Symphony: A Simulation Backplane for Parallel
Mixed-Mode Co-Simulation of VLSI Systems

Antonio R.W. Todesco and Teresa H.-Y. Meng
Computer Systems Laboratory
Stanford University, CA 94305

Abstract — In this paper we present an integrated simulation means that the resulting simulation will not haveptelictability
paradigm in which parallel mixed-mode co-simulation is [6] property. If there is a loop of interconnected blocks, the system
accomplished by integrating sequential simulators in a soft- will deadlock because it does not have a positive lower bound on
ware simulation backplane. Distributed conservative event- how far ahead the outputs can be predicted in relation to its inputs.
driven scheduling is used in combination with an efficient , yhis paner, we present an integrated simulation paradigm for
d_ead_lock-f_ree m_echanlsm for handling synchron_ous feedback implementing parallel multi-level mixed-mode co-simulators. Our
C|tr.|c.u.|ts. S!mu!?thn clpncu[lfﬁncy Caﬂ. be f”rthﬁr llnqreals<etq by integration approach is based on a distributed kernel that uniformly
ga{cl:imlgncelriguéa ggzlg?'concirrfrftllj Isni?nupl):tri?l es thrgr%?;?r::ir- and efficiently manages multiple instantiations of sequential simu-
cuit gwitch gatg RTL and behavio?/al levels \?Ve)i/mplemented I{:\tors. The kernel uses a distributed deao_llock-free scheduling algo-
this,parallel’ mixe’d-mode simulator on both the iPSC/860 mes- ;lthmﬁthgt rlandleﬁ fleedbactlg-cor]rnhe_cted CllrIClIJ't _conlmpt(_)nents t%_allow

: . ! or efficient parallel execution. This parallel simulation paradigm
;?3;52;5 'E?(prgﬁrﬂgEtealizgu}gearDeA;SS;?taergd-memory mult- as been demonstrated with a prototype that integrates SPICE3

' ' [21], IRSIM [18] and THOR [2], implemented on both the iPSC/

. 860 message passing multiprocessor and the DASH [14] shared-

1 Introduction memory multiprocessor. Its performance and speedups due to mul-

The last several years have seen a steady growth in the complexitiProcessing are quantified and analyzed by simulating mixed-
of IC and system integration. As a consequence, there is a need fcmOde VLSI circuits with both analog and digital components.
longer, larger and more realistic simulations performed within a The paper is organized as follows. We will present in section 2 a
finite design-to-market time. Usually multiple simulators are used parallel discrete-event scheduling algorithm capable of handling
in the design pass because no single simulator addresses all modesynchronous feedback circuits efficiently. In section 3, we will
ing, performance and verification issues. describe Symphony, the parallel mixed-mode software simulation
Multi-level mixed-mode co-simulation has a great potential to effi- backplane base_d on this discrete-evsent scheduling algorithm. In
ciently simulate large systems containing both digital and analogS€ction 4, we will analyze Symphony's performance using repre-
components, with portions of the system described at different ley-Sentative examples. m the final section, we will present a summary
els of abstraction. Limiting factors for large-scale mixed-mode Of results and conclusions.

simulation are the speed of sequential simulation software, the rel-

atively high cost, and the low flexibility of hardware accelerators. 2 Parallel Discrete-Event Simulation

With the growing availability of powerful parallel processing
machines, parallel co-simulation is a viable approach to speeding
up simulation of large systems. Furthermore, integration and

ﬁé:]egzlg);;};rfgum be achieved using a parallel software simula- allel discrete-event algorithm is the synchronization and schedul-
s o) o) ing backbone of our parallel simulation paradigm which allows
One of the major issues in integrating sequential simulators is themixed-mode co-simulation.
handling of feedback circuits, which may lead to simulation dead-
lock due to the followiqg reason. The interface between si.mulat(.)rsz_l Basic Concepts and Related Work
usually consists of an input update phase followed by a simulation))))
interval phase during which output events are produced. By the!l theé CMB algorithm and its variants, the system under simula-
very nature of this interface, the outputs are only known up to thelion is modeled as a set of communicating processes that exchange
time that the inputs have been simulated. At the beginning and thenformation through messages and have distributed local times.
end of each simulation step, the time across the simulation is the "€ Messages sent between processes consist of an event and the
same for every input and output node. As a consequence, there ttime of its occurrence. Scheduling policies can be divided into two
no outputlookahead[6] in the simulator instantiation, which ~ Major groups, namely treanservativescheduling and theptimis-
- - - tic scheduling. A survey of this work is described by Fujimoto [9].
This research was supported in part by ARPA, and a fellowship from
CAPES, Brazil. In the CMB algorithm and its variantspnservativescheduling is
used. Specifically, the local time of a process can never exceed the
minimum time of its input events. Deadlock can occur if there are
cyclic dependencies between processes. The basic proposed solu-

