
33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

To appear in Proc. Design Automation Conf., 1996

A Probability-Based Approach to VLSI Circuit Partitioning �

Shantanu Dutt and Wenyong Deng
dutt@everest.ee.umn.edu and wydeng@lsil.com

Department of Electrical Engineering, University of Minnesota, Minneapolis, MN 55455

Abstract

Iterative-improvement 2-way min-cut partitioning is an important
phase in most circuit partitioning tools. Most iterative improvement
techniques for circuit netlists like the Fidducia-Mattheyses (FM)
method compute the gains of nodes using local netlist information
that is only concerned with the immediate improvement in the cut-
set. This can lead to misleading gain calculations. Krishnamurthy
suggested a lookahead (LA) gain calculation method to ameliorate
this situation; however, as we show, it leaves considerable room
for improvement. We present here a probabilistic gain computa-
tion approach called PROP1 that is capable of capturing the global
and future implications of moving a node at the current time. Ex-
perimental results show that for the same number of runs, PROP
performs much better than FM (by about 30%) and LA (by about
27%), and is also better than many recent state-of-the-art clustering-
based partitioners like EIG1, WINDOW, MELO and PARABOLI
by 15% to 57%. We also show that the space and time complexities
of PROP are very reasonable. Our empirical timing results reveal
that it is appreciably faster than the above clustering-based tech-
niques, and only a little slower than FM and LA, both of which are
very fast.

1. Introduction
VLSI circuit partitioning is an important problem in design au-

tomation of VLSI chips and multichip systems. It is used to reduce
VLSI chip area, reduce the component count and the number of
interconnects in multiple-FPGA implementation of large circuits or
systems, facilitate efficient parallel simulation of circuits, facilitate
design of tests for digital circuits and reduce timing delays. A
commonly used approach to solving the partitioning problem is to
initially obtain a min-cut 2-way partition of the circuit in which it is
partitioned into two subsets such that the number of nets connect-
ing nodes in different subsets is minimized. Furthermore, there is
generally a balance criterion with respect to the number of nodes or
components that can be placed in any one subset; for example, equal
number of nodes or components in both subsets, or no more than
55% of the nodes in any subset. Each subset is further partitioned
into two smaller subsets with a minimum cut, and so forth until
we have recursively partitioned the circuit into either a prespecified
numberk of subsets (thus obtaining ak-way partition), or until each
subset has very few nodes, say, 2 or 3, in it.

�This work was supported partly by NSF grant MIP-9210049
1There is a paper in ICCAD-95 that presents a method also called PROP.

Ours is a different method for a different purpose. We came up with the
name PROP (for PRObabilistic Partitioner) much before we noticed the same
name in the ICCAD-95 paper.

Let a circuitC be represented by a hypergraph or netlistG =

(V;E), whereV is the set of nodes that represent components of
the circuit andE the set of hyperedges that represent the nets of the
circuit. Each hyperedge or net connects two or more nodes together.
We will represent a netni as a set of the nodes that it connects. We
denote the number of nodes inV by n, the number of hyperedges
in E by e, the average number of nets that a node is connected to
by p, the average number of nodes that a net connects byq, and the
average number of neighbors of a node byd = p(q� 1)—a nodeu
is said to be aneighborof another nodev, if u andv are connected
by a common net. Ak-way partitioningof G is a set of subsets
P
k

= fV1; V2; : : : ; Vkg of V such that eachv 2 V belongs to
exactly oneVi. Letr1 andr2 be two numbers between 0 and 1 such
thatr1 � r2, r1 � 1=k andr2 � 1=k. Then, an(r1; r2)-balancedk-
partition of G is defined as ak-partition in whichr1 � jVij=n � r2

for each subsetVi of P k. Whenk = 2, r1 = 1 � r2; however,
for k � 3 there is no obvious relation betweenr1 andr2 (except
r1 � r2). We assume that all nodes have unit size; the balance
criterion is easily changed to reflect size constraints on the subsets
when this is not the case. Thecutsetof a k-way partitioning is
defined as

Ecut = fnt 2 E j 9u; v 2 nt s:t: u 2 Vi; v 2 Vj ; i 6= jg

In other words, the cutsetEcut is the set of nets that connect nodes
belonging to different subsets ofP k. Thecostor sizeof the cutset
of P k is defined ascost(P k

