
This research was supported in part by ARPA, and a fellowship from
CAPES, Brazil.

Symphony: A Simulation Backplane for Parallel
Mixed-Mode Co-Simulation of VLSI Systems

Antonio R.W. Todesco and Teresa H.-Y. Meng
Computer Systems Laboratory
Stanford University, CA 94305

Abstract In this paper we present an integrated simulation
paradigm in which parallel mixed-mode co-simulation is
accomplished by integrating sequential simulators in a soft-
ware simulation backplane. Distributed conservative event-
driven scheduling is used in combination with an efficient
deadlock-free mechanism for handling synchronous feedback
circuits. Simulation concurrency can be further increased by
utilizing circuit pipeline. The resulting parallel simulation
backplane is capable of concurrently simulating systems at cir-
cuit, switch, gate, RTL and behavioral levels. We implemented
this parallel mixed-mode simulator on both the iPSC/860 mes-
sage-passing machine and the DASH shared-memory multi-
processor. Experimental results are presented.

1 Introduction
The last several years have seen a steady growth in the complexity
of IC and system integration. As a consequence, there is a need for
longer, larger and more realistic simulations performed within a
finite design-to-market time. Usually multiple simulators are used
in the design pass because no single simulator addresses all model-
ing, performance and verification issues.

Multi-level mixed-mode co-simulation has a great potential to effi-
ciently simulate large systems containing both digital and analog
components, with portions of the system described at different lev-
els of abstraction. Limiting factors for large-scale mixed-mode
simulation are the speed of sequential simulation software, the rel-
atively high cost, and the low flexibility of hardware accelerators.
With the growing availability of powerful parallel processing
machines, parallel co-simulation is a viable approach to speeding
up simulation of large systems. Furthermore, integration and
extensibility could be achieved using a parallel software simula-
tion backplane.

One of the major issues in integrating sequential simulators is the
handling of feedback circuits, which may lead to simulation dead-
lock due to the following reason. The interface between simulators
usually consists of an input update phase followed by a simulation
interval phase during which output events are produced. By the
very nature of this interface, the outputs are only known up to the
time that the inputs have been simulated. At the beginning and the
end of each simulation step, the time across the simulation is the
same for every input and output node. As a consequence, there is
no output lookahead1[6] in the simulator instantiation, which

means that the resulting simulation will not have thepredictability
[6] property. If there is a loop of interconnected blocks, the system
will deadlock because it does not have a positive lower bound on
how far ahead the outputs can be predicted in relation to its inputs.

In this paper, we present an integrated simulation paradigm for
implementing parallel multi-level mixed-mode co-simulators. Our
integration approach is based on a distributed kernel that uniformly
and efficiently manages multiple instantiations of sequential simu-
lators. The kernel uses a distributed deadlock-free scheduling algo-
rithm that handles feedback-connected circuit components to allow
for efficient parallel execution. This parallel simulation paradigm
has been demonstrated with a prototype that integrates SPICE3
[21], IRSIM [18] and THOR [2], implemented on both the iPSC/
860 message passing multiprocessor and the DASH [14] shared-
memory multiprocessor. Its performance and speedups due to mul-
tiprocessing are quantified and analyzed by simulating mixed-
mode VLSI circuits with both analog and digital components.

The paper is organized as follows. We will present in section 2 a
parallel discrete-event scheduling algorithm capable of handling
synchronous feedback circuits efficiently. In section 3, we will
describe Symphony, the parallel mixed-mode software simulation
backplane based on this discrete-event scheduling algorithm. In
section 4, we will analyze Symphony’s performance using repre-
sentative examples. In the final section, we will present a summary
of results and conclusions.

2 Parallel Discrete-Event Simulation
This section presents an extension to the Chandy-Misra-Bryant
(CMB) [5][6][15] algorithm in synchronous (clocked) systems
based on the concept ofbarriers. The resulting deadlock-free par-
allel discrete-event algorithm is the synchronization and schedul-
ing backbone of our parallel simulation paradigm which allows
mixed-mode co-simulation.