This section presents an extension to the Chandy-Misra-Bryant
(CMB) [5][6][15] algorithm in synchronous (clocked) systems
based on the concept lodrriers. The resulting deadlock-free par-

1. Lookaheadis the property where a simulator can deduce future output events
solely from the simulator’s state history. Strictly speaking, every simulator has the
lookaheadproperty. Its outputs will remain constant by at least the smallest simula-
tion time increment. However, using this small increment to advance the simulation
time is usually too inefficient.

33rd Design Automation Conference [
Permission to make digital/hard copy of al or part of thiswork for personal or class-room useis granted without fee provided that copies are not made
or distributed for profit or commercia advantage, the copyright notice, thetitle of the publication and its date appear, and noticeis given that copyingis
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or afee.
DAC 96 - 06/96 Las Vegas, NV, USA 01996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

tions to this problem are deadlock avoidance [6] and deadlockoutputs, the internal values may not be the same due to clock
detection and recovery [7]. In deadlock avoidance, null messagesstretching. To obtain the correct internal values, the register needs
are introduced with the purpose of advancing the output simulationto be duplicated into shadow barrier

time whenever the local time is advanced without output change.

This strategy introduces overhead on message traffic. Deadlocl2.3 Barrier and Shadow Barrier

recovery is based on a two-phase scheme in which simulation pro jy strate the feedback breaking mechanism with a barrier, Fig-

ceeds until it is blocked. When blocking is detected, a recovery .o 1 shows two processes that comprise a communication cycle,

phase resolves the deadlock. The performance of this solution I5n which one is simulating a registerg and the other is a generic

cr?mpromisfed by the detection andhr_ecoveAry O\I:erhead, specially brocess P. To break the feedback cycle, the first step is the identifi-
the cars]e 0 Tessage pt;allss!ng m?ch ines. Another st_ratelgy IS to g%ation of the feedback registexy, which is replaced with a barrier
mate the earliest possible time of the next event, as implemented iig process. This process has explicit control of its input and output
YADDES [8]. communication

Optimistic scheduling is used in the Timewarp [11] algorithm.

Such an algorithm allows the local time of a given process to be
increased beyond the local time of its input processes. In so doing

it is possible to anticipate additional events. If events are rare, the v x

speculations may often be correct. If the prediction proves to be | E reg

wrong, the process would have to return to its previous correct

state. Such a reversal is disadvantageous because it may require ck ck

large amount of memory for storing history events and enabling v v
P

rollbacks. Because we recognize that existing sequential simula-
tors usually do not have backtracking capability, optimistic sched- P

uling will be difficult to implement, and therefore is not considered v
further.

Figure 1. Feedback-breaking transformation with a barrier.

2.2 Synchronous Feedback Simulation Mechanism : . i

o) Figure 2 shows how a barrier can effectively break the feedback
The majority of the VSLI systems designed today are clocked sys-cycle and update its inputs without having to rollback. In the out-
tems. By explicitly defining synchronization points in a feedback put phase, the barrier B has its input connection open and its output
structure, it is possible to facilitate parallel simulation in a simpler connection closed. Because of the semantic of the barrier, the
and more efficient way. It should be pointed out that feedbacksinpyts will not affect the outputs until the next clock event. During
inside a simulation instantiation are not a concern because they catne clock interval, the process topology is acyclic, from B to P, and
be easily handled by sequential simulators. could be simulated with an acyclic algorithm [13].
The problematic deadlock arises when a feedback cycle existsy the input phase of barrier B, the outputs of process P are taken
between simulation instantiations. Within each of these feedbackinto account. With output opened, barrier B uses the values
cycles, a restriction is made which requires at least one latch olygcejved from the process P to update its inputs and internal states
edge-triggered flip-flop in the loop to break the feedback cyclic for the next cycle. Barrier B is simulated with the updated inputs
operation during one pass of simulation. In this paper, latches ofcomputed in the previous output phase. One direct consequence is
edge-triggered flip-flops will be called registers. A register is con- that the inputs and outputs of barrier B are now offset by one clock
trolled by its input clock. When the clock agtive it opensthe interval. In the case of outputs, this offset can be easily cancelled