) =
P

k

i=1 c(nt);wherent 2 Ecut,
wherec(nt) is the cost or weight of net nt that depends on the
criterion we are trying to optimize when partitioning a circuit. For
example, if our goal is to minimize layout area of the circuit on
a VLSI chip, thenc(nt) is the width ofnt. On the other hand,
if we are trying to minimize timing, then a critical net is assigned
more weight than a non-critical one to ensure that the length of
critical or near-critical nets are kept as short as possible [8]. The
min-cut problem is to obtain aP k so that its cost is minimized.
Recursive 2-way partitioning is an efficient and popular approach
to obtainingk-way partitions fork > 2 [3, 7, 13, 14]. We will
thus be concerned here with the 2-way min-cut partitioning prob-
lem. Since the problem is NP-complete, a number of approximate
schemes have been proposed. These include iterative improvement
methods [3, 6, 9, 10], simulated annealing [12] and clustering-based
techniques [1, 2, 7, 11, 13, 14]. In iterative improvement methods,
we start with a random 2-way partition of the circuit, and iteratively
improve it by either swapping pairs of nodes between the subsets,
or moving one node at a time between them so that the cutset size
is reduced. Clustering-based methods try to find natural clusters in
the circuit and then assign them to the two subsets thereby auto-
matically reducing the cutset size. Iterative improvement methods
are also sometimes used as either pre- or post-processing phases for
clustering as in [1, 14, 13]. Thus mincut partitioning using iterative
improvement techniques is a fundamental tool for obtaining good
VLSI cell placement.

A number of iterative min-cut methods for graph or hypergraph
partitioning have been previously proposed [3, 6, 9, 10]. Kernighan
and Lin proposed the well-known KL graph partitioning algorithm

1

using pair swaps to improve a random initial 2-way partition [9].
Schweikert and Kernighan extended this algorithm to netlists [3].
Fidducia and Mattheyses gave a similar algorithm for netlists that
alternately moves single nodes between the two subsets of the par-
tition as opposed to swapping node pairs at a time; this makes the
process more time efficient [6]. They also proposed efficient data
structures to obtain fast partitions. However, these data structures
assume that nets have unit costs or weights. If this is not the case,
as when a circuit is partitioned to reduce timing delays [8], then
the partitioning process is much slower. The node gain calculations
in both the Schweikert-Kernighan (SK) and Fidducia-Mattheyses
(FM) algorithms use only local netlist information, and this quite
often gives inaccurate indications of the potential improvement that
can be obtained by moving a node. In [10], a lookahead (LA) gain
calculation was employed to capture more global information. It
gives better partitions than FM, but requires large amounts of mem-
ory, as will be discussed shortly, thus rendering it infeasible or very
slow (due to frequent page swaps) for use on medium- to large-size
circuits.

In this paper, we present a precise probabilistic gain calculation
method PROP (for PRObabilistic Partitioner) that captures more
global and futuristic information than FM or LA. We show by a
simple example that PROP selects better nodes to move than either
FMor LA. We also run tests on circuit netlists from the ACM/SIGDA
benchmark, which show that PROP performs an average of 30%
better than FM and 27% better than LA. Comparison of PROP to
some of the more recent clustering-based techniques like EIG1 [7],
WINDOW [1], PARABOLI [11] and MELO [2] show that PROP
also performs significantly better (by 15% to 57%) than them.

The rest of this paper is organized as follows. In Sec. 2. we dis-
cuss two previous iterative improvement methods FM and LA, and
thereby set the stage for discussing the PROP technique in Sec. 3.,
where we also derive its time and space complexities. Section 4.
presents the cutsets obtained by PROP on standard circuit netlists.
These results are compared to those obtained using FM, LA and
WINDOW when the balance criterion is 50-50% (r1 = r2 = 0:5),
and with EIG1, MELO and PARABOLI when the balance criterion
is 45-55%. Conclusions are in Sec. 5..
2. Previous Iterative-Improvement Methods

Here we briefly describe the iterative improvement process, the
node-gain calculations used in the FM and LA algorithms, and their
shortcomings.