2.1 Basic Concepts and Related Work
In the CMB algorithm and its variants, the system under simula-
tion is modeled as a set of communicating processes that exchange
information through messages and have distributed local times.
The messages sent between processes consist of an event and the
time of its occurrence. Scheduling policies can be divided into two
major groups, namely theconservative scheduling and theoptimis-
tic scheduling. A survey of this work is described by Fujimoto [9].

In the CMB algorithm and its variants,conservative scheduling is
used. Specifically, the local time of a process can never exceed the
minimum time of its input events. Deadlock can occur if there are
cyclic dependencies between processes. The basic proposed solu-

1. Lookahead is the property where a simulator can deduce future output events
solely from the simulator’s state history. Strictly speaking, every simulator has the
lookaheadproperty. Its outputs will remain constant by at least the smallest simula-
tion time increment. However, using this small increment to advance the simulation
time is usually too inefficient.

33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

tions to this problem are deadlock avoidance [6] and deadlock
detection and recovery [7]. In deadlock avoidance, null messages
are introduced with the purpose of advancing the output simulation
time whenever the local time is advanced without output change.
This strategy introduces overhead on message traffic. Deadlock
recovery is based on a two-phase scheme in which simulation pro-
ceeds until it is blocked. When blocking is detected, a recovery
phase resolves the deadlock. The performance of this solution is
compromised by the detection and recovery overhead, specially in
the case of message passing machines. Another strategy is to esti-
mate the earliest possible time of the next event, as implemented in
YADDES [8].

Optimistic scheduling is used in the Timewarp [11] algorithm.
Such an algorithm allows the local time of a given process to be
increased beyond the local time of its input processes. In so doing,
it is possible to anticipate additional events. If events are rare, the
speculations may often be correct. If the prediction proves to be
wrong, the process would have to return to its previous correct
state. Such a reversal is disadvantageous because it may require a
large amount of memory for storing history events and enabling
rollbacks. Because we recognize that existing sequential simula-
tors usually do not have backtracking capability, optimistic sched-
uling will be difficult to implement, and therefore is not considered
further.

2.2 Synchronous Feedback Simulation Mechanism
The majority of the VSLI systems designed today are clocked sys-
tems. By explicitly defining synchronization points in a feedback
structure, it is possible to facilitate parallel simulation in a simpler
and more efficient way. It should be pointed out that feedbacks
inside a simulation instantiation are not a concern because they can
be easily handled by sequential simulators.

The problematic deadlock arises when a feedback cycle exists
between simulation instantiations. Within each of these feedback
cycles, a restriction is made which requires at least one latch or
edge-triggered flip-flop in the loop to break the feedback cyclic
operation during one pass of simulation. In this paper, latches or
edge-triggered flip-flops will be called registers. A register is con-
trolled by its input clock. When the clock isactive, it opens the
register, during which time the register’s outputs depend on the
values of its inputs. The clock activation can be a transition, as in
the case of an edge-triggered flip-flop, or a level, as in the case of a
latch. A register isclosedwhen its clock isinactive, during which
time the register inputs do not affect its outputs.

The feedback resolution mechanism relies on using abarrier,
which is simulated according to the value of the associated register
state as well as the type of registers used in the design. Its main
purpose is to resolve feedback deadlocks, guaranteeing simulation
progress by generating output events during an interval of one
clock period. To do so, when a barrier is closed by its clock, its
input values are kept constant. The barrier may receive computed
results from the feedback to update its input values. When the bar-
rier is opened by its clock, its output values may be affected by its
inputs.

Because we are restricted to an interface in which backtracking is
not allowed, the simulation cannot be rolled back one clock period
and resimulated with the updated inputs. To achieve input updating
without rollback, time is allowed to proceed for the interval of one
inactive clock interval as if time were stretched. This clock interval
was simulated during the phase in which the barrier was closed and
inputs kept constant. In addition, the barrier should also correctly
handle external simulated times by simple bookkeeping. Although
the output values of a barrier are the same as its associated register

outputs, the internal values may not be the same due to clock
stretching. To obtain the correct internal values, the register needs
to be duplicated into ashadow barrier.

