
33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made 
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc.  To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA          1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

Introspection: A Low Overhead Binding Technique During

Self-Diagnosing Microarchitecture Synthesis

Balakrishnan Iyer Ramesh Karri

Department of Electrical & Computer Engineering

University of Massachusetts at Amherst

Amherst, MA 01003.

Abstract: Introspection, a zero-overhead bind-

ing technique during self-diagnosing microarchitecture
synthesis is presented. Given a scheduled control data


ow graph (CDFG) introspective binding exploits the
spare computation and data transfer capacity in a syn-
ergistic fashion to achieve low latency fault diagnostics

with near zero area overheads without compromis-
ing the performance. The resulting on-chip fault la-

tencies are one ten-thousandth (10�4) of previously
reported system level diagnostic techniques. A novel

feature of the proposed technique is the use of spare
data transfer capacity in the interconnect network for

diagnostics.

1 Introduction
High performance VLSICs typically use a large num-
ber of hardware units. Without some form of fault
tolerance, such VLSI systems would be rendered in-
operable by even a single fault. Notwithstanding the
sophisticated scheduling strategies used in high-level
synthesis, all functional units are not fully utilized in
all clock cycles (control steps). This spare computa-
tion capacity can be exploited to detect and diagnose
faulty functional units within the IC with negligible
increase in the hardware. The available spare capac-
ity for a wide variety of algorithms is illustrated in
Table 1.

Algo- # # Nodes # FU % Spare Cap.

rithm CLK + * - + * - + * -

Arai8 7 16 13 14 7 4 4 67 54 50

Dif10 9 17 20 12 4 4 4 53 44 67

Dit9 8 24 14 12 8 4 3 63 56 50

Lee10 9 17 20 12 4 4 4 53 44 67

Mcm14 13 30 30 34 5 4 7 54 42 63

Wang8 7 13 22 13 3 9 3 38 65 38

Cheb19 18 34 18 0 5 5 0 62 80 0

LMS12 12 23 32 1 5 8 1 62 67 92

Table 1: Spare Capacity for Typical Algorithms

We present Introspection1 a zero-overhead binding
technique for synthesising self-diagnosing microarchi-
tectures with low diagnostic latency. During intro-
spective binding the microarchitecture (i) looks within
itself, (ii) identi�es spare computation and data trans-
fer cycles and (iii) judiciously uses these spare compu-
tation and data transfer capacities to detect and diag-
nose any faulty functional units and interconnect. The
fault detection and diagnostic latency of introspec-
tive binding is of the order of a few machine clock
cycles. This is 3 to 4 orders of magnitude lower as com-
pared to previously proposed system level approaches
to fault diagnosis. This feature is particularly impor-
tant in real-time applications where faults must be
detected as early as possible to contain/localize the
faults within the system.

Interconnect usually dominates the chip area. A novel
feature of introspective binding is that it harnesses
the spare data transfer capacity of the interconnect
to carry out the additional data transfers required for
fault detection and diagnosis. Consequently, the area
overhead of introspective binding is negligible.

We incorporate the fault detection and diagnosability
constraints at the register transfer (RT) level of a top-
down VLSI design methodology. This is because (i)
there is a tight interdependence between the binding
of the scheduled CDFG and the fault detection and di-
agnosability of the synthesized microarchitecture, (ii)
the underlying fault model is at the RT level of func-
tional units and (iii) the design decisions made at the
architectural level have a profound in
uence on the
cost of the synthesized microarchitecture.

Introspective binding is then formulated as a weighted
bipartite matching problem and use the Hungarian
algorithm [1] to solve it. In the process, the diagnos-
ability of the microarchitecture is maximized The ap-
proach is 
exible enough to be incorporated into any
existing high-level synthesis system.

1Webster de�nes Introspection as \from introspectus,

pp. of introspicere to look inside, to look within oneself"



1.1 Related Research

The idea of utilizing the spare capacity in multipro-
cessor/multicomputer systems to execute redundant
tasks was suggested in [2], where the detection and
diagnosis was done in software at the system level.
Hardware based detection and diagnostic schemes for
VLIW (Very Long Instruction Word) and Super-scalar
processors have been recently proposed by Blough et.

al. [3]. However, this scheme requires specialized com-
pilation of the source code to take advantage of the de-
tection and diagnosability a�orded by the modi�ed ar-
chitecture. Moreover, the error detection is at the soft-
ware instruction level which typically consumes sev-
eral hundred machine clock cycles which results in a
detection and diagnostic latency in the order of several
thousands of clock cycles as opposed to the proposed
scheme which has a latency of few clock cycles.

