To appear in Proc. Design Automation Conf., 1996

A Probability-Based Approach to VLSI Circuit Partitioning *

Shantanu Dutt and Wenyong Deng
dutt@everest.ee.umn.edu and wydeng@lIsil.com
Department of Electrical Engineering, University of Minnesota, Minneapolis, MN 55455

Abstract Let a circuitC be represented by a hypergraph or netlis=
(V, E), whereV is the set of nodes that represent components of

Iterative-improvement 2-way min-cut partitioning is an important the circuit andE the set of hyperedges that represent the nets of the
phase in most circuit partitioning tools. Most iterative improvement circuit. Each hyperedge or net connects two or more nodes together.
techniques for circuit netlists like the Fidducia-Mattheyses (FM) We will represent a net; as a set of the nodes that it connects. We
method compute the gains of nodes using local netlist information denote the number of nodes¥nby n, the number of hyperedges
that is only concerned with the immediate improvement in the cut- in E by e, the average number of nets that a node is connected to
set. This can lead to misleading gain calculations. Krishnamurthy by p, the average number of nodes that a net connecjs dnyd the
suggested a lookahead (LA) gain calculation method to ameliorateaverage number of neighbors of a nodelby p(¢ — 1)—a nodeu
this situation; however, as we show, it leaves considerable roomis said to be aeighborof another node, if « andv are connected
for improvement. We present here a probabilistic gain computa- by a common net. A-way partitioningof G is a set of subsets
tion approach called PRORhat is capable of capturing the global p* — {V1,V,...,Vi} of V such that eaclv € V belongs to
and future implications of moving a node at the current time. Ex- exactly oneV;. Letr; andr, be two numbers between 0 and 1 such
perimental results show that for the same number of runs, PROPthatr; < 72,71 < 1/kandr; > 1/k. Then, ar(r1, r2)-balanced-
performs much better than FM (by about 30%) and LA (by about partition of G is defined as &-partition in whichry < |V;|/n < 12
27%), and is also better than many recent state-of-the-art clusteringfor each subset; of P*. Whenk = 2, r1 = 1 — r»; however,
based partitioners like EIG1, WINDOW, MELO and PARABOLI for ; > 3 there is no obvious relation betweenandr (except
by 15% to 57%. We also show that the space and time complexities,, < ;). We assume that all nodes have unit size; the balance
of PROP are very reasonable. Our empirical timing results reveal criterion is easily changed to reflect size constraints on the subsets

that it is appreciably faster than the above clustering-based tech~yhen this is not the case. Theitsetof a k-way partitioning is
niques, and only a little slower than FM and LA, both of which are defined as

very fast.
Ecut ={ne € E| Ju,v €Eng st.u € Vj,v € Vj,i # 5}

1. mUQdUC“QU o) .) In other words, the cutséi., is the set of nets that connect nodes
VLSI lefC\ljl'fSplafﬂFlomngdls aln_lnr:_portant problle_m in ddes@ngu' belonging to different subsets #*. Thecostor sizeof the cutset
tomation o chips and multichip systems. Itis used to reduce ¢ pk is defined agosi(P*) = S°* where B
VLSI chip area, reduce the component count and the number Ofwhere (ne) is the C(())Ztgr v3ei h%%:nlect(nt)t’hat de netngs ocrq;tt'he
interconnects in multiple-FPGA implementation of large circuits or criteriocn We are trving to o tirﬁize Whenntartitioninp a circuit. For
systems, facilitate efficient parallel simulation of circuits, facilitate example. if our galgis toeninimize la oput area o? the circﬁit on
design of tests for digital circuits and reduce timing delays. A a VLSpI c,hip thegnc(n) is the width szl On the other hand
i itini i) t t-)
commonly used approach to solving the partitioning problem is to if we are trying to minimize timing, then a critical net is assigned

initially obtain a min-cut 2-way partition of the circuit in which itis . L
partitioned into two subsets such that the number of nets connect-T12'€ Weight than a non-critical one to ensure that the length of
critical or near-critical nets are kept as short as possible [8]. The

ing nodes in different subsets is minimized. Furthermore, there is ~. blem i btain #* hat i s minimized
generally a balance criterion with respect to the number of nodes orMiN-cut problem s to obtain #* so that its cost is minimized.
components that can be placed in any one subset; for example, equaReCUrsive 2-way partitioning is an efficient and popular approach

number of nodes or components in both subsets, or no more thantﬁ obtgainingk-waydpr?rtitior]shfor:k > 2[3, 7,13, 14]. We will b
55% of the nodes in any subset. Each subset is further partitionedNUS P& concerned here with the 2-way min-cut partitioning prob-