Assume that there aren = 2l nodes in the hypergraphG, and
that the initial partition isfV1; V2g with jV1j = jV2j = l. When
partitioning a hypergraph or netlist, the gain of a node is not as
apparent as in the case of a graph. The FM netlist partitioner uses a
simple extension of the Kernighan-Lin node gain calculation (used
for graph partitioning) [6]. For each nodeu, let I(u) be the set of
nets to whichu is connected that lieentirely in u's current subset,
andE(u) be the set of nets that belong to the cutset and for which
u is theonly node connected to them inu's partition. Then thegain
of u is given by

gain(u) :=
X

ni2E(u)

c(ni)�
X

nj2I(u)

c(nj) (1)

This gain definition of a node is theimmediate decrease in the
cutset cost if it is moved to the other subset. The partitioning process
proceeds by determining the next best nodeui to move in theith step
as follows. The “unlocked” node (initially all nodes are unlocked)
with the maximum gain in either subset is determined. If the balance
criterion on the two subsets can be maintained after moving this node
from its current subset to the other one, it is chosen as the nodeui.
Otherwise, the unlocked node with the maximum gain in the other
subset is chosen asui. Nodeui is then moved to the other subset
and “locked”, and the gains of all its neighbors are updated. The
node gaingain(ui) is inserted in an ordered setS. After all nodes

are moved and locked, all prefix sumsSk =
P

k

t=1 gain(ut) are
computed, 1� k � n, and ap is determined for which the partial
sumSp is maximum. The set of nodes that are actually moved are
then,fu1; : : : ; upg. This whole process is called apass. A number
of passes are made until the maximum partial sum is 0 or negative.
The resulting cutset cost is a local minima with respect to the initial
partitionsV1 andV2. Empirical evidence shows that the number of
passes required to achieve this local minima is two to four [9, 6].

As mentioned above,gain(u) is the immediate decrease (or
increase if it is negative) in the cutset size that we will obtain on
movingu to the other subset. There will very likely be a number of
nodes with the same or similar gains, and ideally a tie between them
should be broken by also considering thepotentialgain associated
with each node, viz., the decrease in the cutset that is not immediate
but has a good likelihood of occurring in the future. Krishnamurthy
developed a scheme that estimates the potential gain by using a
“lookahead” gain vector for each node [10]. Consider a gain vector
gain(u)[k] of nodeuwith k elements, and assume thatu 2 V1. The
ith element of the vector is defined as the number of nets connected
tou to whichi�1 other nodes ofV1 are connected minus the number
of nets connected tou that havei�1 nodes ofV2 connected to them.
A gain vectora is said to be greater than a gain vectorb if either
a[1] > b[1] or if there exists ani < k such thata[j] = b[j] for all
1 � j � i anda[i+1] > b[i+1]. A nodeu is said to have a larger
gain than nodev, if gain(u) > gain(v). In practice, a lookahead
value ofk = 2 to 4 gives the best results, and consistently gives
better results than FM. However, the memory requirement of the
LA method isΘ(pkmax), wherepmax is the maximum number of
pins on a node. Thus for circuits with medium to large connectivity
for some nodes, it can become infeasible or very slow to even use a
lookahead of 3.

Figure 1 illustrates the differences between the probability-based
method, and the LA and FM algorithms in computing node gains.
For simplicity, only nodes inV1 are considered, and all nets have
cost 1. FM will give nodes 1, 2 and 3 a gain of two, 10 and 11 a
gain of one, and all the other nodes shown a gain of -1. Since node
1, 2, 3 have the same gain, FM can very well choose to move node
1 first. However, it is easy to see from the figure that both nodes
2 and 3 are better candidates to move first, since moving either of
them will make it easier for either 8 and 9 or 10 and 11 to be moved
later and thus obtain a greater reduction in the cutset (i.e., nodes 2
and 3 have a better potential gain than node 1). The LA algorithm is
able to do better than FM in this regard. Assuming a lookahead of
3 (LA-3), the node gain vectors for nodes 1, 2 and 3 are as follows:
gain(1) = (2; 0; 0); gain(2) = (2; 0; 1) andgain(3) = (2; 0; 1);
see Fig. 1(a). Thus by this gain calculation, node 2 and 3 are
correctly portrayed as being better than node 1. A little thought will
also convince us that node 3 is a better candidate to move than node
2. This is because both nodes 10 and 11 that node 3 is connected to
via netn11 are themselves better candidates for moving than nodes
8 and 9 that are connected to node 2 via netn10—moving nodes 10
and 11 (after node 3 has been moved) reduces the cutset by three
nets (n5; n8 andn11), while moving nodes 8 and 9 (after node 2
has been moved), results in a cutset reduction by only one netn10.
Thus, neither the FM nor the LA methods are able to completely
distinguish between nodes 1, 2 and 3 as shown by their gain values in
Fig. 1(a) (increasing the lookahead of LA beyond 3 does not change
this) in spite of the fact that intuitively the distinction between them
is obvious. The primary reason for this is that neither method is able
to accurately predict the future state of a net. The probability-based
method PROP is able to see the likelihood of future events much
better, and is described next.
3. The Probabilistic-Gain Based Partitioner