register, during which time the register’s outputs depend on thepy the barrier. However, the offset in internal values is unknown,
values of its inputs. The clock activation can be a transition, as ingng therefore needs special attention.

the case of an edge-triggered flip-flop, or a level, as in the case of
latch. A register i€losedwhen its clock isnactive during which
time the register inputs do not affect its outputs. Output Input

The feedback resolution mechanism relies on usirgaraier,
which is simulated according to the value of the associated registe

state as well as the type of registers used in the design. Its mai ﬂ n
purpose is to resolve feedback deadlocks, guaranteeing simulatiol Ck Ck

progress by generating output events during an interval of one v
clock period. To do so, when a barrier is closed by its clock, its

input values are kept constant. The barrier may receive computec P P
results from the feedback to update its input values. When the bar
rier is opened by its clock, its output values may be affected by its v v
inputs.

Because we are restricted to an interface in which backtracking is

not allowed, the simulation cannot be rolled back one clock periodTo compute the correct internal values, the functionality of the reg-
and resimulated with the updated inputs. To achieve input updatingjster is duplicated in a shadow barrier, with only the input connec-

without rollback, time is allowed to proceed for the interval of one tions. This duplicated register is simulated as a regular process
inactive clock interval as if time were stretched. This clock interval with an acyclic algorithm. Figure 2 illustrates the duplication of

was simulated during the phase in which the barrier was closed anlreg process onto a shadow barrier process SB.
inputs kept constant. In addition, the barrier should also correctly
handle external simulated times by simple bookkeeping. Although
the output values of a barrier are the same as its associated regist

Figure 2. Barrier phases of operation.

Because the inputs are kept constant during the output phase, if
there is a hold time violation in the real circuit, the violation will
occur in the barrier. The assumed transition will be clocked in the

register simulated by the barrier B, but not in the real circuit. How- 2.5 Circuit Pipeline Exploitation

ever, this would be an incorrect simulation. It is possible to increase simulation concurrency in a feedback cir-
Also, during the input phase we stretch the local simulated time bycuit by using more barriers than needed to avoid deadlock. As in
one clock interval. As a consequence, if there is a propagation timethe case of circuit pipeline, there can be more than one register in a
violation, which means the clock period is smaller than the propa-circuit feedback. By simulating the registers with the barrier algo-
gation time of the register, the assumed transition may happen irrithm, it is possible to take advantage of the circuit pipeline con-
the barrier. This would also create an incorrect simulation. currency during simulation.

Hold time and propagation time violations are detected by compar-Figure 5 illustrates a circuit with more than one register in the
ing the outputs of the barrier B with the outputs of the shadow bar-feedback cycle. Suppose the circuit is partitioned in parts A and B

rier SB. Violations are reported to the user. for parallel simulation. With the barrier algorithm, at least one reg-
ister should be simulated as a barrier to avoid deadlock. Let the
: register in part A be simulated by the barrier algorithm. Because of
v the event synchronization effect of the barrier on part A and input
» B communication dependency of part A on part B, the simulation
ck 0 would be executed sequentially. If the register in part B is also sim-
\ ulated as a barrier, both parts can be executed in parallel during
v one clock cycle. This reflects the actual circuit independency when
P the registers do not change their output values.
A
SB
Vso regr* P
Figure 3. Barrier duplication into a shadow barrier.
c C