into two smaller subsets with a minimum cut, and so forth until |€M- Since the problem is NP-complete, a number of approximate
we have recursively partitioned the circuit into either a prespecified SChémes have been proposed. These include iterative improvement
numberk of subsets (thus obtainingkaway partition), or until each methc_)ds [3, 6,9, 10], simulated ann_ealln_g [1.2] and clustering-based
subset has very few nodes, say, 2 or 3, in it. technlque_s [1,2,7,11, 13, 14]. Ir] _|terat|ve |m_pr0_/emen‘_[met_hods,
we start with a random 2-way partition of the circuit, and iteratively
*This work was supported partly by NSF grant MIP-9210049 improve it by either swapping pairs of nodes between the subsets,
1There is a paper in ICCAD-95 that presents a method also called PROP.or moving one node at a time between them so that the cutset size
Ours is a different method for a different purpose. We came up with the js reduced. Clustering-based methods try to find natural clusters in
name Paﬁplg‘gggggab'“sm Partitioner) much before we noticed the sametne circuit and then assign them to the two subsets thereby auto-
name in the ~9% paper. matically reducing the cutset size. Iterative improvement methods
are also sometimes used as either pre- or post-processing phases for
clustering as in [1, 14, 13]. Thus mincut partitioning using iterative
improvement techniques is a fundamental tool for obtaining good
VLSI cell placement.
A number of iterative min-cut methods for graph or hypergraph
partitioning have been previously proposed [3, 6, 9, 10]. Kernighan
and Lin proposed the well-known KL graph partitioning algorithm

33rd Design Automation Conference O
Permission to make digital/hard copy of all or part of thiswork for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercia advantage, the copyright notice, the t|t‘I§50f the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permssion and/or a fee.
AC 96 - 06/96 Las Vegas, NV, U J1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

using pair swaps to improve a random initial 2-way partition [9]. are moved and locked, all prefix suis = gain(u:) are
Schweikert and Kernighan extended this algorithm to netlists [3]. computed K k < n, and ap is determined for which the partial
Fidducia and Mattheyses gave a similar algorithm for netlists that sumS, is maximum. The set of nodes that are actually moved are
alternately moves single nodes between the two subsets of the parthen,{ul, ..., up}. This whole process is calledoass A number
tition as opposed to swapping node pairs at a time; this makes theof passes are made until the maximum partial sum is 0 or negative.
process more time efficient [6]. They also proposed efficient data The resulting cutset cost is a local minima with respect to the initial
structures to obtain fast partitions. However, these data structurespartitionsVi andV>. Empirical evidence shows that the number of
assume that nets have unit costs or weights. If this is not the casepasses required to achieve this local minima is two to four [9, 6].
as when a circuit is partitioned to reduce timing delays [8], then As mentioned abovegain(u) is the immediate decrease (or
the partitioning process is much slower. The node gain calculationsincrease if it is negative) in the cutset size that we will obtain on
in both the Schweikert-Kernighan (SK) and Fidducia-Mattheyses movingu to the other subset. There will very likely be a number of
(FM) algorithms use only local netlist information, and this quite nodes with the same or similar gains, and ideally a tie between them
often gives inaccurate indications of the potential improvement that should be broken by also considering ffeentialgain associated
can be obtained by moving a node. In [10], a lookahead (LA) gain with each node, viz., the decrease in the cutset that is not immediate
calculation was employed to capture more global information. It but has a good likelihood of occurring in the future. Krishnamurthy
gives better partitions than FM, but requires large amounts of mem- developed a scheme that estimates the potential gain by using a
ory, as will be discussed shortly, thus rendering it infeasible or very “lookahead” gain vector for each node [10]. Consider a gain vector
slow (due to frequent page swaps) for use on medium- to large-sizegain(u)[k] of nodeu with k elements, and assume that V1. The
circuits. ith element of the vector is defined as the number of nets connected
In this paper, we present a precise probabilistic gain calculation tow to whichi — 1 other nodes df; are connected minus the number
method PROP (for PRObabilistic Partitioner) that captures more of nets connected t@that have — 1 nodes o}, connected to them.
global and futuristic information than FM or LA. We show by a A gain vectora is said to be greater than a gain vedboif either
simple example that PROP selects better nodes to move than eithea[1] > b[1] or if there exists afi < k such thag[j] = b[] for all
FMorLA. We also run tests on circuit netlists fromthe ACM/SIGDA 1 < j < iandafi + 1] > b[i + 1]. A nodeu is said to have a larger
benchmark, which show that PROP performs an average of 30%gain than node, if gain(u) > gain(v). In practice, a lookahead
better than FM and 27% better than LA. Comparison of PROP to value ofk = 2 to 4 gives the best results, and consistently gives
some of the more recent clustering-based techniques like EIG1 [7], better results than FM. However, the memory requirement of the
WINDOW [1], PARABOLI [11] and MELO [2] show that PROP LA method is@(p’;;mm), wherep,q. is the maximum number of
also performs significantly better (by 15% to 57%) than them. pins on a node. Thus for circuits with medium to large connectivity
The rest of this paper is organized as follows. In Sec. 2. we dis- for some nodes, it can become infeasible or very slow to even use a
cuss two previous iterative improvement methods FM and LA, and |ookahead of 3.
thereby set the stage for discussing the PROP technique in Sec. 3., Figure 1 illustrates the differences between the probability-based
where we also derive its time and space complexities. Section 4.method, and the LA and FM algorithms in computing node gains.
presents the cutsets obtained by PROP on standard circuit netlistsFor simplicity, only nodes iff; are considered, and all nets have
These results are compared to those obtained using FM, LA andcost 1. FM will give nodes 1, 2 and 3 a gain of two, 10 and 11 a