2.3 Barrier and Shadow Barrier
To illustrate the feedback breaking mechanism with a barrier, Fig-
ure 1 shows two processes that comprise a communication cycle,
in which one is simulating a registerreg and the other is a generic
process P. To break the feedback cycle, the first step is the identifi-
cation of the feedback registerreg, which is replaced with a barrier
B process. This process has explicit control of its input and output
communication.

Figure 2 shows how a barrier can effectively break the feedback
cycle and update its inputs without having to rollback. In the out-
put phase, the barrier B has its input connection open and its output
connection closed. Because of the semantic of the barrier, the
inputs will not affect the outputs until the next clock event. During
the clock interval, the process topology is acyclic, from B to P, and
could be simulated with an acyclic algorithm [13].

In the input phase of barrier B, the outputs of process P are taken
into account. With output opened, barrier B uses the values
received from the process P to update its inputs and internal states
for the next cycle. Barrier B is simulated with the updated inputs
computed in the previous output phase. One direct consequence is
that the inputs and outputs of barrier B are now offset by one clock
interval. In the case of outputs, this offset can be easily cancelled
by the barrier. However, the offset in internal values is unknown,
and therefore needs special attention.

To compute the correct internal values, the functionality of the reg-
ister is duplicated in a shadow barrier, with only the input connec-
tions. This duplicated register is simulated as a regular process
with an acyclic algorithm. Figure 2 illustrates the duplication of
reg process onto a shadow barrier process SB.

Because the inputs are kept constant during the output phase, if
there is a hold time violation in the real circuit, the violation will
occur in the barrier. The assumed transition will be clocked in the

Figure 1. Feedback-breaking transformation with a barrier.

ck
reg

P

ck
B

P

Figure 2. Barrier phases of operation.

ck
B

P

ck
B

P

Output Input

register simulated by the barrier B, but not in the real circuit. How-
ever, this would be an incorrect simulation.

Also, during the input phase we stretch the local simulated time by
one clock interval. As a consequence, if there is a propagation time
violation, which means the clock period is smaller than the propa-
gation time of the register, the assumed transition may happen in
the barrier. This would also create an incorrect simulation.

Hold time and propagation time violations are detected by compar-
ing the outputs of the barrier B with the outputs of the shadow bar-
rier SB. Violations are reported to the user.

2.4 Barrier Algorithm
The barrier algorithm is listed in Figure 4. It augments an acyclic
simulation algorithm with the simulation of barriers and shadow
barriers. When a barrier is closed (clock is not active), it executes
an output phase to break a feedback. This is followed by an input
feedback update phase. If the barrier is open (clock is active) dur-
ing an interval, as in the case of a transparent latch, it will be simu-
lated like any other feedforward process with an acyclic algorithm.
In this case, using an acyclic algorithm to avoid deadlock requires
another latch in the feedback cycle which is closed while the origi-
nal latch remains open. That is the common case of a two-phase
clock scheme.

The cause of communication overhead introduced by simulating a
register with the barrier algorithm is due to the fact that in a clock
interval the acyclic algorithm is executed three times, twice in a
barrier and once in a shadow barrier. Furthermore, there is addi-
tional communication between the barrier and shadow barrier for
output comparisons.

Figure 3. Barrier duplication into a shadow barrier.

ck
B

P

SB

o

so

Loop {
Receive inputs until clock event
if Clock is active {

Acyclic simulation up to clock event time
}
else {
Output:

Open barrier inputs and close outputs
Acyclic simulation up to clock event time

Input:
Close barrier inputs and open outputs
Acyclic simulation up to clock event time
Compare shadow barrier and barrier outputs

}

Figure 4. Barrier algorithm.

2.5 Circuit Pipeline Exploitation
It is possible to increase simulation concurrency in a feedback cir-
cuit by using more barriers than needed to avoid deadlock. As in
the case of circuit pipeline, there can be more than one register in a
circuit feedback. By simulating the registers with the barrier algo-
rithm, it is possible to take advantage of the circuit pipeline con-
currency during simulation.