2.4 Barrier Algorithm
The barrier algorithm is listed in Figure 4. It augments an acyclic

simulation algorithm with the simulation of barriers and shadow The actual speedup will depend on the trade-off between the
barriers. When a barrier is closed (clock is not active), it executesinerease in concurrency and the increase in computation due to the

an output phase to break a feedback. This is followed by an inputyarriers and shadow barriers. If the register computation is small in
feedback update phase. If the barrier is open (clock is active) dur-comparison with its associated section P, the increase in speedup
ing an interval, as in the case of a transparent latch, it will be sSimu-.5 pe substantial.

lated like any other feedforward process with an acyclic algorithm.
In this case, using an acyclic algorithm to avoid deadlock requires
another latch in the feedback cycle which is closed while the origi- 3~ SOftware Backplane

nal latch remains open. That is the common case of a two-phasthis section presents an extensible simulator paradigm suitable for

Figure 5. Two barrier case in a feedback cycle.

clock scheme. parallel mixed-mode co-simulation. Distributed conservative

Loop { event-driven scheduling is used in combination with the barrier
Receive inputs until clock event algorithm for synchronous feedback systems presented in the pre-

if Clock is active { vious section. In the following subsections, we will review some

background in sequential mixed-mode simulation and co-simula-

Acyclic simulation up to clock event time . i . X
} y P tion. Then we will present our co-simulation method, followed by

a description of an implementation and the integration of THOR,

else { IRSIM, and SPICE.
Output:
Open barrier inputs and close outputs 3.1 Related Work
Acyclic simulation up to clock event time
Input: In the area of sequential multi-level mixed-mode simulation [17],

several simulators have been developed. iISPLICE3[1] is a classic
example, combining circuit-level, switch-level, and logic-level
simulation modes. iIMACSIM [19] has behavioral, functional and

Close barrier inputs and open outputs
Acyclic simulation up to clock event time

Compare shadow barrier and barrier outputs electrical levels, and provides a mixed-mode domain (the s-domain
} and z-domain). Another example, LSIM [24], typifies current com-
Figure 4. Barrier algorithm. mercial use.

At any simulation level, there have been many parallel implemen-
tations. PARSWEC [23] is an example of a timing simulator that
used optimistic scheduling in a CM5 multiprocessor. A parallel
RSIM implementation was presented by Briner [4] using optimis-
tic scheduling in a 16-processor BBN. PTHOR [20] is a parallel
version of THOR that uses conservative scheduling and runs on
shared-memory multiprocessors.

The cause of communication overhead introduced by simulating a
register with the barrier algorithm is due to the fact that in a clock
interval the acyclic algorithm is executed three times, twice in a
barrier and once in a shadow barrier. Furthermore, there is addi-
tional communication between the barrier and shadow barrier for
output comparisons.

In the area of hardware/software co-design, research on co-simulaleaving of sequential simulators in a given processor was imple-
tion [3] [10] [12] [22] so far has not addressed an extensible paral-mented to improve the load balance. This feature also helps load
lel mixed-mode simulation backplane. We present Symphony balancing in feedforward systems. If multi-threading was available
which employs a barrier algorithm to simulate feedback systemsin a system, these tasks could be implemented as threads. We did

with reasonable speedups on a multiprocessor machine. not use threads because of portability issues and the fact that, at the
time we initiated this work, not all parallel processing machines
3.2 Symphony were multi-threading systems. Scheduling of instantiations is pro-

In this subsection, we describe a framework to integrate existinggrammed to favor the process that IS fafthESt beh!nd In its simu-
lated time with a task queue. The main difficulty of interleaving is

simulators on parallel machines. The framework leverages on the . . o
barrier algorithm for synchronization and scheduling. The actual tat it requires sequential simulators to have reentrant code at the

simulator integration is accomplished by linking the object code of interface entry points.
existing simulators to the Symphony software backplane. This . . .
requires a few specific procedure name calls. Load balancing for3'2'2 .Integratln.g and Portl.ng with Symphony

different simulation granularity is addressed by local interleaving The simulators integrated into the prototype were chosen to cover
which requires the interface calls to be reentrant. Integrating well-2 reasonable spectrum, ranging from the behavioral- and struc-
known sequential simulators with small changes, and porting thetural-levels, to the switch- and circuit-levels. At the circuit-level,
parallel co-simulator to three different machine platforms were SPICES3 [21] (or its variant hSPICE) was selected because it repre-
easily accomplished with the Symphony implementation. sents probably the most widely used simulator. The switch-level

