an instance of Y is needed to make
an instance of X. The Hercules database holds static and dynamic
information. The class hierarchy and the schema are static, while
information about instances is dynamic. Information about an
instance includes the mapping to the Cyclops encapsulation, and
othermeta-data such as creation time and creator username.

Consider the schema shown in Figure 3. Entity classes are drawn
as boxes. Classes are hierarchical: a generic class is specialized
to capture the methods by which instances are generated. In the
figure, the generic classspecification has two specializations:
analyzed-spec andtransformed-spec. The edges indicate, for
example, that anevaluation has afunctional dependence (“f”) on
anevaluator and adata dependence (“d”) on aspecification.
Circular data dependencies may exist from a specialization to its
generic class; two are shown in the figure.

A task is easily created from a schema. A tasktree has vertices
for entity classes and edges to indicate information flow. The task
tree in Figure 5 could have been created from the schema of
Figure 3. The root is at the bottom, and it should be clear how
tree edges are obtained from schema dependencies. The goal of a
task is to create an instance of the entity at the root of the tree; all
the other vertices represent the tools and data to be used to
achieve the goal. (Odyssey allows multiple roots; we will assume
a single root and mention multiple roots only as necessary.)

Minerva

Hercules

Cyclops

tools and data

Figure 1: The Layers of the Odyssey Framework

resource management

task management

design management

designer

resources

33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

2.2 Task Resolution

Tasks created from schemas are abstract, i.e., they are defined in
terms of entity classes rather than specific instances. Therefore,
before a task can be executed, specific tool and data instances to
be used in the execution must be selected. This process is called
taskresolution. When instances have been selected for all leaves
of a task tree the task isresolved. To execute a resolved task, the
framework invokes the tools in an order that creates instances for
the interior vertices as necessary to achieve the goal.

Task resolution is performed as follows. Figure 5 is the Hercules
User Interface display of a task tree. At the top of each vertex
box is the entity class name, and at the bottom is the selected
instance name, if an instance has been selected. In the figure, an
instance has been selected only for thetransformer vertex. The
user chooses a vertex to resolve and a browser appears which
lists all the selectable instances for that vertex. The user selects
an instance from the list, or selectsno instance, and clicks an OK
button. The user continues in this way, resolving vertices one at a
time. When the task is resolved the user can request that it be run.

3. Selection Constraints

Experience with Hercules has shown that the task schema is very
useful for creating tasks. We have also found, however, that tool/
data interactions often imply resource selection constraints that
cannot be captured using dependencies. For example, consider
the analysis/transformation design flow shown in Figure 2. First,
a specification is evaluated to determine whether it meets a set of
goals. If the goals are met then design can proceed. Otherwise
the specification is analyzed to determine what changes are nec-
essary. The analysis tool annotates the specification to record the
needed changes, and the transformation tool bases its operation
on the annotations. Then the evaluation is repeated.

The data passed among the tools is all of the same type: a specifi-
cation. Thus, the task schema illustrated in Figure 3 accurately
captures the relationships among the tools and data.

This task schema indicates that a new specification is obtained by
applying either an analysis or a transformation tool to an existing
specification. However, an important relationship not captured in
the schema is that analysis must be performed before transforma-
tion, since analysis adds information to the specification that is
used in transformation. Thus we must track whether or not each
specification instance has annotation information. We do this by
attachingattribute meta-data to the instances, where an attribute
is a name-value pair. Here we use anannot attribute to indicate
whether aspecification instance has been annotated. Then we
addconditions to the task schema to test the attribute, as shown
in Figure 4. The condition!?annot@2 on theanalyzed-spec

goals met

goals not met

Figure 2: An Analysis/Transformation Design Flow

specification

evaluator

transformer

...

evaluation

...

specification

analyzer

entity means thatspecification instances at the other end of edge
number 2 (“d2” in the figure) mustnot have theannot attribute
to be selectable (!? is the “not-exist” operator). The condition
??annot@4 on transformed-spec means thatspecification
instances at the other end of edge number 4 (“d4” in the figure)
must have the attribute to be selectable. This shows the flexibility
of using conditions to enforce orderings. Thetransformed-spec
condition specifies only that thespecification have anannot
attribute. How and when that attribute is created is of no concern
to the transformation tool, so this method permitsany sequence
of steps that leads to a properly annotated specification.

3.1 Condition Evaluation

In general, a condition is a Boolean combination of literals that
test attributes attached to instances so as to constrain selection.
Condition evaluation occurs as follows. Theselection state of a
task indicates the selection of instances at all vertices. It is with
respect to this state that conditions are evaluated. For example,
suppose the user is resolving the task of Figure 5, created from
the schema of Figure 4, and suppose that the user has chosen to
resolve thespecification vertex. When resolving a tree vertex, it
is the conditions at theparent of the vertex that must be satisfied.
The parent of the tree vertexspecification is analyzed-spec,
which has the condition!?annot@2 . To generate the list of
selectable instances for thespecification vertex, each appropriate
instance is proposed in turn as being selected, the selection state
is updated to reflect the proposal, and the parent’s condition is
evaluated with respect to that state. (In a tree with multiple roots,
some vertices will have multiple parents, and the conditions of
all parents are evaluated.) The instance is added to the list being
generated, along with a record of the condition evaluation result.
If the condition failed then text describing the failure is stored