Traditionally the problems of area and performance
optimization have been addressed during microarchi-
tectural synthesis [4]. More recently, other important
goals, such as power [5], testability [6], and fault tol-
erance [7, 8, 9, 10] have also been addressed. In [7]
an area e�cient fault detection mechanism has been
incorporated during scheduling. In [8], one of the �rst
fault-tolerant binding schemes was reported. Guerra
et. al. [9] present a high level synthesis technique for
e�cient built-in-self-repair to enhance the yield of VL-
SICs. Iyer et. al. [10] propose the use of programmable
interconnect to overcome permanent fabrication-time
faults.

2 Introspective Binding

Using an illustrative example, we will show how in-
trospective binding achieves diagnosis with low fault-
latency with almost zero hardware overhead.

+2

*5

+3

5

+1

+4

*1

*2 *3 *4

A1

A3

M1

M3M1M2

A2

M1

A1

(a)

1

2

3

4

1

2

3

4

5

(c)

*-to* +-to-+Clk

3-4

4-5

5-6

1,2 1,31,11,31,21,1

2-3

1-2

321

Clk Mult Add

321 

(b)

Figure 1: (a) An Example CDFG with scheduling and
binding information (b) checkerboard visualization of
the spare computation capacity. (c) checkerboard vi-
sualization of the spare data transfer capacity.

Consider the scheduled CDFG consisting of four add
operations (+1;+2; :::;+4) and �ve multiply opera-
tions (?1; ?2; :::; ?5) as shown in Fig. 1(a). Assum-

ing that each operation can be done in one cycle,
the fastest schedule is shown in Fig. 1(a) (with the
horizontal dotted lines delineating the clock cycles).
Furthermore, Fig. 1(a) shows a possible operation-to-
operator binding by annotating each node with the
operator on which it is being executed. For example,
operation +1 is performed on adder A1 while opera-
tion ?3 is performed on operator M1. From the �gure
it can be seen that three adders (A1; A2; A3) and three
multipliers (M1;M2;M3) are required to implement
this schedule. It is important to notice that not all op-
erators are being used during every clock cycle. This
can be visualized using a checkerboard representation
shown in 1(b). In this checkerboard, the functional
units are shown along the x-axis while the clock cy-
cles are shown along the y-axis. A shaded cell (i; j)

denotes that the ith functional unit is being used in the
jth clock cycle. The checkerboard in Fig. 1(b) corre-
sponds to the binding shown in Fig. 1(a). Notice that
out of the �fteen multiply computation cycles avail-
able only �ve are being used. Similarly, out of the
�fteen add computation cycles available only four are
used. The unshaded cells constitute the spare com-

putation capacity.
Although this spare computation capacity can be
used to diagnose (i.e. identify) any faulty functional
unit it should be realized that the ensuing interconnect
overhead is critical in VLSI implementations. Conse-
quently, the self-diagnosis technique should not entail
additional interconnect overhead. The obvious ques-
tion is, \is there any spare capacity in the interconnect
and if so can it be exploited ?" Returning to Fig. 1(a),
observe that towards implementing this design, several
functional unit-to-functional unit interconnections are
necessary. The checkerboard in Fig. 1(c) shows some

selected point-to-point interconnects2 and their spare
capacity. The interconnects are shown along the x-
axis while the clock boundaries are shown along the
y-axis. For example, the dedicated interconnect be-
tween the output of adder A1 and the input to adder
A2 is used only at the boundary between clock cycles
1 and 2.
The spare data transfer capacity and the spare

computation capacity can be harnessed in a

synergistic fashion to implement on-chip diag-

nosis with almost zero hardware and intercon-

nect overhead.

For example, consider replicating operation +3 and
executing each of these replicated copies on a distinct
adder as shown in Fig. 2(a). The adders performing

2a point-to-point interconnection style is assumed only

for simplifying the explanation.