We want to simulate a complex system that is decomposed inicSimulator IRSIM [18] is a logic mode switch-level simulator with
; " . - timing information, and is widely used in universities. As a repre-
coarse-grain blocks. The partition of these blocks is based in the

simulation level and mode of interest. The blocks are further parti_sentatlve of behaworal and functlo_nal-level 5|mulators_ we used
. . - : .~ THOR [2]. The selection of these simulators was also influenced
tioned in order to expose existing parallelism and speedup the sim

ulation by the fact that their source codes are available in the public

domain.
The simulation framework consists of a distributed kernel that has . : . .
- - o As the three simulators used in our parallel simulator were written
a code section attached to each instance of a sequential simulatc.

. . . . ++
The kernel is responsible for event communication, event synchro-" & 04 solution was to convert the C code to C++ by trivially
S . . . packaging together local static variables with its associated func-
nization, scheduling, general management of sequential SImUIa'tions Reetrant code was achieved in SPICE with the convertion of
tors, and gathering of simulation results. The integration of L - . A .
> . : . a relatively few SPICE files to C++, leaving the majority intact in
existing simulators to the kernel is accomplished through a few

: . . C. IRSIM and THOR convertion from C to C++ produced an exe-
kernel entry points. These entry points consist of procedure calls " . -) .
that shouldy epxist in the sourceycF())de of the simulgtor to be inte-cUtion overhead of less then 5%. The overhead in SPICE is negli-

grated. The procedure names should be available to the kernel jgible because most of its execution time is spent in the device
2 . . formulation and matrix inversion code.

its internal table and the object code of the simulator should also be

available for linkage with the kernel. The kernel must also have aThe primary target of our implementation is a parallel machine.
set of procedure calls to implement analog/digital convertion. This The kernel has a software layer that isolates the architectural prim-
conversion has already been explored and resolved [17]. itives, which makes it easy to port to different parallel-processor
The kernel schedules a given simulator instance and synchronizemggg;mes' Waesz‘ia:]ve 'mgfhr?nimeg Sg:; Eggf‘rzeor:]‘oin Ir:;(zllgiprsocéfsfss%r
it with other instantiations. The kernel also schedules the eventsDASH %l4]pand sgi]n le- roce,ssor DECstations A)I/thou hﬁhere is
with their associated simulators through the inputs that it receivesno S eedu’ in oneg ropcessor tremendous sévin S ir? simulation
from other simulators and local simulated times. Scheduling andtime Ean bep ained thprou h ml,;lti-level mixed-modegtradeoffs
synchronization are accomplished through the use of the previ- 9 9 :
ously described parallel discrete-event simulation algorithm based

on barriers. The kernel exchanges information through message4 Performance

that have time-stamped events. It also executes a basic acycli
algorithm [23], except in the case of a register in a cycle, where the
kernel executes the barrier algorithm.

In this section we analyze Symphony’s performance through a suit
of VLSI circuit designs. We ran our simulation on two multipro-
cessor platforms: the Stanford shared-memory DASH and the Intel
iPSC/860. DASH has a cache-coherent non-uniform-memory-

))) access architecture, with 32 processors organized into 8 clusters of
Symphony kernel was written in C++. The main data structures 4 processors each. Each processor is a 33 MHz MIPS R3000, and
used by each local instantiation of the kernel for scheduling arenzs 3 64 KB first-level cache and a 256 KB second-level cache.
input events and sorted time queues. An input event, either local 0gach cluster has 28 MB of main memory. A directory-based proto-
from communicating with other simulators, and the input event o) js used to maintain cache coherence across the 8 clusters. The
time are stored in the corresponding input queue. The input queuejpsc/g60 multi-processor also has 32 processors. Each processor

implement a form of time wheel optimized to this particular case. is 3 40 MHz Intel i860 XR with 16 MB of memory. The intercon-
The input event time also updates a sorted time queue to detect thyection network uses a hypercube topology.