Figure 5 illustrates a circuit with more than one register in the
feedback cycle. Suppose the circuit is partitioned in parts A and B
for parallel simulation. With the barrier algorithm, at least one reg-
ister should be simulated as a barrier to avoid deadlock. Let the
register in part A be simulated by the barrier algorithm. Because of
the event synchronization effect of the barrier on part A and input
communication dependency of part A on part B, the simulation
would be executed sequentially. If the register in part B is also sim-
ulated as a barrier, both parts can be executed in parallel during
one clock cycle. This reflects the actual circuit independency when
the registers do not change their output values.

The actual speedup will depend on the trade-off between the
increase in concurrency and the increase in computation due to the
barriers and shadow barriers. If the register computation is small in
comparison with its associated section P, the increase in speedup
can be substantial.

3 Software Backplane
This section presents an extensible simulator paradigm suitable for
parallel mixed-mode co-simulation. Distributed conservative
event-driven scheduling is used in combination with the barrier
algorithm for synchronous feedback systems presented in the pre-
vious section. In the following subsections, we will review some
background in sequential mixed-mode simulation and co-simula-
tion. Then we will present our co-simulation method, followed by
a description of an implementation and the integration of THOR,
IRSIM, and SPICE.

3.1 Related Work
In the area of sequential multi-level mixed-mode simulation [17],
several simulators have been developed. iSPLICE3[1] is a classic
example, combining circuit-level, switch-level, and logic-level
simulation modes. iMACSIM [19] has behavioral, functional and
electrical levels, and provides a mixed-mode domain (the s-domain
and z-domain). Another example, LSIM [24], typifies current com-
mercial use.

At any simulation level, there have been many parallel implemen-
tations. PARSWEC [23] is an example of a timing simulator that
used optimistic scheduling in a CM5 multiprocessor. A parallel
RSIM implementation was presented by Briner [4] using optimis-
tic scheduling in a 16-processor BBN. PTHOR [20] is a parallel
version of THOR that uses conservative scheduling and runs on
shared-memory multiprocessors.

Figure 5. Two barrier case in a feedback cycle.

reg P

ck

reg P

ck

partition A partition B

In the area of hardware/software co-design, research on co-simula-
tion [3] [10] [12] [22] so far has not addressed an extensible paral-
lel mixed-mode simulation backplane. We present Symphony
which employs a barrier algorithm to simulate feedback systems
with reasonable speedups on a multiprocessor machine.

3.2 Symphony
In this subsection, we describe a framework to integrate existing
simulators on parallel machines. The framework leverages on the
barrier algorithm for synchronization and scheduling. The actual
simulator integration is accomplished by linking the object code of
existing simulators to the Symphony software backplane. This
requires a few specific procedure name calls. Load balancing for
different simulation granularity is addressed by local interleaving
which requires the interface calls to be reentrant. Integrating well-
known sequential simulators with small changes, and porting the
parallel co-simulator to three different machine platforms were
easily accomplished with the Symphony implementation.

We want to simulate a complex system that is decomposed into
coarse-grain blocks. The partition of these blocks is based in the
simulation level and mode of interest. The blocks are further parti-
tioned in order to expose existing parallelism and speedup the sim-
ulation.

The simulation framework consists of a distributed kernel that has
a code section attached to each instance of a sequential simulator.
The kernel is responsible for event communication, event synchro-
nization, scheduling, general management of sequential simula-
tors, and gathering of simulation results. The integration of
existing simulators to the kernel is accomplished through a few
kernel entry points. These entry points consist of procedure calls
that should exist in the source code of the simulator to be inte-
grated. The procedure names should be available to the kernel in
its internal table and the object code of the simulator should also be
available for linkage with the kernel. The kernel must also have a
set of procedure calls to implement analog/digital convertion. This
conversion has already been explored and resolved [17].

The kernel schedules a given simulator instance and synchronizes
it with other instantiations. The kernel also schedules the events
with their associated simulators through the inputs that it receives
from other simulators and local simulated times. Scheduling and
synchronization are accomplished through the use of the previ-
ously described parallel discrete-event simulation algorithm based
on barriers. The kernel exchanges information through messages
that have time-stamped events. It also executes a basic acyclic
algorithm [23], except in the case of a register in a cycle, where the
kernel executes the barrier algorithm.