+2

*5*5 *5

+3

+3 +3

(a)

+1

+4

*1

*2 *3 *4

A1

A3

M1

M3M1M2

A2

A3

M3M1M2

A2

A1

1

2

3

4

5

(c)

*-to* +-to-+Clk

3-4

4-5

5-6

1,2 1,31,11,31,21,1

2-3

1-2

321

Clk Mult Add

321 

(b)

Figure 2: (a) CDFG with self-diagnosis. (b) checker-
board visualization of the spare computation capacity.
(c) checkerboard visualization of the spare data trans-
fer capacity.

these computations are A1 in clock cycle two and A2
and A3 in clock cycle three. The outputs of the three
adders (shown enclosed in a shaded region for clar-
ity) can be compared pairwise using voters. Since we
assume that a single functional unit is faulty, the pair-
wise comparisons (A1; A2), (A2; A3), and (A1; A3)
yield a wealth of useful diagnostic information. For
example, if (A1; A2) and (A2; A3) disagree, then A2
can be diagnosed to be the faulty functional unit. Sim-
ilarly, if (A1; A2) and (A1; A3) disagree, then A1 can
be diagnosed to be faulty. Notice that we need the par-
ticipation of at least three distinct hardware units for
successfully diagnosing the faulty function unit from
among them. The checkerboards in Fig. s 2(b)-(c) are
darkly shaded to show the spare computation capacity
and the spare data transfer capacity that have been
used for diagnosis. Since only the spare capacities have
been used, the diagnosis function did not entail

any hardware and interconnect overhead.

Fault-Latency and Fault-Coverage: In Fig. 2(a),

a faulty adder can be diagnosed only at the end of
clock cycle 3 although the computations required for
diagnosis have started in clock cycle 2. Consequently,
the time for diagnosing a faulty adder is one clock cy-
cle. The latency of diagnosis can be reduced if enough
spare capacity is available. For example, as shown in
Fig. 2(a), faults in all multipliers can be diagnosed
with zero latency in clock cycle �ve. These on-chip
latencies are quite small when compared with

the tens of thousands of clock cycles required

for system level diagnosis. As far as fault cover-
age is concerned, the number of functional units that
can be diagnosed is dependent on the available spare
capacity. It being abundant, the proposed technique
has a high fault-coverage.

Area and Time Overhead:We now provide a brief
evaluation of the additional hardware overhead of the
proposed approach to self-diagnosis. The extra hard-

ware requirements include voter units, the associated
registers and the additional control circuitry. By im-
plementing the voter units using two levels of XOR
logic gates and glue logic very little silicon area is con-
sumed. Similarly, by ensuring that the fault diagnosis
latency is minimal, the number of additional registers
can be minimized. In Fig. 2(a), the only overhead
apart from one voter unit is the additional register
required to hold the result of operation +1 till clock
cycle 3 when it is consumed by adders A2 and A3. No
extra registers are required for diagnosing the multi-
pliers since the result of operation ?3 is consumed im-
mediately in clock cycle 5 by the three multipliers M1,
M2, andM3. The proposed diagnosis scheme does not
entail any performance degradation. This is because
the values required by the voter can be written to the
appropriate registers in parallel with writing it to the
appropriate functional unit register �le(s). Also, the
voter can operate asynchronously with a propagation
delay of the order of two gate delays.

3 Fault and Architectural Model

3.1 Fault Model

In this paper we assume a single fault model, wherein
at most one functional unit can fail. Furthermore, we
assume that there are no failures in the interconnect
and the register �les. Since fault diagnosis requires
that the operation be carried out on three disjoint
hardware units, there need to be at least three copies
of each of the functional unit that we wish to diagnose.
However, these three copies need not be exact replicas
of each other and they may di�er in terms of silicon
area and number of clock cycles required to carry out
an operation. It is also important to understand that
a functional unit is deemed to be faulty if and only if
one or more valid combination of the input operands
presented to the unit produces a faulty result. This
implies that a faulty functional unit may not produce
a faulty result for a given set of inputs, i.e., the error
may be masked. This implies that detection and di-
agnosis require that all the operations in the CDFG be
validated. Since the spare capacity is limited by the
hardware availability, validation of all the operations
in the CDFG may not be possible.

3.2 Architectural Model

The architectural model that we use in this paper is
very similar to the Hyper [11] architectural model and
is shown in Fig. 3. The architecture consists of two
main parts { one consisting of the functional units
(FU) and the Input/Output buses and the other part
consists of the voter circuitry with its associated reg-
ister �les for fault detection and self diagnostics. Each



Voter

Voter Register Files

Functional Unit
Register Files

FU FU

Diagnostic Ouput

Input/Output Bus

Input/Output Bus

Figure 3: Hardware Model for Introspective Binding.

functional unit consists of two register �les which sup-
ply the inputs to the functional unit and also receive
the output from other functional units. The FU then
operates on the input operands and writes the result
to a bus which transports the result to the register
�le(s) of functional units which use the value in sub-
sequent clock cycles. The results are also fed to the
appropriate register �les of the voter units using the
idle buses. The voter reads the three results for the
operation executed on three disjoint hardware units
and compares them to detect and diagnose faults (if
any) in any one of the three units. Since the results
are transported to the voters over the same intercon-
nect network, the voter can detect any faults (shorts
or opens) in the bus and interconnect.