The probability-based method PROP determines the best node
to be moved at any point in the partitioning stage using much more
global and futuristic information than LA or FM. We associate with
each nodeu a probabilityp(M(u)) (abbreviated asp(u)) of the

1

2

3

4

5

6

7

8

9

10

11

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

n12

n13

n14

n15

n16

n17

Cutset

V2 V1

2, 1

2, 1

2, 1

1, 0.8

1, 0.8

−1, 0.2

−1, 0.2

−1, 0.2

−1, 0.2

−1, 0.2

−1, 0.2

g(1), p(1)

(b)

1

2

3

4

5

6

7

8

9

10

11

n1
n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

n12

n13

n14

n15

n16

n17

Cutset

V2 V1

1.8, 0.9

1.8, 0.92.64, 1

g(1), p(1)

(c)

1

2

3

4

5

6

7

8

9

10

11

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

n12

n13

n14

n15

n16

n17

Cutset

V2
V1

1

1

−1

−1

−1

−1

−1

−1

2 / (2,0,0)

2 / (2,0,1)

2 / (2,0,1)

FM gain / LA gain

FM gain

(a)

−.49, 0.3

−.49, 0.3

−.49, 0.3

−.49, 0.3

−0.3, 0.4

−0.3, 0.4

2.0016, 1

2.04, 1

Figure 1:Illustration of the improvement of PROP over the LA and FM algorithms: (a) FM and LA-3 gains (the latter is only shown for nodes 1, 2 and 3). (b
& c) Probabilistic gains and node-move probabilities after (b) the first, and (c) the second iteration of node gain and probability calculation.

eventM(u) thatu will be actually movedto the other subset in the
current pass of the partitioning process2. From this probability, we
compute the probabilistic (or potential) gains (hereafter only termed
gain)g(u)s of the nodes, which gives us an accurate indication of
the benefit of moving them to the other subset. The obvious ques-
tion is how to obtain the node probabilitiesp(u)s in the first place,
to which the answer is that they are computed from their respec-
tive (probabilistic) node gains—higher the gain, higher is a node's
probability of being actually moved to the other side. However, we
need to start off this process of chicken-and-egg interdependency
between gains and probabilities somewhere, and we do so by first
determining a rough estimate of thep(u)s in one of two ways. In
the first method, at the beginning of a pass, we “blindly” assign all
nodes the same probabilitypinit of, say, 0.8. In the second method,
we first determine thedeterministic gains gain(u)s of nodes as given
by Eqn. 1 for the FM method. From these deterministic gains, we
determine the initial probabilities of the nodes (functions for deter-
mining probabilities from gains are discussed in Sec. 3.2.). This
method gives us reasonable first-cut probability estimates.

Once we have this initial probability (by either of the above
two techniques), we compute the (probabilistic) gains of nodes as
explained shortly. From these gains, we recompute the node prob-
abilities, and from these we obtain more accurate node gains. This
cycle continues for a few iterations (we have used 2 iterations in our
implementations) and we obtain more and more refined node prob-
abilities and gains. After this initial process is completed, we move
nodes with the best gains between the two subsets as in other iter-
ative improvement methods. After each move, we update the node
gains and probabilities as explained in Sec. 3.4.. Also, with each
move we note theimmediate gainachieved, which is the number of
nets that are removed from the cutset minus the number of nets that
are introduced in it on that move. At the end of the current pass, we
actually make moves to that point which gives the maximum prefix
immediate gain, as in FM and LA. Note that the probabilistic gain
is useful in determining which nodes to move that will ultimately
yield the most improvement in the cutset, though the immediate
gain of that move might be small or even negative; due to moving
such a node at the present time, we expect that a future move will
have a large immediate gain. It is this determination of probabilistic
gains of nodes, initially, and after every move, that is the key to
obtaining much better performance than previous deterministic- or

2Note that a node isactually movedfrom its original subset to the other
one in an iterative-improvement scheme like KL, FM and PROP, if its “vir-
tual” move lies within the range of the maximum prefix gain that is computed
after all nodes are (virtually) moved. Nodes beyond this range are not actu-
ally moved and revert back to their original subset.

ProcedurePROP(G);
/* G is the hypergraph to be partitioned */
Begin

1. Either randomly or using some clustering techniques partitionG into
two equal (or almost equal) sized subsetsV1 andV2.