minimum time increment of all the input connections and local

inputs. The simulator receives input events as well as a stop time
when there is an interval to simulate. In Symphony, we imple-

mented very simple, but fast analog/digital conversations. The usel
could trade-off conversion accuracy with speed by duplicating

interface fan-in or fan-out netlist

3.2.1 Implementation

In the benchmark circuit selection, we looked for circuit sizes in
which the sequential case would fit in memory and execute on both
the multiprocessor platforms. Although the resulting circuits are
relatively small, they had enough coarse grain parallelism for a 32-
multiprocessor machine. The circuits were partitioned manually
for the 32-processor case. For bigger circuits and large-size multi-

Because of static assign_ment of ins_tantiations to processors _and thprocessor machines the partition procedure needs to be automated.
potential small granularity of duplicated shadow barriers, inter-

The circuits consist of a combinational design to stress upperhour in one DASH processor. For multiprocessor runs, the circuit
speedup limits, a sequential design to stress the shadow barrienetlist was partitioned to have roughly 2 partitions per processor
algorithm overhead, and a mixed-signal design. All three cases hawhen using 32 processors. To avoid deadlock with the feedback, at
their netlists extracted from a CMOS mask layout. All speedups least one register has to be executed with the barrier algorithm. In
were calculated over the best sequential version of each progranthis circuit, a register was implemented as fully static edge-trig-
executing on the two multiprocessors. gered set/reset flip-flops. The register netlist duplication into a
shadow barrier represents an overhead of 1.8% per register.
4.1 Acyclic Case

S 2o}l % PAS?:]# bar,;i;r»s

The first example is an acyclic circuit that implements a relatively g S B ow benricrs N
large feedforward FIR filter. It consists of sixteen 32-bit registers 280 X 1PSCI860: bariersand shadow barriers
and multipliers connected to a binary tree of fifteen 32-bit adders. A o
This case is a combinational circuit with simulation dominated by 2401 S ©
IRSIM time, in addition to four small SPICE runs. The simulation ;
time attributed to THOR is negligible. 2or
The adder tree circuit was extracted from an actual CMOS layout 1601 < oo ;
with 33,900 transistors and 15,723 nodes. Four small netlists were
duplicated from the adder tree to simulate in SPICE. The entire 2or _
adder tree is simulated in IRSIM. The registers and multipliers ol o
were simulated in THOR, having a C code for each block. We sim- g
ulated the circuit for one thousand clock cycles in order for the 40 fgt S
execution to take approximately one hour in one DASH processor.
For multiprocessor runs, the adder tree netlist was partitioned to 005 5 = ” -
have roughly 2 partitions per processor when using 32 processors. Number of Barrier Processes

o mot Figure 7. Effect of the number _of b_arri_ers on speedup

é : ADDERS performance for the feedback circuit with 32 processors.

& 20} First we look at the effect of simulating registers with the barrier

S linear speedup algorithm in the case of 32 processors. Two cases were simulated.
2401 Z mﬁo O In the first case, we have a shadow barrier for each barrier intro-
I 7

duced. In the second case, we simulate the same circuit, but with-
200 - .

, . out the shadow batrriers. In both cases, the speedup measures the
6ol increase in concurrency with the number of barriers used. It also

’ allows the measurement of the impact of duplication caused by

120} o : these overhead register barriers.

o v As shown in Figure 7, the introduction of 16 barriers capture most
o of the natural pipeline concurrency of the circuit. The 29%
wl & - increase in netlist overhead corresponds to a 40% degradation in
& ° performance. With more than 16 barriers and no shadow barriers,
T T e 5 % = there is a small increase in concurrency. But with barriers and

Number of Processors shadow barriers there is small change in the speedup due to the
Figure 6. Adder tree circuit simulation performance. combined increase in concurrency and netlist overhead. T_he best
9 P measured case is with 24 barriers. With less than 16 barriers, the

As shown in Figure 6, using 32 processors on the Intel iPSC/860increase in the netlist duplication is almost hidden by the increase
the speedup is 16; it is nearly 25 on DASH. The DASH implemen- jn concurrency.

tation benefits from more concurrency because the communicating

801

0.0

events are stored directly into the kernel data structures while ar 2 mof _ FEEDBACK
instantiation is being executed. In addition, the speedup on the 3 P v ,
iPSC/860 implementation is hampered by the blocking of output & ot o iPSC/860: just barriers _ o
. . . . A DASH: barriers and shadow barriers .