4 Problem Formulation
Formally, the problem can be stated as follows :
Given a scheduled CDFG, derive a bind-

ing which ensures fault detection and self-

diagnostics in the resulting microarchitecture

with minimum detection and diagnostic la-

tency, and minimizing the hardware overheads

subject to no degradation in performance.

4.1 Introspective Binding as Weighted

Bipartite Matching
As explained in the previous section, introspective
binding accepts a scheduled CDFG and performs the
binding that ensures fault detection and diagnostics
with minimal latency while minimizing the hardware
overheads due to the voter circuitry. Several obser-
vations that capture the e�ect on the hardware over-
heads due to fault detection and self-diagnostics forms
the basis of our algorithm :

1 The number of registers required at the voter(s) can
be minimized by minimizing the fault diagnostic la-
tency, i.e., the number of control steps between the

execution of the primary copy and the last of the two
diagnostic copies of the operation. This also reduces
the size of the lifetime of the input variables to the
functional units performing the secondary copies of
the operations in the CDFG. Therefore, minimizing
the fault diagnostic latency reduces the register �le
size at the voter and the functional units.

2 The number of voters can be minimized by distribut-
ing the number of voting operations uniformly over
the control steps. The schedule also has a very large
impact on the number of voters required. Further-
more, there is a trade-o� between the number of vot-
ers and the register �le size at the voter; minimiz-
ing the number of voter operations across the control
steps requires additional registers to store the inputs
to the voter.

3 Introspective binding maximizes the number of
CDFG operations that are diagnosed (executed on
three disjoint hardware units and voted). The bind-
ing algorithm must enforce the hardware disjointness
constraints.

4 The algorithm must ensure that all functional units
in the design participate in at least one diagnosis op-
eration. This is done by giving a higher weight to
operations involving functional units that have not
yet participated in diagnosis.

Initially, a two-dimensional array Cit[1::n][1::n],
(where n is the number of functional units of type
i in a given control step t) is constructed. The value
Cit[j][k] is the cost function of binding operation j to
functional unit k. The cost function is computed for
the operations in the primary copy (PC), the repli-
cated operations (RC) and for violation of hardware
disjointness or bus availability constraints (CV) as fol-
lows:

Cit [j][k] =

8<
:

�� (�1 � Rc (opjk)) ; PC

(k) � (�2 �Hc (opjk)) ; RC
0; CV

(1)

where, �, �1, and �2 are parameters. Parameters �
is a user de�ned weighting parameter. Parameters �1
and �2 are suitably large positive value and are also
user de�ned.
The function 
() gives higher weight to the functional
units that have not yet participated in diagnosis ac-
tivity. Thus, the function 
() encourages the forma-
tion of new diagnostic triples and also ensures that all
functional units are diagnosed at least once. Rc (opjk)
denotes the cost of register and interconnect incurred



when performing operation j on unit k. Hc (opjk) de-
notes the register, interconnect and voter unit over-
heads incurred from executing a replicated copy of op-
eration j on unit k. By de�nition, the cost function
favors operations with low hardware overhead. The
bus availability and hardware disjointness constraints
for the replicated operations are imposed by setting
the cost function to 0 for such bindings. Let Nit be
the set of primary operations of type i scheduled in
control step t and Dit be the set of operations of type
i that have not been diagnosed in or prior to control
step t. The algorithm is outlined in Algorithm 4.1.

Algorithm 4.1

Di0  ;; Ni0  ; 8i
while (t < C)f

/* C = # of control steps in the schedule */

Dit  Nit [Dit�1

8 j 2 Nit [DitcomputeCit [j][k]8 k 2 [1; n]
Sort Dit descending on maxk Cit[j][k]8 j 2 Dit

Sit  top (n � jNit j)non-zero entries of Dit

N  Nit [ Sit ; Dit  Dit � Sit

Hungarian(n;N;Cit)
t t+ 1

g /* end while */

The problem of binding is thus posed as a maximal
weighted bipartite matching and solved using the Hun-
garian Method [1]. The vertices of the weighted bipar-
tite graph are the n functional units, the Nit primary
operations and the n�Nit replicated operations cho-
sen to be implemented in control step t. If functional
unit FUj is capable of performing operation i, then
there is an edge eij between the corresponding edges
in the graph. The weight wij associated with edge eij
is de�ned by the value of the cost function.