3.2.1 Implementation

Symphony kernel was written in C++. The main data structures
used by each local instantiation of the kernel for scheduling are
input events and sorted time queues. An input event, either local or
from communicating with other simulators, and the input event
time are stored in the corresponding input queue. The input queues
implement a form of time wheel optimized to this particular case.
The input event time also updates a sorted time queue to detect the
minimum time increment of all the input connections and local
inputs. The simulator receives input events as well as a stop time
when there is an interval to simulate. In Symphony, we imple-
mented very simple, but fast analog/digital conversations. The user
could trade-off conversion accuracy with speed by duplicating
interface fan-in or fan-out netlist.
Because of static assignment of instantiations to processors and the
potential small granularity of duplicated shadow barriers, inter-

leaving of sequential simulators in a given processor was imple-
mented to improve the load balance. This feature also helps load
balancing in feedforward systems. If multi-threading was available
in a system, these tasks could be implemented as threads. We did
not use threads because of portability issues and the fact that, at the
time we initiated this work, not all parallel processing machines
were multi-threading systems. Scheduling of instantiations is pro-
grammed to favor the process that is farthest behind in its simu-
lated time with a task queue. The main difficulty of interleaving is
that it requires sequential simulators to have reentrant code at the
interface entry points.

3.2.2 Integrating and Porting with Symphony

The simulators integrated into the prototype were chosen to cover
a reasonable spectrum, ranging from the behavioral- and struc-
tural-levels, to the switch- and circuit-levels. At the circuit-level,
SPICE3 [21] (or its variant hSPICE) was selected because it repre-
sents probably the most widely used simulator. The switch-level
simulator IRSIM [18] is a logic mode switch-level simulator with
timing information, and is widely used in universities. As a repre-
sentative of behavioral and functional-level simulators we used
THOR [2]. The selection of these simulators was also influenced
by the fact that their source codes are available in the public
domain.

As the three simulators used in our parallel simulator were written
in C, our solution was to convert the C code to C++ by trivially
packaging together local static variables with its associated func-
tions. Reetrant code was achieved in SPICE with the convertion of
a relatively few SPICE files to C++, leaving the majority intact in
C. IRSIM and THOR convertion from C to C++ produced an exe-
cution overhead of less then 5%. The overhead in SPICE is negli-
gible because most of its execution time is spent in the device
formulation and matrix inversion code.

The primary target of our implementation is a parallel machine.
The kernel has a software layer that isolates the architectural prim-
itives, which makes it easy to port to different parallel-processor
platforms. We have implemented Symphony on an Intel iPSC/860
message passing machine, a shared-memory multiprocessor
DASH [14], and single-processor DECstations. Although there is
no speedup in one processor, tremendous savings in simulation
time can be gained through multi-level mixed-mode tradeoffs.

4 Performance
In this section we analyze Symphony’s performance through a suit
of VLSI circuit designs. We ran our simulation on two multipro-
cessor platforms: the Stanford shared-memory DASH and the Intel
iPSC/860. DASH has a cache-coherent non-uniform-memory-
access architecture, with 32 processors organized into 8 clusters of
4 processors each. Each processor is a 33 MHz MIPS R3000, and
has a 64 KB first-level cache and a 256 KB second-level cache.
Each cluster has 28 MB of main memory. A directory-based proto-
col is used to maintain cache coherence across the 8 clusters. The
iPSC/860 multi-processor also has 32 processors. Each processor
is a 40 MHz Intel i860 XR with 16 MB of memory. The intercon-
nection network uses a hypercube topology.

In the benchmark circuit selection, we looked for circuit sizes in
which the sequential case would fit in memory and execute on both
the multiprocessor platforms. Although the resulting circuits are
relatively small, they had enough coarse grain parallelism for a 32-
multiprocessor machine. The circuits were partitioned manually
for the 32-processor case. For bigger circuits and large-size multi-
processor machines the partition procedure needs to be automated.