data being sent to other processors, a side effect of our interleavin % iPSC/B60: barriers and shadow barriers
implementation on a message-passing machine. The multiproces aor - ©
sor runs with one and two processors on the iPSC/860 did not fit in 200l
the memory. There is a difference of less then 5% in execution
time between the sequential and the parallel (interleaved) execu 160} P o
tion in one DASH processor. The interleaving and number of com- 2 »
munication messages incurred small overhead in the simulation. 1201 v

Sl A
4.2 Feedback Case o 8 *
To test our feedback mechanism performance, the second exampl 401 @ &
uses a sequential circuit implementing a feedback pipeline filter. o= % ‘ L ‘ ‘ ,
The simulation has a THOR section to generate data inputs, and a %04 8 122 1 20 2 2 =
IRSIM section for timing simulation. The circuit consists of thirty- Number of Processors

one 31-bit registers and sixteen 32-bit adders in a total of 67,904 Figure 8. Feedback circuit parallel simulation performance.

transistors, We simulated the circit for four hundred and thirty Next, we look at the simulation with 24 barriers. In this case, there

clock cycles in order for the execution to take approximately one . ; . ; . -
y PP y is a 43% increase in netlist overhead with shadow barriers. The

speedups on 32 processors for the two cases are 28 and 17 respdions. Symphony has been ported on an iPSC/860 message-passing
tively when running on DASH, and 24 and 15 respectively when machine and the DASH shared-memory multiprocessor. The three
running on the iPSC/860, as shown in Figure 8. As in the acyclicbenchmark circuits used in this paper showed good parallel perfor-
case, the DASH implementation benefits from more concurrencymance with medium-size multiprocessor machines and little inte-
but the differences are not as large. This is a result of using 24 bargration overhead. Our work suggests that parallel multi-level co-
riers to expose the circuit concurrency. The multiprocessor runs insimulation is a viable means to efficiently verify large-scale mixed-
the iIPSC/860 did not fit in the memory of one processor. In the mode systems on general-purpose multiprocessor machines.
case of shadow barriers it also did not fit with 2 processors. There
is a difference of less then 4% between the sequential and the paiReferences
allel execution in DASH with only barriers in one processor
[1] E. L. Acuna, et al., “Simulation Techniques for Mixed- Analog/Digital

4.3 Mixed-Signal Case Circuits”, IEEE Journal of Solid-State Circujté\pril 1990.

. . . . L . . [2] R. Alverson, et al.THOR user's manual: Tutorial and commands
The third example is a mixed-signal circuit, implementing a 7-bit 15 hnical Report CSL-TR-88-348, Stanford, January 1988.

CMtOS ﬂas.h tA/[; iggverter [16,[]' ThE ar;]alog pom?n of the Cg_rf}— [3] D. Becker, et al., “An Engineering Environment for Hardware/Software
verter consists o comparators. Each comparator uses a differe_gimiation” Proc. of DAC 129-134, June 1992.

ential preamplifier followed by a drain-strobed latch and a
completion detection circuit. The circuit has a total of 11,042 tran-
sistors. Because of little coupling between comparators, we usec
multiple instantiations to simulate separately the 128 comparators
in SPICE, dominating the total simulation time. The digital part of
the circuit is simulated in IRSIM. We ramp up the analog input to
generate the complete 128 7-bit outputs. This execution takesSoftWare EngineeringSE-5(5):440-452, September 1979,

approximately 10 1/2 hours in one DASH processor.) o) o
. o . . [7] K.M. Chandy and J. Misra, “Asynchronous Distributed Simulation via

The speedup performance is shown in Figure 9. As in the previousa ‘sequence of Parallel Computation€pmmunications of the AGM

examples, the DASH implementation shows more concurrency in24(11):198-206, April 1981.

parallel simulation, and the multiprocessor runs in the iPSC/860g] g, peBenedictis, et at., “A Novel Algorithm for Discrete-Event Simula-

did not fit in the memory with one processor. The parallel execu- tion”, IEEE Computer24(6):21-33, June 1991.