WINDOW when the balance criterion is 50-50% & 2 = 0.5), gain of one, and all the other nodes shown a gain of -1. Since node
and with EIG1, MELO and PARABOLI when the balance criterion 1, 2, 3 have the same gain, FM can very well choose to move node
is 45-55%. Conclusions are in Sec. 5.. 1 first. However, it is easy to see from the figure that both nodes
2. Previous Iterative-Improvement Methods 2 and 3 are better candidates to move first, since moving either of

Here we briefly describe the iterative improvement process, the them will make it easier for either 8 and 9 or 10 and 11 to be moved
node-gain calculations used in the FM and LA algorithms, and their later and thus obtain a greater reduction in the cutset (i.e., nodes 2
shortcomings. and 3 have a better potential gain than node 1). The LA algorithm is

Assume that there ane = 2/ nodes in the hypergrapfi, and able to do better than FM in this regard. Assuming a lookahead of
that the initial partition is{V1, V2} with |Vi| = |V2| = I. When 3 (LA-3), the node gain vectors for nodes 1, 2 and 3 are as follows:
partitioning a hypergraph or netlist, the gain of a node is not as gain(1) = (2,0,0), gain(2) = (2,0,1) andgain(3) = (2,0, 1);
apparent as in the case of a graph. The FM netlist partitioner uses &see Fig. 1(a). Thus by this gain calculation, node 2 and 3 are
simple extension of the Kernighan-Lin node gain calculation (used correctly portrayed as being better than node 1. A little thought will
for graph partitioning) [6]. For each node let I(u) be the set of also convince us that node 3 is a better candidate to move than node
nets to whichu is connected that lientirely in »'s current subset, 2. This is because both nodes 10 and 11 that node 3 is connected to
and E(u) be the set of nets that belong to the cutset and for which Via netni, are themselves better candidates for moving than nodes

u is theonly node connected to themins partition. Then thgain 8 and 9 that are connected to node 2 viarmngt—moving nodes 10
of u is given by and 11 (after node 3 has been moved) reduces the cutset by three
nets (s, ng andni1), while moving nodes 8 and 9 (after node 2
gain(u) := Z c(ng) — Z c(ny) (1) has been moved), results in a cutset reduction by only oneipet

Thus, neither the FM nor the LA methods are able to completely
distinguish between nodes 1, 2 and 3 as shown by their gain values in
Fig. 1(a) (increasing the lookahead of LA beyond 3 does not change
this) in spite of the fact that intuitively the distinction between them
is obvious. The primary reason for this is that neither method is able
to accurately predict the future state of a net. The probability-based

with the maximum gain in either subset is determined. If the balance Method PROP is able to see the likelihood of future events much
criterion on the two subsets can be maintained after moving this node2€ttér, and is described next. .

from its current subset to the other one, it is chosen as themode 3. The Probabilistic-Gain Based Partitioner
Otherwise, the unlocked node with the maximum gain in the other ~ The probability-based method PROP determines the best node
subset is chosen as. Nodew; is then moved to the other subset to be moved at any point in the partitioning stage using much more
and “locked”, and the gains of all its neighbors are updated. The global and futuristic information than LA or FM. We associate with
node gairgain(u;) is inserted in an ordered s&t After all nodes each nodex a probabilityp(M (u)) (abbreviated ag(w)) of the

n; €EE(u) nj€l(u)

This gain definition of a node is thenmediate decrease in the
cutset cost ifitis moved to the other subset. The partltlonlng process.
proceeds by determining the next best negd® move in theth step

as follows. The “unlocked” node (initially all nodes are unlocked)

nll
2120, @,

Vs im Vi

Cutset Cutset Cutset
@ (b) ()

Figure 1:lllustration of the improvement of PROP over the LA and FM algorithms: (a) FM and LA-3 gains (the latter is only shown for nodes 1, 2 and 3). (b
& c) Probabilistic gains and node-move probabilities after (b) the first, and (c) the second iteration of node gain and probability calculation.

eventM (u) thatu will be actually movedo the other subset in the ﬁr(éffsd#]rg E%g%(?;bh to be partitioned */

current pass of the partitioning procésErom this probability, we Begin ‘ _ _ _
compute the probabilistic (or potential) gains (hereafter only termed 1. Either randomly or using some clustering techniques partifianto
gain) g(u)s of the nodes, which gives us an accurate indication of %’pgggﬂé%ﬁ‘mﬁ% ‘;‘t:‘é‘gs') (Sgé‘zﬂ ?tlétr’gt?oﬁn;‘%ese steps [
the k_)eneflt of moving them to the oth_e_r _subse'g. The _Obv'ous ques- until the gainG' 4, Obtained after a pass is less than or equal to 0.
tion is how to obtain the node probabilitipéu)s in the first place, 3. Foreach node, either letp(u) = pini¢, or determine the(u)s from
to which the answer is that they are computed from their respec- the nodes' deterministic gains.) _ _
tive (probabilistic) node gains—higher the gain, higher is a node's 4. Foreachnode, iterate through the gain calculation steps using Eqns. (3)

bability of being actually moved to the other side. However, we and (4), anch(x) calculation two times
probability 9 y . o ' 5. RepeatSteps 6-8intil all nodes are locked, or no more moves can be
need to start off this process of chicken-and-egg interdependency