5 Results
The binding algorithm has been implemented within
the Hyper synthesis environment. We compare the
area of the chip with introspective binding with that
synthesized by Hyper using the low-power library.
The results for introspective binding for a number of
di�erent examples are presented in Table 2. The sec-
ond column indicates the number of clock cycles in
the schedule. The third column indicates the num-
ber of nodes in the CDFG. The next three columns
indicate the number of operations of di�erent types
in the CDFG. The number of functional units avail-
able is indicated in the following three columns. The
next three columns indicate the number of functional
units that have been involved at least once in a diag-
nostic triple to perform a self diagnostics. The follow-
ing three columns indicate the number of operations

in the CDFG that have been diagnosed as a result
of introspective binding. The next column indicates
the number of voters that were required for introspec-
tive binding. The silicon area (in mm

2) of the origi-
nal chip (without introspective binding) and the chip
with introspective binding are presented in the next
two columns. The last column indicates the percent-
age area overhead due to introspective binding.

From the results in Table 2, we note that the area
overheads for introspective binding are extremely low
with most of the values clustered around 1% and all
values being under 5%. In all of the examples, all
the functional units have been involved in at least one
diagnostic check, i.e., each of the functional units has
been included in at least one diagnostic triple. The
only exception was in the case of FFT5, where out of
the �ve adder units in the design only four could be
used for diagnostic purposes. This is because of two
reasons (i) the schedule has only four control steps
and does not a�ord much scope for full diagnostics,
(ii) the addition operations are clustered in the last
few control steps which again limits the possibility of
full diagnostics. In some of the examples there are less
than three functional units of a given type. As stated
earlier, in this case no diagnostics are possible on the
functional units.

In the course of diagnosing all the functional units
in the design, introspective binding tries to satisfy a
secondary objective, i.e. to diagnose as many nodes
in the CDFG consistent with the goal of near zero
overhead in silicon area. The number of nodes in the
CDFG that are diagnosed by introspective binding is
also indicated in Table 2. From the table it can be
observed that there is a wide variation in the number
of operations in the CDFG that could be diagnosed.
For example, in the case of the LMS algorithm, all 32
multiplication operations could be diagnosed whereas
only 13 of the 23 addition operations could be diag-
nosed. This is because of the following reasons (i) the
available spare capacity of the buses does not coin-
cide with the time when functional units are available
for diagnostic purposes, (ii) the structure of the al-
gorithm may also result in the clustering of the op-
erations in the last few control steps in the schedule,
(iii) a constant equitable distribution of operations of
a single type reduces the spare capacity available for
self-diagnostics. This can be seen from the distribu-
tion of operations in the schedule for the LMS algo-
rithm which is shown in Fig. 4(a). From the �gure
we can see that the multiplication operations in the
schedule are clustered towards the top of the sched-
ule and are available for diagnostic purposes later in