2. Repeat the following steps (each iteration of these steps is apass)
until the gainGmax obtained after a pass is less than or equal to 0.

3. For each nodeu, either letp(u) = pinit, or determine thep(u)s from
the nodes' deterministic gains.

4. For each node, iterate through the gain calculation steps using Eqns. (3)
and (4), andp(u) calculation two times

5. RepeatSteps 6-8until all nodes are locked, or no more moves can be
made to meet balance criterion.

6. Select the nodeu with the best gain in either subset to be moved
to the other subset if the(r1; r2)-balance condition is not violated.
Otherwise, move the best-gain nodeu from that subset for which the
balance condition is not violated.

7. Note the immediate gain of the current move.
8. Lock all nodes moved in the current iteration, and update their un-

locked neighbors as described in Sec. 3.4..
9. Calculate the prefix sums of the immediate gains of all moves made

and note the maximumGmax of these sums.
10. If Gmax > 0 then begin

If Gmax correspond to thepth movethen Actually
make only the firstp moves

end
else exit

End.

Figure 2:The probabilistic-gain based partitioning algorithm PROP.

immediate-gain based iterative improvement methods like FM and
LA. The partitioning algorithm is described formally in Fig. 2. We
state the following theoretical result proved in [5].

Theorem 1 Given any set of node probabilities, the sample space
of events representing subsets of nodes that are actually moved in
a pass of an iterative-improvement process is a valid probability
space, i.e., for any eventE in this space (1)P [E] � 0; (2) P [E [
F] = P [E] + P [F] if E \ F = ;; and (3)P [Ω] = 1, whereΩ is
the set of all possible events.

3.1. Calculating Probabilistic Node Gains
We now describe how probabilistic node gains are calculated

from node probabilities. For each node, we calculate its gains
corresponding to each net that it is connected to; its total gain is the
sum of these net gains. We first define the following concepts for a
net. A netni is said to belockedin V1 (V2) if any node in it is locked
in V1 (V2). A net is locked in the cutset, if it is locked in bothV1

andV2. For node-gain calculation, there are two cases depending
on whether the net in question is currently in the cutset or not.

3.1..1 Net in Cutset
Let u 2 V1 be connected to netni, which belongs to the cutset.

We denote the setni \ Vr by ni;r, r = 1; 2. Letn1!2
i (n2!1

i) be
the event in which netni is removed from the cutset by moving all
nodes inni;1 (ni;2) to V2 (V1). We define

p(n
1!2
i ju) = (Probability ofni being removed from the cutset by

moving all nodes inni;1 to V2 given thatu has been moved)

p(n
2!1
i juc) = (Probability ofni being removed from the cutset by
moving all nodes inni;2 to V1 given thatu is not moved)

Then the gaingni(u) of u corresponding to netni is defined as

gni(u) = c(ni)[p(n
1!2
i ju)� p(n

2!1
i juc)] (2)

The rationale for the negative term in the above expression is that
movingu precludes the eventn2!1

i from occurring, and thus elim-
inates the possibility of removingni from the cutset in that man-
ner. Using conditional probabilities and the fact that most nets
in a VLSI circuit have few connections (an average of about 4
over our suite of benchmark circuits), we obtainp(n1!2

i ju) �Q
ux2(ni;1�fug)

p(ux), p(n2!1
i juc) �

Q
uy2ni;2

p(uy), and thus

arrive at the following approximation ofgni(u); see [5] for details.

gni(u) � c(ni)[
Y

ux2(ni;1�fug)

p(ux)�
Y

uy2ni;2

p(uy)] (3)

3.1..2 Net Not in Cutset
We now consider the gain contributed tou by a netni that is not

currently in the cutset and is not locked in the subset, say,V1, that it
lies in. Then, it will be introduced into the cutset whenu is moved
from V1 to V2. Thus intuitively,gni(u) should be negative, and is
given by

gni(u) = �c(ni)(Probability thatni remains in the cutset afteru
is moved)

= �c(ni)(Probability that not all nodes inni \ V1 � fug

will be moved givenu has been moved)

= �c(ni)(1� p(n
1!2
i ju)) = �c(ni)(1� p(ni;1ju))

Again proceeding as in the net-in-cutset case, we obtain

gni(u) = �c(ni)(1�
Y

ux2ni;1�fug

p(ux)) (4)

The total gain of nodeu is then g(u) =
P

u2ni
gni(u).