The circuits consist of a combinational design to stress upper
speedup limits, a sequential design to stress the shadow barrier
algorithm overhead, and a mixed-signal design. All three cases had
their netlists extracted from a CMOS mask layout. All speedups
were calculated over the best sequential version of each program
executing on the two multiprocessors.

4.1 Acyclic Case
The first example is an acyclic circuit that implements a relatively
large feedforward FIR filter. It consists of sixteen 32-bit registers
and multipliers connected to a binary tree of fifteen 32-bit adders.
This case is a combinational circuit with simulation dominated by
IRSIM time, in addition to four small SPICE runs. The simulation
time attributed to THOR is negligible.

The adder tree circuit was extracted from an actual CMOS layout
with 33,900 transistors and 15,723 nodes. Four small netlists were
duplicated from the adder tree to simulate in SPICE. The entire
adder tree is simulated in IRSIM. The registers and multipliers
were simulated in THOR, having a C code for each block. We sim-
ulated the circuit for one thousand clock cycles in order for the
execution to take approximately one hour in one DASH processor.
For multiprocessor runs, the adder tree netlist was partitioned to
have roughly 2 partitions per processor when using 32 processors.

As shown in Figure 6, using 32 processors on the Intel iPSC/860
the speedup is 16; it is nearly 25 on DASH. The DASH implemen-
tation benefits from more concurrency because the communicating
events are stored directly into the kernel data structures while an
instantiation is being executed. In addition, the speedup on the
iPSC/860 implementation is hampered by the blocking of output
data being sent to other processors, a side effect of our interleaving
implementation on a message-passing machine. The multiproces-
sor runs with one and two processors on the iPSC/860 did not fit in
the memory. There is a difference of less then 5% in execution
time between the sequential and the parallel (interleaved) execu-
tion in one DASH processor. The interleaving and number of com-
munication messages incurred small overhead in the simulation.

4.2 Feedback Case
To test our feedback mechanism performance, the second example
uses a sequential circuit implementing a feedback pipeline filter.
The simulation has a THOR section to generate data inputs, and an
IRSIM section for timing simulation. The circuit consists of thirty-
one 31-bit registers and sixteen 32-bit adders in a total of 67,904
transistors. We simulated the circuit for four hundred and thirty
clock cycles in order for the execution to take approximately one

 linear speedup

 DASH
� iPSC/860

|

0
|

4
|

8
|

12
|

16
|

20
|

24
|

28
|

32

|0.0

|4.0

|8.0

|12.0

|16.0

|20.0

|24.0

|28.0

|32.0

 Number of Processors

 S
pe

ed
up

ADDERS

�

�

�

�

Figure 6. Adder tree circuit simulation performance.

hour in one DASH processor. For multiprocessor runs, the circuit
netlist was partitioned to have roughly 2 partitions per processor
when using 32 processors. To avoid deadlock with the feedback, at
least one register has to be executed with the barrier algorithm. In
this circuit, a register was implemented as fully static edge-trig-
gered set/reset flip-flops. The register netlist duplication into a
shadow barrier represents an overhead of 1.8% per register.

First we look at the effect of simulating registers with the barrier
algorithm in the case of 32 processors. Two cases were simulated.
In the first case, we have a shadow barrier for each barrier intro-
duced. In the second case, we simulate the same circuit, but with-
out the shadow barriers. In both cases, the speedup measures the
increase in concurrency with the number of barriers used. It also
allows the measurement of the impact of duplication caused by
these overhead register barriers.

As shown in Figure 7, the introduction of 16 barriers capture most
of the natural pipeline concurrency of the circuit. The 29%
increase in netlist overhead corresponds to a 40% degradation in
performance. With more than 16 barriers and no shadow barriers,
there is a small increase in concurrency. But with barriers and
shadow barriers there is small change in the speedup due to the
combined increase in concurrency and netlist overhead. The best
measured case is with 24 barriers. With less than 16 barriers, the
increase in the netlist duplication is almost hidden by the increase
in concurrency.