6

] o | made to meet balance criterion.
between gains and probabilities somewhere, and we do so by first 6. Select the node with the best gain in either subset to be moved

determining a rough estimate of tb(?u)s in one of two ways. In to the other subset if theﬂl,r_z)-balance condition is not violated.
the first method, at the beginning of a pass, we “blindly” assign all (b)thervwse, move the best-gain nodérom that subset for which the

s alance condition is not violated.
nod_es the same probabllybym_t o_f, say, 0.8. In the second me_thod, 7. Note the immediate gain of the current move.
we first determine théeterministic gains gaifu)s of nodes as given 8. Lock all nodes moved in the current iteration, and update their un-
by Egn. 1 for the FM method. From these deterministic gains, we locked neighbors as described in Sec. 3.4..

determine the initial probabilities of the nodes (functions for deter- ~ 9. Calculate the prefix sums of the immediate gains of all moves made

mining probabilities from gains are discussed in Sec. 3.2.). This 10. ﬁ“gnme i]%miﬂngggn’”” of these sums.

method gives us reasonable first-cut probability estimates. If Gmae correspond to theth movethen Actually
Once we have this initial probability (by either of the above make only the firsp moves
two techniques), we compute the (probabilistic) gains of nodes as glnsté exit

explained shortly. From these gains, we recompute the node prob-

abilities, and from these we obtain more accurate node gains. ThisEnd.

cycle continues for a few iterations (we have used 2 iterations in our

implementations) and we obtain more and more refined node prob-

abilities and gains. After this initial process is completed, we move

nodes with the best gains between the two subsets as in other iterimmediate-gain based iterative improvement methods like FM and

ative improvement methods. After each move, we update the nodeLA. The partitioning algorithm is described formally in Fig. 2. We

gains and probabilities as explained in Sec. 3.4.. Also, with each state the following theoretical result proved in [5].

move we note themmediate gairachieved, which is the number of

nets that are removed from the cutset minus the number of nets thaTheorem 1 Given any set of node probabilities, the sample space

are introduced in it on that move. At the end of the current pass, we of events representing subsets of nodes that are actually moved in

actually make moves to that point which gives the maximum prefix a pass of an iterative-improvement process is a valid probability

immediate gain, as in FM and LA. Note that the probabilistic gain space, i.e., for any eveit in this space (1)P[E] > 0; (2) P[E U

is useful in determining which nodes to move that will ultimately F] = P[E] + P[F]if EN F = (; and (3) P[Q] = 1, whereQ is

yield the most improvement in the cutset, though the immediate the set of all possible events.

gain of that move might be small or even negative; due to moving

such a node at the present time, we expect that a future move will3_1 . Calculating Probabilistic Node Gains

have a large immediate gain. tis this determination of probabilistic - \ye oy describe how probabilistic node gains are calculated

gains of nodes, initially, and after every move, that is the key t0 o0 hode probabilities. For each node, we calculate its gains

obtaining much better performance than previous deterministic- or ,resnonding to each net that it is connected to its total gain is the
2Note that a node iactually movedrom its original subset to the other sum of thesg net.gams' we flrSt dEflne-the foIIowmg ppncepts fora

onein an iterative-improvemgnt scheme like Kl_g, FM and PRORP, if its “vir- .”et- Anets; is Salq to béockedm Vi (Vo) if any node in .'t is locked

tual” move lies within the range of the maximum prefix gain that is computed 1N V1 (V2). A net islocked in the cutsetf it is locked in bothV;

after all nodes are (virtually) moved. Nodes beyond this range are not actu-and V. For node-g_ain calc_ulat_ion, there are two cases depending
ally moved and revert back to their original subset. on whether the net in question is currently in the cutset or not.

Figure 2: The probabilistic-gain based partitioning algorithm PROP.

3.1..1 Netin Cutset

Letu € V1 be connected to net;, which belongs to the cutset.
We denote the set; NV, by n;., r = 1,2. Letn; % (n?~Y) be
the event in which net; is removed from the cutset by moving all
nodes inn; 1 (ni2) to V (V). We define

p(ni~?|lu) = (Probability ofn; being removed from the cutset by

moving all nodes im; 1 to V> given thatu has been moved

p(n27*|u) = (Probability ofn; being removed from the cutset by
moving all nodes im; > to V1 given thatu is not moved
Then the gairy,, (u) of u corresponding to net; is defined as

gni () = e(n) [p(ni ™ ?ju) = p(ni " |u)] @)

3.3. An Example

To illustrate the improvement offered by the probability-based
node gain calculation over deterministicones asin FMand LA, letus
go back to the example of Fig. 1. In this example, we use the method
of obtaining the initial deterministic gains of nodes (Eqn. 1) and
their probabilities (using some monotonically increasing function
f of the gains). Figure 1b shows the initial gains and probabilities
g(u), p(u) for each node. We assume for simplicity of exposition
that for each nety to m11 in the cutset, theip(n?~?') terms are
equal; thus the difference in the node gaj(s)s will only depend
ontheirp(n}~?|u) terms (see Eqns. 3and 4). Inthe second iteration,
the node gains are calculated as follows using Eqn. 3 and 4.
%(()1) = gn,(1) = 1,9s,(1) = (0.2)* = 0.0016, thusg(1) =

The rationale for the negative term in the above expression is thatg, .(2) = g,,,(2) = 1, gn,,(2) = (0.2)> = 0.04, thusg(2) = 2.04;

movingu precludes the evemZ~* from occurring, and thus elim-
inates the possibility of removing; from the cutset in that man-
ner. Using conditional probabilities and the fact that most nets
in a VLSI circuit have few connections (an avera?e of about 4
over our suite of benchmark circuits), we obtaifn; *?|u) ~

L. cnn o up P(ua) pE 7 u) & T1, .., , p(uy), @nd thus
arrive at the following approximation @f,, (u); see [5] for details.