3.2. Calculating Node Probabilities
After the gains of every node has been computed once by either

using a first approximation probability ofpinit for each node, or by
first computing their deterministic gains (Eqn. 1), their probabilities
are computed using a suitable monotonically increasing function
p(u) = f(g(u)) of their gains.

There are two caveats with probability calculation. One is that,
since there are no certainties in node moves, it seems reasonable to
establish a maximum probabilitypmax < 1 and a minimum prob-
ability pmin > 0 within which interval all node probabilities lie3.
The second caveat is to establish upper and lower gain thresholds
gup andglo, such that all nodes with gains greater than or equal to
gup will get probabilitypmax, while those with gains lower thanglo
will get probabilitypmin. The rationale for establishing thresholds
is that nodes with high gains, say, greater than 2, are going to be
ultimately moved to the other subset no matter what, and those with
very low gains, say less than -1, will most likely not be actually
moved in the current pass. One obvious example of such func-
tions is a linear probability function betweenp(u) andg(u) when
glo � g(u) � gup.

3Actually, it is not unreasonable to havepmax = 1, butpmin definitely
needs to be greater than 0.

3.3. An Example
To illustrate the improvement offered by the probability-based

node gain calculation over deterministic ones as in FM and LA, let us
go back to the example of Fig. 1. In this example, we use the method
of obtaining the initial deterministic gains of nodes (Eqn. 1) and
their probabilities (using some monotonically increasing function
f of the gains). Figure 1b shows the initial gains and probabilities
g(u); p(u) for each node. We assume for simplicity of exposition
that for each netn1 to n11 in the cutset, theirp(n2!1

i) terms are
equal; thus the difference in the node gainsg(u)s will only depend
on theirp(n1!2

i ju) terms (see Eqns. 3 and 4). In the second iteration,
the node gains are calculated as follows using Eqn. 3 and 4.
gn1(1) = gn2(1) = 1; gn9(1) = (0:2)4

= 0:0016, thusg(1) =

2:0016;
gn3(2) = gn4(2) = 1; gn10(2) = (0:2)2

= 0:04, thusg(2) = 2:04;
gn6(3) = gn7(3) = 1; gn11 = (0:8)2 = 0:64, thusg(3) = 2:64.
Similarly, we obtaing(10) = g(11) = 1:8. To obtain the gains of
nodes 4 to 9, we assume that netsn12 ton17 that are not in the cutset
are each connected to one other node (not shown) of probability 0.5.
We then getg(8) = g(9) = �0:3 and the gains of nodes 4 to 7 as
�0:49. These gain values and their corresponding probabilities are
shown in Fig. 1c. We now clearly see that node 3 has the highest gain
and is thus the best node to move as we had concluded intuitively
from Fig. 1! Note that thep(u)s of nodes 1, 2 and 3 are all 1 (e.g.,
whengup = 2; see Sec. 3.2.); however, node selection is based on
their gains.
3.4. Node Updates

When netni is locked inV2, then as seen earlier in the derivation
of Eqn. 3,p(n1!2

i) �
Q

ux2ni;1
p(ux), since this probability is

implicitly conditioned on the previous move(s) fromV1 toV2 of the
node(s) currently locked inni;2. Also in this case,p(n2!1

i) = 0,
sincep(u) = 0 for a locked nodeu. Hence it follows that whenni
is locked inV2, then for an unlocked nodeux 2 ni;1, p(n1!2

i jux) =
p(n1!2

i)=p(ux), and thus

gni(ux) = c(ni) � p(n
1!2
i jux) = c(ni) � p(n

1!2
i)=p(ux) (5)

Also, foruy an unlocked node inni;2, whereni is locked inV2, we
obtain using Eqn. 3 and the fact thatp(n

2!1
i) = 0,

gni(uy) = �c(ni) � p(n
1!2
i jucy) = �c(ni) � p(n

1!2
i) (6)

Similar expressions apply whenni is locked inV1. These equations
are very useful for efficient node updating after a move, as discussed
next.