tlon In one D_ASH processor is 20% faster tha_n_ the Sequ_entlal EXe 9] R.M. Fujimoto, “Parallel Discrete Event Simulatiof©pmmunication

cution. This is a consequence of smaller partitioned netlists whichof the ACM 33(10):30-53, October 1990.

results in fewer time steps in the parallel execution. [10] R.K. Gupta, “Synthesis and Simulation of Digital Systems Containing
360 Interacting Hardware and Software Componerisdc. of DAG 225-230,
June 1992.

s201 ADC N [11] D.R. Jefferson, “Virtual Time”ACM Transactions on Programming
’ Languages and Systen7$3):404-425, July 1985.

 linear speccp . [12] A. Kalavade and E.A. Lee, “A Hardware/Software Codesign Method-
2401 DASH S ology for DSP Applications”lEEE Design and Test of Computet$-28,
iPSC/860 Rt 1993.

o L [13] D. Kumar, “Systems with Low Distributed Simulation Overhead”,
160} IEEE Transactions on Parallel and Distributed SysteB(®): 155-165,
AN
- March 1992.

[14] D. Lenoski et al. “The DASH Prototype: Implementation and Perfor-
mance”,Proc. of ISCAMay 1992.

[15] J. Misra, “Distributed Discrete-Event Simulatio®CM Computing
40 ,3 Surveys18(1), 39-65, March 1986.

00 o* . ‘ ‘ . . . ‘ ‘ [16] C. L. Portmann and T. Meng, “Power-efficient Metastability Error
0 4 8 12 16 20 24 28 Reduction in CMOS Flash A/D Converters”, to appedEIBE Journal of

Number of Processors Solid-States CircuitsJuly 1996.

. L . . [17] R.A. Saleh and A.R. NewtoMixed-Mode SimulatignKluwer Aca-
Figure 9. ADC circuit parallel simulation performance. demic Publishers, 1990.

[4] J. V. Briner Jr., et al., “Breaking the Barrier of Parallel Simulation of
Digital Systems”Proc. of DAG 223-226, June 1991.

[5] R.E. Bryant, “Simulation of Packet Communication Architecture Com-
puter Systems'Technical Report MIT-LCS-TR-188IIT, July 1977.

[6] K.M. Chandy and J. Misra, “Distributed Simulation: A Case Study in
Design and Verification of Distributed Programi2EE Transactions of

Speedup
o)

2801 A

>0

200 |-

120t e

4§§®

80

[18] A. Salz and M. Horowitz, “Irsim: An Incremental MOS Switch-Level
5 Conclusions Simulator”,Proc. of DAG 173-178, June 1989.

. . . . [19]J. Singh and R. Saleh. “iMACSIM: A Program for Multi-level Analog
In this paper, we presented a new parallel discrete-event simulatiolcircyit Simulation”,Proc. of ICCAD 16-19, 1991.

based on th? barrier algorithm. Using thls allgonth.m, therg is little [20] L. P. Soule, “Parallel logic simulation: an evaluation of centralized-
communication overhead and the barrier simulation avoids stateime and distributed-time algorithmsTechnical Report CSL-TR-92-527
rollbacks. Through the use of barriers it was possible to increasestanford, June 1992.

simulation concurrency by taking advantage of the circuit pipeline. [21] R. J. Spier. “A preliminary evaluation of the SPICE3 simulation pack-
We applied the barrier algorithm to an extensible simulator inte- age”,IECEC vol. 1, 189-194, 1991.

gration paradigm suitable for parallel multi-level mixed-mode co- [22] D.E. Thomas, et al., “A Model and Methodology for Hardware-Soft-
simulation. The feasibility of these concepts was demonstratedware Codesign”lEEE Design and Test of Computessl5, 1993.

with a simulation backplane called Symphony, and the integration 23] c.-P. wen and K. Yelick. “Parallel Timing Simulation on a Distributed
of SPICE3, IRSIM and THOR to Symphony. This resulting paral- Memory Multiprocessor’Proc. of ICCAD,130-105, 1993.

lel co-simulator was capable of concurrent multiple circuit-level, [24] LSIM Manuals, Mentor Graphics.

switch-level, gate-level, RTL-level and behavioral-level simula-

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