I rpe)- [) @

ug €(ni1—{u}) uy€nj 2

3.1..2 Net Notin Cutset

We now consider the gain contributeditdy a netrn; that is not
currently in the cutset and is not locked in the subset,gayhat it
lies in. Then, it will be introduced into the cutset wheis moved
from V1 to V2. Thus intuitively,g,, (v) should be negative, and is
given by

~
~

gni (u) = c(ni)|

gn; (u) = —c(n;)(Probability thatn; remains in the cutset after
is moved
= —c(n;)(Probability that not all nodes in; N V1 — {u}
will be moved givenu has been moved
= —c(ni) (L = p(ni~*u)) = —c(ni) (1 = p(nia|u))
Again proceeding as in the net-in-cutset case, we obtain

gni(w) = —cn)1= [p(u))

uzg€ni1—{u}

4)

The total gain of node is then g(u) = Zueni Gn; ().
3.2. Calculating Node Probabilities

After the gains of every node has been computed once by either

using a first approximation probability pf,,;; for each node, or by
first computing their deterministic gains (Eqn. 1), their probabilities
are computed using a suitable monotonically increasing function
p(u) = f(g(u)) of their gains.

gns(3) = g (3) = 1, gy, = (0.8)% = 0.64, thusy(3) = 2.64.
Similarly, we obtaing(10) = g(11) = 1.8. To obtain the gains of
nodes 4 to 9, we assume that netsto ni7 that are not in the cutset
are each connected to one other node (not shown) of probability 0.5.
We then gely(8) = g(9) = —0.3 and the gains of nodes 4 to 7 as
—0.49. These gain values and their corresponding probabilities are
shown in Fig. 1c. We now clearly see that node 3 has the highest gain
and is thus the best node to move as we had concluded intuitively
from Fig. 1! Note that the(u)s of nodes 1, 2 and 3 are all 1 (e.g.,
wheng,, = 2; see Sec. 3.2.); however, node selection is based on
their gains.
3.4. Node Updates

When netn; is locked inV%, then as seen earlier in the derivation
of Egn. 3,p(ni=?) [1.,en, , P(ue), since this probability is
implicitly conditioned on the previous move(s) frdto V- of the
node(s) currently locked in; 2. Also in this casep(n?~') = 0,
sincep(u) = O for a locked node:.. Hence it follows that when;
is locked inV5, then for an unlocked nodg, € n;1, p(ni~?|uy) =
p(ni~?)/p(u,), and thus

~
~

1—2
s

c(ni) - p(ni %) /p(uz) (5)

Also, foru, an unlocked node in; 2, wheren; is locked inV2, we
obtain using Eqgn. 3 and the fact thgn? ') = 0,

gni (uz) = c(ni) - p(ni™ "|uz)

1—-2

gni (uy) = —c(ni) - p(ni i)

|u§) = —c(nq) - p(n;

(6)

Similar expressions apply when is locked inV;. These equations
are very useful for efficient node updating after a move, as discussed
next.

After moving a nodeu, say, fromVi to V2, we first update,
p(ni~?) andp(n?~?) of every netn; thatw is connected to. We
follow this by updating the gains of all nodes connected to each
suchn; (i.e., the neighbors of;) according to Eqn. 5 or 6. We
then sefp(u) = 0, to represent the fact thatis locked. Finally,

_ There are two caveats with probability calculation. One is that, we update the gains of a few, say, five, of the top ranked nodes in
since there are no certainties in node moves, it seems reasonable tgach subset using Eqn. 3 or 4; this is needed since some of these top

establish a maximum probabilify,... < 1 and a minimum prob-
ability pmin, > 0 within which interval all node probabilities fie

nodes can be neighbors of the neighbors,oivhose probabilities
have been updated. Note that potentially we could carry on the

The second caveat is to establish upper and lower gain thresholdspdating process for the neighbors of the neighbors tieir nets,

gup andg;,, such that all nodes with gains greater than or equal to
gup Will get probabilityp,.., while those with gains lower thay,
will get probability p....,.. The rationale for establishing thresholds

and so forth until all nodes and nets have been updated. However,
the benefit of doing such a complete updating is minimal at best and
it is very time consuming. Since, it is really the top few nodes that

is that nodes with high gains, say, greater than 2, are going to beare in contention for the next move, the above update process is all
ultimately moved to the other subset no matter what, and those withthat is really necessary.

very low gains, say less than -1, will most likely not be actually
moved in the current pass. One obvious example of such func-
tions is a linear probability function betweeiu) andg(u) when

gio < 9(1) < Gup-

SActually, it is not unreasonable to hayg,q. = 1, butp,,;,, definitely
needs to be greater than 0.