d

f

dfdf

Figure 3: Analysis/Transformation Task Schema

analyzed-spec

analyzer

transformed-spec

transformer

specification

evaluation evaluator dependencies:
“d” = data
“f” = functional

f1 f3 d4d2

f5

d6

specification

analyzed-spec
!?annot@2

transformed-spec
??annot@4

analyzer transformer

Figure 4: Previous Schema with Conditions Added

evaluation evaluator

(see Section 4.3). After the list is generated, the user chooses
instances as usual. When the user chooses an instance for which
a condition failed, the stored text is used to generate feedback.

There are two special cases involving missing instance selections
for siblings of the vertex being resolved. The first case is where
the sibling is a leaf, as when resolving thespecification vertex in
Figure 5, since no instance is selected for theanalyzer leaf. To
illustrate, assume that theanalyzed-spec condition is changed to
!?annot@2 && ??annotator@1 , where anannotator
attribute is attached toanalyzer tool instances which annotate
specifications. Even though no instance is selected foranalyzer,
it must be possible to evaluate the condition when resolving the
specification vertex. Also, it is important not to over-constrain
the list of instances. These requirements are met usinglenient
evaluation: condition literals that refer to unknowns evaluate to
true, and thus those literals are effectively removed.

The second case occurs when an interior sibling has no selected
instance. This will be the case when resolving thetransformer
vertex in Figure 5, since no instance is selected for theanalyzed-
spec vertex. It must be possible to evaluate thetransformed-
spec condition, and the evaluation must not be over-constraining.
Again, these requirements are satisfied using lenient evaluation.

Note that no instance needs to be selected for theanalyzed-spec
vertex for the task to become resolved. When the task is run, the
analyzer tool will be invoked first to create a newanalyzed-spec
instance, and then thetransformer tool will be invoked to create
a newtransformed-spec instance using the newanalyzed-spec
instance. Since a lenient evaluation of thetransformed-spec
condition was performed, the condition must be evaluated again
after creating the newanalyzed-spec instance to check that the
condition still holds — if it does not, then task execution must be
aborted, and condition failure feedback must be given to the user.

4. Implementation

Changes were needed in the task database, the Cyclops encapsu-
lation methods, the task schema, and the Hercules User Interface.

4.1 Task Database Changes

The main change to the task database was the addition of general
attributes. Attributes have string values, there are no restrictions
such as “instances of this entity class must have these attributes,”
and strings are interpreted as numbers in numeric contexts.

4.2 Cyclops Changes

Attributes are meta-data for instances, with semantic meaning
due to conditions. Thus, attribute creation must be considered

transformed−spec

split
transformer

analyzed−spec

analyzer

specification

Figure 5: Hercules User Interface View of a Task Tree

legend:

entity class name
selected instance

carefully. There are two possibilities: attributes may be created
by the task manager or by the tools. It might be possible for the
task manager to create attributes in some cases. For example, for
the schema in Figure 4 it might suffice for the task manager to
attachannot attributes to newanalyzed-spec instances. How-
ever, this will not work for tools such as editors, for which it may
be impossible to know what attributes should be attached to new
instances. It is better to have the tools (or, more specifically, the
tool encapsulations) create attributes. This requires changes to
Cyclops. When Hercules invokes a tool, Cyclops executes the
tool’s encapsulation, and the encapsulation runs the tool. When
the tool finishes, the encapsulation sends completion information
back to Cyclops. We have added the ability for the encapsulation
to send back a set of attributes for the new instance. This, then, is
a very general way to capture attribute creation semantics in the
framework, since encapsulations are “in” the framework.

4.3 Task Schema Changes

Above we stated that conditions are Boolean combinations of lit-
erals that test attributes. In fact, conditions are restricted to a
sum-of-products form, as indicated by this pseudo-syntax:

condition ::= term || term || ...

term ::= literal && literal && ...

literal ::= exist-op attr-deref
::= str-operand str-op str-operand
::= num-operand num-op num-operand

exist-op ::= ??, !?

str-op ::= eq, ne, gt, ge, lt , le

num-op ::= ==, !=, >, >=, <, <=

str-operand ::= NAME@number
::= USER@number
::= attr-deref
::= string

num-operand ::= attr-deref
::= number

attr-deref ::= name@number

Attributes are accessed using thename@number syntax. Edges
leaving an entity class are numbered so they can be identified, as
shown in Figure 4. Thename@number syntax means “the value
of attributename on the instance at the end of the edge numbered
number.” Built-in meta-data is accessed using special names:
NAME for instance name andUSER for creator username.

The sum-of-products (SOP) form has two advantages. First, it
enables the simple generation of condition failure messages. An
English description of the failure of a literal is easy to generate,
and the SOP form makes it easy to produce a description for an
entire condition (e.g., “Condition failed for parent
analyzed-spec: !?annot@2 ”). Allowing general Bool-
ean expressions would make failure isolation hard. Secondly, the
SOP form enables the useful semantics of lenient evaluation, in
that a literal that refers to an unknown can affect only one term.