Next, we look at the simulation with 24 barriers. In this case, there
is a 43% increase in netlist overhead with shadow barriers. The

� DASH: just barriers
� iPSC/860: just barriers

 DASH: barriers and shadow barriers
 iPSC/860: barriers and shadow barriers

|

0
|

8
|

16
|

24
|

32

|0.0

|4.0

|8.0
|12.0

|16.0

|20.0

|24.0

|28.0

|32.0

 Number of Barrier Processes

 S
pe

ed
up

�

�

�

�

�

�

�

�

�

�

Figure 7. Effect of the number of barriers on speedup
performance for the feedback circuit with 32 processors.

 linear speedup

 DASH: just barriers
� iPSC/860: just barriers
� DASH: barriers and shadow barriers
 iPSC/860: barriers and shadow barriers

|

0
|

4
|

8
|

12
|

16
|

20
|

24
|

28
|

32

|0.0

|4.0

|8.0

|12.0

|16.0

|20.0

|24.0

|28.0

|32.0

 Number of Processors

 S
pe

ed
up

FEEDBACK

�

�

�

�

�

�
�

�

�

�

�

Figure 8. Feedback circuit parallel simulation performance.

speedups on 32 processors for the two cases are 28 and 17 respec-
tively when running on DASH, and 24 and 15 respectively when
running on the iPSC/860, as shown in Figure 8. As in the acyclic
case, the DASH implementation benefits from more concurrency
but the differences are not as large. This is a result of using 24 bar-
riers to expose the circuit concurrency. The multiprocessor runs in
the iPSC/860 did not fit in the memory of one processor. In the
case of shadow barriers it also did not fit with 2 processors. There
is a difference of less then 4% between the sequential and the par-
allel execution in DASH with only barriers in one processor.

4.3 Mixed-Signal Case
The third example is a mixed-signal circuit, implementing a 7-bit
CMOS flash A/D converter [16]. The analog portion of the con-
verter consists of 128 comparators. Each comparator uses a differ-
ential preamplifier followed by a drain-strobed latch and a
completion detection circuit. The circuit has a total of 11,042 tran-
sistors. Because of little coupling between comparators, we used
multiple instantiations to simulate separately the 128 comparators
in SPICE, dominating the total simulation time. The digital part of
the circuit is simulated in IRSIM. We ramp up the analog input to
generate the complete 128 7-bit outputs. This execution takes
approximately 10 1/2 hours in one DASH processor.

The speedup performance is shown in Figure 9. As in the previous
examples, the DASH implementation shows more concurrency in
parallel simulation, and the multiprocessor runs in the iPSC/860
did not fit in the memory with one processor. The parallel execu-
tion in one DASH processor is 20% faster than the sequential exe-
cution. This is a consequence of smaller partitioned netlists which
results in fewer time steps in the parallel execution.

5 Conclusions
In this paper, we presented a new parallel discrete-event simulation
based on the barrier algorithm. Using this algorithm, there is little
communication overhead and the barrier simulation avoids state
rollbacks. Through the use of barriers it was possible to increase
simulation concurrency by taking advantage of the circuit pipeline.

We applied the barrier algorithm to an extensible simulator inte-
gration paradigm suitable for parallel multi-level mixed-mode co-
simulation. The feasibility of these concepts was demonstrated
with a simulation backplane called Symphony, and the integration
of SPICE3, IRSIM and THOR to Symphony. This resulting paral-
lel co-simulator was capable of concurrent multiple circuit-level,
switch-level, gate-level, RTL-level and behavioral-level simula-

 linear speedup

 DASH
� iPSC/860

|

0
|

4
|

8
|

12
|

16
|

20
|

24
|

28
|

32

|0.0

|4.0
|8.0

|12.0

|16.0

|20.0

|24.0

|28.0

|32.0

|36.0

 Number of Processors

 S
pe

ed
up

ADC

�

�

�

�

�

Figure 9. ADC circuit parallel simulation performance.

tions. Symphony has been ported on an iPSC/860 message-passing
machine and the DASH shared-memory multiprocessor. The three
benchmark circuits used in this paper showed good parallel perfor-
mance with medium-size multiprocessor machines and little inte-
gration overhead. Our work suggests that parallel multi-level co-
simulation is a viable means to efficiently verify large-scale mixed-
mode systems on general-purpose multiprocessor machines.