3.5. Time and Space Complexities

Recall thatn is the number of nodeg, the number of netgy
the average number of pins per node, i.e., the number of nets it
is connected tog the average number of pins on a net, i.e., the
number of nodes a net is connecteddes p(q — 1) is the average
number of neighbors per node. We define= pn = ¢e as the total

([Test Case] # Nodes] # Nets] # Pins || Test Case] # Nodes] # Nets[# Pins || 0.95, pmin, = 0.4, the linear probability functiong,, = 1, and

balu 801 | 735 | 2697 19ks 2844 | 3282 | 10547 gio = —1. Table 2 compares cutset sizes for the 50-50% balance
bm1 882 | 903 | 2910 || biomed | 6514 | 5742 | 21040 criterion produced by FM20, FM40, FM100, (these are FM run on

Si 3803134 3%)229 ff;fg 'ndlt‘g"yz 1126%337 113742109 ‘g‘g 20, 40 and 100 initial random partitions, respectively), WINDOW
s13207 | 8772 | 8651 | 20606 3 1607 | 1618 | 5807 [1] (which uses FM20 as a final phase) and PROP using 20 runs.
s15850 | 10470 | 10383| 24712 t4 1515 | 1658 | 5975 We see that PROP cutsets are on the average 30% better than FM20
$9234 | 5866 | 5844 | 14065 5 2595 | 2750 | 10076 and 22% better than FM100. These percentage improvements are
struct | 1952 | 1920 | 5471)] 1752 | 1541 | 6638 calculated as (cutset improvement/larger cut>s&f0. Note also

that as we increase the number of runs for FM, we start getting
diminishing returns; thus we probably cannot do much better if we
increase the number of FM runs beyond 100. PROP is also 27%

Table 1:Benchmark circuit characteristics.

” Test ” Cut Size [Improvement%] better than LA-2 (20 runs), 16.2% better than LA-2 (40 runs), and
Case || MELO [Paraboli] EIGI PROP]|| MELO [Parabolf] EIGT || 17% better than LA-3 (20 runs). It also performs 26% better than
balu 28 41 | 110] 27 36 | 341 | 755 WINDOW. In Table 3, we compare the performance of 20 runs of
bm1 48 75 | 50 || -4.0 33.3 PROP to some recent state-of-the-art clustering-based methods, viz.,
I EIG1 [7], PARABOLI [11] and MELO [2] for the 45-55% balance
s13207 [104 o1 110 75 1 279 | 176 318 criterion. PROP performs better than all of these methods, by 57%
s15850 || 52 91 | 125| 65 || -20.0 | 286 | 48.0 over EIG1, by 20% over MELO and by 15% over PARABOLI. Thus
s9234 79 74 | 166 | 41 || 481 | 446 [753 used as a stand-alone partitioner, PROP gives better results than the
struct || 38 40 | 49 | 33 || 182 | 175 | 327 best recent clustering-based partitioners.
ke [119 179 | 105 | 11.8 413 FM has a complexity d®(nd) if all net costs are assumedtobe 1,
jomed || 115 | 135 | 286 | 83 || 27.8 | 385 | 710 h - : h > .
dusty2]| 319 | 193 | 525 | 220 || 310 | 123 | 561 asis the case in ourimplementation, and it is thus very fast. PROP is
© 106 196 | 90 15.1 54.1 about 4.6 times slower than FM per run. If the assumption of unit net
3 60 85 | 59 1.7 30.6 cost cannot be made, as in the case when circuits are partitioned to
:;‘v 16012 ig; % é‘z‘-g ;g-g minimize timing [8], then FM, like PROP, willneed a binary tree data
= 5 o5 =3 -5 structure, and its time complexity will b®(nd logn). However,

PROP will have the same complexit®(ndlogn)) under non-
uniform net costs. In order to demonstrate how PROP compares
to both versions of FM, i.e., with bucket (FM-bucket) and tree
Table 3: Comparisons of cutset sizes on ACM/SIGDA benchmark circuits (FM-tree) data structures, we have implemented both of these and
for the 45-55% balance criterion produced by PROP, MELO [2], PARABOLI tapulated times per run for different SIGDA benchmark circuits in
[11]and EIG1 [7]; the results of PARABOLI and EIG1 are also givenin [2]. Taple 4. This table also gives the run times of these circuits for
all the other algorithms compared here. Note that the actual times
number of pins in the circuit. Even if the average and maximum for FM100, LA-2, LA-3 and PROP (these are the 45-55% case run
values of pins per node, pins per net and neighbors per node ardimes for PROP; those for the 50-50% case are a little lower) are
very different, the time and space complexities determined below obtained by multiplying the per run times by 100, 40, 20 and 20,
will hold, since these costs are amortized over all nodes and netsrespectively. This is what we have done in the last row of Table 4
with varying number of pins. The time complexities of the different in which the total times over all the circuits are given. Note that
stages of PROP are as follows (details are in [5]. (1) We have theit is more appropriate to compare PROP with 20 runs to FM100
standard adjacency list for nodes and nets, and also store nodesand LA-2 with 40 runs instead of to FM20 and LA-2 with 20 runs,
according to their gains, in a balanced binary AVL tree. This takes respectively, since, PROP's cutset improvement margins are lesser
O©(m) time. It also follows from this that the space complexity is compared to the former two methods than to the latter two. From
o(m). (2) Computingp(nf—’l) andp(n}—’z) over all netsn; as Table 4, itis easy to see that PROP is among the fastest partitioners.
specified in Sec. 3.4. také®(m) time, as does the computation Itis very comparable to FM100-bucket and LA-2 (though it obtains
of gn, (u) over all nodes and nets. Computing node probabilities 22.3% and 16.2% better cutsets, respectively, than these methods),
takesO(n) time. (3) It takesd(logn) time to find the best node to ~ and slightly slower (by 37%) than EIG1—but then it obtains 57%
move using an AVL data structure; thus total tim®is: logn). (4) better cutsets than EIG1. Assuming that the Sun Sparc 5, Sparc 10
The number of entities (nodes and nets) updateg arets of the and the DEC 3000 are comparable in speed , PROP is 3.15 times
moved nodex, d neighbors ofu, ©(p) nets of the constant number faster than FM100-tree, 3.9 times faster then PARABOLI, about 2.2
of top nodes that are also updated. We see from Sec. 3.4. that eackimes faster than LA-3 and MELO, and at least 1.5 times faster than
update step for nets and neighbors connected takes constant ~ WINDOW.
time. In the AVL tree data structure, it tak€glogn) time to delete 5. Conclusions