After moving a nodeu, say, fromV1 to V2, we first update,
p(n

1!2
i) andp(n2!1

i) of every netni thatu is connected to. We
follow this by updating the gains of all nodes connected to each
suchni (i.e., the neighbors ofu) according to Eqn. 5 or 6. We
then setp(u) = 0, to represent the fact thatu is locked. Finally,
we update the gains of a few, say, five, of the top ranked nodes in
each subset using Eqn. 3 or 4; this is needed since some of these top
nodes can be neighbors of the neighbors ofu, whose probabilities
have been updated. Note that potentially we could carry on the
updating process for the neighbors of the neighbors ofu, their nets,
and so forth until all nodes and nets have been updated. However,
the benefit of doing such a complete updating is minimal at best and
it is very time consuming. Since, it is really the top few nodes that
are in contention for the next move, the above update process is all
that is really necessary.
3.5. Time and Space Complexities

Recall thatn is the number of nodes,e the number of nets,p
the average number of pins per node, i.e., the number of nets it
is connected to,q the average number of pins on a net, i.e., the
number of nodes a net is connected to,d = p(q � 1) is the average
number of neighbors per node. We definem = pn = qe as the total

Test Case # Nodes # Nets # Pins Test Case # Nodes # Nets # Pins

balu 801 735 2697 19ks 2844 3282 10547
bm1 882 903 2910 biomed 6514 5742 21040
p1 833 902 2908 industry2 12637 13419 48404
p2 3014 3029 11219 t2 1663 1720 6134

s13207 8772 8651 20606 t3 1607 1618 5807
s15850 10470 10383 24712 t4 1515 1658 5975
s9234 5866 5844 14065 t5 2595 2750 10076
struct 1952 1920 5471 t6 1752 1541 6638

Table 1:Benchmark circuit characteristics.

Test Cut Size Improvement %
Case MELO Paraboli EIG1 PROP MELO Paraboli EIG1

balu 28 41 110 27 3.6 34.1 75.5
bm1 48 75 50 -4.0 33.3
p1 64 53 75 47 26.6 11.3 37.3
p2 169 146 254 143 15.4 2.1 43.7

s13207 104 91 110 75 27.9 17.6 31.8
s15850 52 91 125 65 -20.0 28.6 48.0
s9234 79 74 166 41 48.1 44.6 75.3
struct 38 40 49 33 13.2 17.5 32.7
19ks 119 179 105 11.8 41.3

biomed 115 135 286 83 27.8 38.5 71.0
industry2 319 193 525 220 31.0 -12.3 58.1

t2 106 196 90 15.1 54.1
t3 60 85 59 1.7 30.6
t4 61 207 52 14.8 74.9
t5 102 167 79 22.5 52.7
t6 90 295 76 15.6 74.2

Total 1554 864 2904 1245 19.9 15.0 57.1

Table 3:Comparisons of cutset sizes on ACM/SIGDA benchmark circuits
for the 45-55% balance criterion produced by PROP, MELO [2], PARABOLI
[11] and EIG1 [7]; the results of PARABOLI and EIG1 are also given in [2].

number of pins in the circuit. Even if the average and maximum
values of pins per node, pins per net and neighbors per node are
very different, the time and space complexities determined below
will hold, since these costs are amortized over all nodes and nets
with varying number of pins. The time complexities of the different
stages of PROP are as follows (details are in [5]. (1) We have the
standard adjacency list for nodes and nets, and also store nodes,
according to their gains, in a balanced binary AVL tree. This takes
Θ(m) time. It also follows from this that the space complexity is
Θ(m). (2) Computingp(n2!1

i) andp(n1!2
i) over all netsni as

specified in Sec. 3.4. takesΘ(m) time, as does the computation
of gni(u) over all nodes and nets. Computing node probabilities
takesΘ(n) time. (3) It takesΘ(logn) time to find the best node to
move using an AVL data structure; thus total time isΘ(n logn). (4)
The number of entities (nodes and nets) updated arep nets of the
moved nodeu, d neighbors ofu, Θ(p) nets of the constant number
of top nodes that are also updated. We see from Sec. 3.4. that each
update step for nets and neighbors connected tou takes constant
time. In the AVL tree data structure, it takesΘ(logn) time to delete
and reinsert a node; thus it takesΘ(d logn) time to reinsert all
updated nodes per move. Hence the updating process takes a total
of Θ(nd logn) time over one pass.