References
[1] E. L. Acuna, et al., “Simulation Techniques for Mixed- Analog/Digital
Circuits”, IEEE Journal of Solid-State Circuits, April 1990.

[2] R. Alverson, et al.,THOR user’s manual: Tutorial and commands.
Technical Report CSL-TR-88-348, Stanford, January 1988.

[3] D. Becker, et al., “An Engineering Environment for Hardware/Software
Co-Simulation”,Proc. of DAC, 129-134, June 1992.

[4] J. V. Briner Jr., et al., “Breaking the Barrier of Parallel Simulation of
Digital Systems”,Proc. of DAC, 223-226, June 1991.

[5] R.E. Bryant, “Simulation of Packet Communication Architecture Com-
puter Systems”,Technical Report MIT-LCS-TR-188, MIT, July 1977.

[6] K.M. Chandy and J. Misra, “Distributed Simulation: A Case Study in
Design and Verification of Distributed Programs”,IEEE Transactions of
Software Engineering, SE-5(5):440-452, September 1979.

[7] K.M. Chandy and J. Misra, “Asynchronous Distributed Simulation via
a Sequence of Parallel Computations”,Communications of the ACM,
24(11):198-206, April 1981.

[8] E. DeBenedictis, et at., “A Novel Algorithm for Discrete-Event Simula-
tion”, IEEE Computer, 24(6):21-33, June 1991.

[9] R.M. Fujimoto, “Parallel Discrete Event Simulation”,Communication
of the ACM, 33(10):30-53, October 1990.

[10] R.K. Gupta, “Synthesis and Simulation of Digital Systems Containing
Interacting Hardware and Software Components”,Proc. of DAC, 225-230,
June 1992.

[11] D.R. Jefferson, “Virtual Time”,ACM Transactions on Programming
Languages and Systems, 7(3):404-425, July 1985.

[12] A. Kalavade and E.A. Lee, “A Hardware/Software Codesign Method-
ology for DSP Applications”,IEEE Design and Test of Computers, 16-28,
1993.

[13] D. Kumar, “Systems with Low Distributed Simulation Overhead”,
IEEE Transactions on Parallel and Distributed Systems, 3(2): 155-165,
March 1992.

[14] D. Lenoski et al. “The DASH Prototype: Implementation and Perfor-
mance”,Proc. of ISCA, May 1992.

[15] J. Misra, “Distributed Discrete-Event Simulation”,ACM Computing
Surveys, 18(1), 39-65, March 1986.

[16] C. L. Portmann and T. Meng, “Power-efficient Metastability Error
Reduction in CMOS Flash A/D Converters”, to appear in IEEE Journal of
Solid-States Circuits, July 1996.

[17] R.A. Saleh and A.R. Newton.Mixed-Mode Simulation, Kluwer Aca-
demic Publishers, 1990.

[18] A. Salz and M. Horowitz, “Irsim: An Incremental MOS Switch-Level
Simulator”,Proc. of DAC, 173-178, June 1989.

[19] J. Singh and R. Saleh. “iMACSIM: A Program for Multi-level Analog
Circuit Simulation”,Proc. of ICCAD, 16-19, 1991.

[20] L. P. Soule, “Parallel logic simulation: an evaluation of centralized-
time and distributed-time algorithms”,Technical Report CSL-TR-92-527,
Stanford, June 1992.

[21] R. J. Spier. “A preliminary evaluation of the SPICE3 simulation pack-
age”,IECEC, vol. 1, 189-194, 1991.

[22] D.E. Thomas, et al., “A Model and Methodology for Hardware-Soft-
ware Codesign”,IEEE Design and Test of Computers, 6-15, 1993.

[23] C.-P. Wen and K. Yelick. “Parallel Timing Simulation on a Distributed
Memory Multiprocessor”,Proc. of ICCAD, 130-105, 1993.

[24] LSIM Manuals, Mentor Graphics.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