[_Total][1554 | 864 | 2904] 1245] 19.9 | 160 [57.1]

and reinsert a node; thus it tak€d logn) time to reinsert all We have presented a probabilistic-gain based approach PROP
updated nodes per move. Hence the updating process takes a totg), jterative-improvement type min-cut partitioning. The method-
of ©(nd logn) time over one pass. , ology is based on probability and conditional probability theory.
From the above discussion, the time complexity of PROP for an peqits run on a suite of ACM/SIGDA benchmarks show that we
entire pass i©(ndlogn) = ©(mglogn). For VLSI circuits,q is outperform other iterative-improvement methods like FM and LA
a small constant like 4 and thus the time complexit@isn logn). by wide margins, and that we also outperform recent clustering-
Finally, as mentioned above PROP's space complexéis). based partitioners by significant margins. The run times of PROP
4. Experimental Results also compare very favorably with those of the iterative-improvement

Tables 2 and 3 give cutset results for the 50-50% and 45-55% balanceand clustering techniques; it is comparable to those of FM and LA,
criterion, respectively, of many ACM/SIGDA benchmark circuits and much faster than those of most clustering-based methods. It
whose number of nodes, nets and pins are given in Table 1. Theseghus seems that PROP can do very well as a stand-alone patrtitioner,
are the same circuits used in the MELO technique [2] to compare and we believe that in conjunction with a clustering initial phase
their results to those of PARABOLI and EIG1. For both the 50-50% it will yield a high-quality partitioning tool. The probabilistic-gain
and 45-55% balance criterion, PROP uses the following parameters:approach opens up a humber of exciting possibilities, for example,
single moves, AVL tree data structurgin,;: = 0.95, pmae = k-way partitioning, multiple-FPGA partitioning, and partitioning

H Test ‘| Cut Size i Improvement % 1l
Case | FM100 | FM40 [FM20 [LA-2 [LA-3 [WINDOW | PROP [| FMI00 [FM40 [FM20 | LA-2 [LA-3 [WINDOW |
balu 32 32 32 31 31 32 0.0 0.0 0.0 -3.1 -3.1
bm1 55 57 65 58 55 70 54 1.8 53 16.9 6.9 1.8 229
pl 57 57 59 59 55 60 59 -3.4 -3.4 0.0 0.0 -6.8 1.7
p2 236 238 245 215 183 258 154 34.7 35.3 37.1 28.4 15.8 40.3
s13207 92 101 101 81 89 83 9.8 17.8 17.8 -2.4 6.7
s15850 112 120 120 122 75 73 34.8 39.2 39.2 40.2 2.7
s9234 53 59 59 57 58 55 -3.6 6.8 6.8 35 5.2
struct 45 47 52 45 45 38 15.6 19.1 26.9 15.6 15.6
19ks 142 150 150 141 153 136 120 15.5 20.0 20.0 14.9 21.6 11.8
biomed 83 83 83 122 91 164 88 5.7 5.7 5.7 27.9 3.3 46.3
industry2 428 501 501 492 378 392 254 40.7 49.3 49.3 48.4 32.8 35.2
t2 115 115 115 124 105 105 91 20.9 20.9 20.9 26.6 13.3 13.3
t3 72 72 72 78 90 67 58 19.4 19.4 19.4 25.6 35.6 13.4
t4 86 88 97 94 88 61 58 32.6 34.1 40.2 38.3 34.1 4.9
t5 97 97 149 109 96 101 82 15.5 15.5 45.0 24.8 14.6 18.8
t6 71 71 71 70 63 70 81 -12.3 -12.3 -12.3 -13.6 | -22.2 -13.6
[TotalCuts]| 1776 | 1888 | 1071 | 1898 | 1666 | 1484 | 1380 || 223 | 269 | 30.0 | 273 | 166 | 259 |

Table 2: Comparisons of cutset sizes on ACM/SIGDA benchmark circuits for the 50-50% balance criterion produced by three versions of FM (with 20, 40
and 100 runs), LA-2 and LA-3 (each with 20 runs), PROP (with 20 runs) and WINDOW [1] in which clustering is followed by 20 runs of FM. On executing
LA-2 with 40 runs (this makes the times for LA-2 and PROP almost equal—see Table 4) instead of 20, a total cutset of 1647 is obtained,; this represents a cutset

improvement of 16.2% for PROP.