Ex. # Clk. jV j # Oper. # FU # FU Diag. # Op. Diag. # Chip Area % Over-

Name Cyc. + * - + * - + * - + * - Vtr. Orig. Intros. head

Cheb19 18 52 34 18 0 5 5 0 5 5 0 29 18 0 4 60.15 61.05 1.5

FFT6 5 22 10 2 10 3 1 3 3 0 3 2 0 2 2 8.09 8.20 1.46

FFT5 4 22 10 2 10 5 2 3 4 0 3 2 0 2 2 14.3 14.42 0.82

Wang12 11 48 13 22 13 2 5 2 0 5 0 0 6 0 3 14.48 14.66 1.19

Wang8 7 48 13 22 13 3 9 3 3 9 3 2 11 2 4 24.71 25 1.19

Lee14 13 49 17 20 12 3 3 2 3 3 0 8 6 0 2 8.82 9.22 4.54

Lee10 9 49 17 20 12 4 4 4 4 4 4 9 6 12 5 11.58 11.75 1.50

Dit12 11 50 24 14 12 6 3 2 6 3 2 21 1 0 2 10.39 10.6 2.0

Dif10 9 49 17 20 12 4 4 4 4 4 4 9 6 12 4 12.76 13.17 3.24

Arai8 7 43 16 13 14 7 4 4 7 4 4 16 7 7 4 13.32 13.65 2.51

LMS 12 56 23 32 1 5 8 1 5 8 0 13 32 0 7 50.41 51.14 1.44

Table 2: Experimental Results with Introspective Binding: Cheb19 { Chebyshev Windowed Bandstop Filter;
FFT5, FFT6 { Discrete Fourier Transform for N=8; Wang8, Wang12 { Wang's DCT-II algorithm, N=8; Lee10,
Lee14 { Lee's DCT-II fast algorithm, N=8; Dit10 { Decimation in Time Fast Algorithm; Arai8 { Arai's Fast
JPEG-DCT-II Algorithm; LMS algorithm for adaptive noise cancellation.

the schedule. On the other hand, the earliest step
in which an addition operation can be performed is
control step 3 and the addition operations are more
evenly distributed across the remaining control steps.
The darker squares in Fig. 4(b) denote the spare com-
putation capacity used for diagnosis.

- * +

1

12

1 1 2 3 4 5 6 7 8 1 2 3 4 5
CLK

2
3
4
5
6
7
8
9

10
11

- * +

1

12

1 1 2 3 4 5 6 7 8 1 2 3 4 5
CLK

2
3
4
5
6
7
8
9

10
11

(a) (b)

Figure 4: (a) Spare computation capacity of the LMS
algorithm and (b) its utilization for diagnosis.

In the case of Lee14, the area overhead reaches the
maximum value of 4.54%. In this case, the diagnostic
latency of most of the operations in the CDFG was
greater than two with an attendant increase in the
number of registers in the functional units as well as
the voter units which resulted in large area overheads.

6 Conclusions
In this paper we have presented a novel binding tech-
nique for the synthesis of low latency self-diagnosing
microarchitectures with negligible hardware overhead.
From the results, we conclude that all functional units
in a design can be diagnosed with near zero overheads
in terms of area and with absolutely no performance

degradation. We also conclude that the number of
nodes in the CDFG that can be diagnosed is a func-
tion of (i) the schedule of operations for the CDFG
(ii) the structure of the algorithm being implemented,
and (iii) the distribution of operations in the CDFG.

References
[1] C.H. Papadimitriou and K. Steiglitz, Combinatorial Opti-

mization, Prentice-Hall, 1982.

[2] A.T. Dahbura, K.K. Sabnani, and W.J. Hery, \Spare Ca-

pacity as a Means of Fault Detection and Diagnosis in

Multiprocessor Systems", IEEE Trans. Computers, pp.

881{891, June 1989.

[3] D.M. Blough and A. Nicolau, \Fault Tolerance in Super-

Scalar and VLIW Processors", IEEE Workshop on Fault-

Tolerant Parallel and Distributed Systems, pp. 193{200,

July 1992.

[4] M.C. McFarland, A.C. Parker, and R. Camposano, \The

High-Level Synthesis of Digital Systems", Proc. IEEE,

vol. 78, pp. 301{318, Feb. 1990.

[5] A. Chandrakasan et. al., \HYPER-LP: A System

for Power Minimization Using Architectural Transforma-

tions", IEEE ICCAD-92, pp. 300{303, 1992.

[6] I.G. Harris and A. Orailoglu, \Microarchitectural synthesis

of VLSI designs with high test concurrency", Proc. DAC,

1994.

[7] R. Karri and A. Orailoglu, \High-level synthesis of fault-

secure microarchitectures", DAC, pp. 429{433, 1993.

[8] S. Sokolov and R. Karri, \Allocation and Binding during

Self RecoveringMicroarchitectureSynthesis", ICCD, 1994.

[9] L. Guerra, M. Potkonjak, and J. Rabaey, \High Level Syn-

thesis Techniques for E�cient Built-In-Self-Repair", Intl.

Workshop on DFT in VLSI Syst., pp. 41{48. IEEE, 1993.

[10] B. Iyer, R. Karri, and I. Koren, \Phantom Redundancy:

A High Level Synthesis Technique for Manufacturability",

ICCAD, 1995.

[11] J. Rabaey, C. Chu, P. Hoang, and M. Potkonjak, \Fast

Prototyping of Data Path Intensve Architectures", IEEE

Design & Test, pp. 40{51, 1991.


	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index