4.4 User Interface Changes

Conditions cause instance selection at one vertex to be affected
by selections at other vertices, so users should be allowed to see
all instances, even those that cause condition failure. If the user
tries to select such an instance then a feedback message is given
which describes the condition failure and selection is rejected.

5. Results

The example of Figure 4 showed how conditions are useful for

order enforcement. This example is also useful for illustrating the
management of multiple tool instances. The real transformation
tool of interest performs one of two operations,split or merge, so
there are two encapsulations (and thus instances) of the tool. It is
possible to define a singletransformer class for both instances,
even though they have different input requirements: split requires
the specification to be annotated, but merge can be performed on
any specification. This is captured using conditions as illustrated
in Figure 6. Asplit attribute is attached to thesplit instance of
the transformer tool. Then the condition ontransformed-spec
!?split@3 || ??annot@4 means that either themerge
tool is used (i.e., no constraint on the input specification) or, if
thesplit tool is used, the input specification must be annotated.
This allows the designer to define a “transformation” task, where
the selection of the specific operation is deferred to task execu-
tion time, with tool input restrictions enforced by the condition.

Conditions can be used to ensure that tools and data “match.”
This is illustrated by the example in Figure 7, where twocircuit-
simulator tools support different input format “levels”: HSPICE
supports input extensions not known by SPICE. This is handled
by attaching alev attribute to allcircuit-simulator andnetlist
instances, where the attribute value indicates the input format
level supported by the tool: 1 forspice and 2 forhspice. Then the
conditionlev@2 <= lev@1 constrains selection so that the
tool is able to handle the data. In the figure, the selection of the
spice tool and thelow pow data will cause the condition to fail.

Another example involves “data coherence.” The design flow in
Figure 8 shows the behavioral synthesis tasks of scheduling and
allocation. Thealloc tool data inputs must becoherent, i.e., the
control flow must have been derived from thevalue trace.

A simple method of ensuring data coherence using conditions is
illustrated in Figure 9. Aver attribute is attached to all the data

f1 f3d2 d4

instance split : attribute split
instance merge : no attributes

specification

analyzed-spec
!?annot@2

transformed-spec
!?split@3 || ??annot@4

analyzer transformer

Figure 6: One Tool Class, Multiple Tool Functions

instance diff pair : attribute lev=1
instance low pow : attribute lev=2

performance
lev@2 <= lev@1

f1 d2

instance spice : attribute lev=1
instance hspice : attribute lev=2

netlist

circuit-simulator

Figure 7: One Tool Class, Multiple Tool Variants

instances to keep track of “versions.” The scheduler tool encap-
sulation copies the version from the inputvalue trace to the out-
putcontrol flow, and the conditionver@1 == ver@2 ensures
that the data instance inputs to theallocator tool are coherent.

Finally, conditions are more general than the similarly-motivated
capabilities described in [5]. The constraints described therein
are tightly tied to the framework semantics, and are thus likely to
have difficulty handling unanticipated constraint needs.

6. Conclusion

The task schema concept as originally embodied in the Hercules
Task Manager was good for task creation but insufficient for task
resolution, because resource selection constraints often cannot be
captured as dependency relationships. We have overcome this by
adding to task schemas conditions which test instance meta-data.
Selection is constrained by evaluating the conditions for each
proposed selection. Using a sum-of-products form ensures that
instance selection is not overly constrained, and allows the easy
generation of English feedback descriptions of condition failures.
The result is a good balance of power and generality: conditions
provide graceful solutions to real problems, and are also easy to
use and understand.

Acknowledgments

The authors would like to thank the reviewers for their detailed
and helpful comments. This research was supported in part by
the Semiconductor Research Corporation, contract DC-068.

References

[1] J.B. Brockman and S.W. Director, “The Schema-Based
Approach to Workflow Management,”IEEE Trans. on
CAD, vol. 14, no. 10, October 1995, pp. 1257-67.

[2] J.B. Brockman et al., “The Odyssey CAD Framework,”
DATC Newsletter on Design Automation, Spring 1992.

[3] T.F. Cobourn, “Resource Management for CAD Frame-
works,” Ph.D. dissertation, Carnegie Mellon University,
July 1992, Research Report No. CMUCAD-92-39.

[4] M.F. Jacome and S.W. Director, “A Formal Basis for
Design Process Planning and Management,”Int. Conf. on
Computer-Aided Design, November 1994, pp. 516-21.

[5] P. van der Wolf, O. ten Bosch, and A. van der Hoeven, “An
Enhanced Flow Model for Constraint Handling in Hierar-
chical Multi-View Design Environments,”Int. Conf. on
Computer-Aided Design, November 1994, pp. 500–7.

Figure 8: A Design Flow Requiring Data Coherence

value
trace

sched control
flow

alloc data-
path

ff d d2

d1
datapath

ver@1 == ver@2

value-trace

Figure 9: A Task Schema to Ensure Data Coherence

allocator

control-flow

scheduler

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