Test Sun Sparc-5 DEC 3000 Sun Sparc-10
Model 500 AXP
Case FM-bucket FM-tree LA-2 LA-3 PROP EIG1 Paraboli || MELO [WINDOW
x100 | x100 | x40 | x20 x20
balu 0.21 0.42 0.42 0.94 0.78 6.2 15.5 7
bm1 0.24 0.58 0.56 1.12 1.02 4
pl 0.24 0.57 0.51 1.10 0.96 3.1 18.3 8
p2 1.28 3.53 2.87 4.95 6.94 17.6 137.4 89 > 115.7
s13207 3.39 10.23 7.14 10.36 8.87 43.5 2060.4 710
s15850 3.39 10.60 8.55 13.09 14.55 78.4 2730.9 1197
s9234 2.22 6.64 4.71 7.04 6.93 24.2 490.3 516
struct 0.46 1.15 1.55 2.14 2.08 6.9 35.2 38
19ks 1.15 3.12 2.66 5.27 4.33 79
biomed 2.96 7.24 5.55 8.74 12.49 521.2 710.9 496 > 421
industry2 7.27 24.18 17.56 37.05 43.34 706.6 1367.3 1855 > 1385
t2 0.46 1.18 1.45 40.99 3.20 29
t3 0.56 1.33 1.14 23.32 2.56 27
t4 0.41 1.02 1.22 39.57 2.46 24
t5 0.81 2.13 2.27 69.84 4.86 67
t6 0.50 1.09 0.87 1.33 3.77 31
Total 2555 7501 2361.2 5331 2383/1939/1255 1408 7567 5177 > 1922
” ” (all ckts.,x100) | (all, x100) | (all, x40) | (all, x20) (all/9/3, x 20) ” (9 ckts.) | (9ckts.) H (all) | (3 ckts.) H

Table 4:Comparisons of CPU times in secs per run, and total times over all circuits and all runs made for various algorithms.

for timing minimization, that we will explore in the future.

References

[1] C.J.Alpert and A.B. Kahng, “A general framework for vertex orderings,
with applications to circuit clusteringsProc. IEEE/ACM International
Conference on CAINov. 1994, pp. 63-67.

[2] C.J.Alpertand S-Z Yao, “Spectral Partitioning: The more eigenvectors

the better” Proc. Design Automation Confl995, pp. 195-200.

[3] D. G. Schweikert and B. W. Kernighan, “A Proper Model for the Par-
titioning of Electrical Circuits”Proc. 9th Design automation workshop
1972, pp. 57-62.

[4] S. Dutt, “New faster Kernighan-Lin-type graph-partitioning algo-
rithms”, Proc. IEEE/ACM International Conference on CAflov. 1993.

[5] S. Dutt and W. Deng, “A Probability-Based Approach to VLSI Cir-
cuit Partitioning”, Tech. Report, EE Dept., Univ. of Minnesota, 1996—
available at ftp site ftp-mount.ee.umn.edu in file /pub/faculty/dutt/visi-
cad/papers/dac96-ext.ps.

[6] C.M. Fidducia and R.M. Mattheyses, “A linear-time heuristic for im-
proving network partitions”Proc. Nineteenth Design Automation Conf.
1982, pp. 175-181.

[7] L.Hagen and A. Kahng, “Fast spectral methods for ratio cut partitioning
and clustering”Proc. Int'l. Conf. Computer-Aided Desigt991, pp. 10-
13.

[8] M.A.B.Jackson, A. Srinivasan and E.S. Kuh, “A fast algorithm for per-
formance driven placementRroc. IEEE/ACM International Conference
on CAD 1990, pp. 328-331.

[9] B.W. Kernighan and S. Lin, “An efficient heuristic procedure for par-
titioning graphs”,Bell System Tech. Journavol. 49, Feb. 1970, pp.
291-307.

[10] B. Krishnamurthy, “An improved min-cut algorithm for partitioning
VLSI networks”, IEEE Trans. on Computvol. C-33, May 1984, pp.
438-446.

[11] B.M. Riess, K. Doll and F.M. Johannes, “Partitioning very large cir-
cuits using analytical placement techniqueRtfpc. ACM/IEEE Design
Automation Conf.1994, pp. 646-651.

[12] C. SechenYLSI Placement and Global Routing Using Simulated An-
nealing Kluwer, B.V., Deventer, The Netherlands.

[13] Y.C. Wei and C.K. Cheng, “Towards efficient hierarchical designs by
ratio cut partitioning”,Proc. Int'l. Conf. Computer-Aided Desigh989,
pp. 298-301.

[14] Y.C. Wei and C.K. Cheng, “A two-level two-way partitioning algo-
rithm”, Proc. Int'l. Conf. Computer-Aided Desigh990, pp. 516-519.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