From the above discussion, the time complexity of PROP for an
entire pass isΘ(nd logn) = Θ(mq logn). For VLSI circuits,q is
a small constant like 4 and thus the time complexity isΘ(m logn).
Finally, as mentioned above PROP's space complexity isΘ(m).
4. Experimental Results
Tables 2 and 3 give cutset results for the 50-50% and 45-55% balance
criterion, respectively, of many ACM/SIGDA benchmark circuits
whose number of nodes, nets and pins are given in Table 1. These
are the same circuits used in the MELO technique [2] to compare
their results to those of PARABOLI and EIG1. For both the 50-50%
and 45-55% balance criterion, PROP uses the following parameters:
single moves, AVL tree data structure,pinit = 0:95, pmax =

0:95, pmin = 0:4, the linear probability function,gup = 1, and
glo = �1. Table 2 compares cutset sizes for the 50-50% balance
criterion produced by FM20, FM40, FM100, (these are FM run on
20, 40 and 100 initial random partitions, respectively), WINDOW
[1] (which uses FM20 as a final phase) and PROP using 20 runs.
We see that PROP cutsets are on the average 30% better than FM20
and 22% better than FM100. These percentage improvements are
calculated as (cutset improvement/larger cut set)�100. Note also
that as we increase the number of runs for FM, we start getting
diminishing returns; thus we probably cannot do much better if we
increase the number of FM runs beyond 100. PROP is also 27%
better than LA-2 (20 runs), 16.2% better than LA-2 (40 runs), and
17% better than LA-3 (20 runs). It also performs 26% better than
WINDOW. In Table 3, we compare the performance of 20 runs of
PROP to some recent state-of-the-art clustering-based methods, viz.,
EIG1 [7], PARABOLI [11] and MELO [2] for the 45-55% balance
criterion. PROP performs better than all of these methods, by 57%
over EIG1, by 20% over MELO and by 15% over PARABOLI. Thus
used as a stand-alone partitioner, PROP gives better results than the
best recent clustering-based partitioners.

FM has a complexity ofΘ(nd) if all net costs are assumed to be 1,
as is the case in our implementation, and it is thus very fast. PROP is
about 4.6 times slower than FM per run. If the assumption of unit net
cost cannot be made, as in the case when circuits are partitioned to
minimize timing [8], then FM, like PROP, will need a binary tree data
structure, and its time complexity will beΘ(nd logn). However,
PROP will have the same complexity (Θ(nd logn)) under non-
uniform net costs. In order to demonstrate how PROP compares
to both versions of FM, i.e., with bucket (FM-bucket) and tree
(FM-tree) data structures, we have implemented both of these and
tabulated times per run for different SIGDA benchmark circuits in
Table 4. This table also gives the run times of these circuits for
all the other algorithms compared here. Note that the actual times
for FM100, LA-2, LA-3 and PROP (these are the 45-55% case run
times for PROP; those for the 50-50% case are a little lower) are
obtained by multiplying the per run times by 100, 40, 20 and 20,
respectively. This is what we have done in the last row of Table 4
in which the total times over all the circuits are given. Note that
it is more appropriate to compare PROP with 20 runs to FM100
and LA-2 with 40 runs instead of to FM20 and LA-2 with 20 runs,
respectively, since, PROP's cutset improvement margins are lesser
compared to the former two methods than to the latter two. From
Table 4, it is easy to see that PROP is among the fastest partitioners.
It is very comparable to FM100-bucket and LA-2 (though it obtains
22.3% and 16.2% better cutsets, respectively, than these methods),
and slightly slower (by 37%) than EIG1—but then it obtains 57%
better cutsets than EIG1. Assuming that the Sun Sparc 5, Sparc 10
and the DEC 3000 are comparable in speed , PROP is 3.15 times
faster than FM100-tree, 3.9 times faster then PARABOLI, about 2.2
times faster than LA-3 and MELO, and at least 1.5 times faster than
WINDOW.

5. Conclusions
We have presented a probabilistic-gain based approach PROP

to iterative-improvement type min-cut partitioning. The method-
ology is based on probability and conditional probability theory.
Results run on a suite of ACM/SIGDA benchmarks show that we
outperform other iterative-improvement methods like FM and LA
by wide margins, and that we also outperform recent clustering-
based partitioners by significant margins. The run times of PROP
also compare very favorably with those of the iterative-improvement
and clustering techniques; it is comparable to those of FM and LA,
and much faster than those of most clustering-based methods. It
thus seems that PROP can do very well as a stand-alone partitioner,
and we believe that in conjunction with a clustering initial phase
it will yield a high-quality partitioning tool. The probabilistic-gain
approach opens up a number of exciting possibilities, for example,
k-way partitioning, multiple-FPGA partitioning, and partitioning

Test Cut Size Improvement %
Case FM100 FM40 FM20 LA-2 LA-3 WINDOW PROP FM100 FM40 FM20 LA-2 LA-3 WINDOW

balu 32 32 32 31 31 32 0.0 0.0 0.0 -3.1 -3.1
bm1 55 57 65 58 55 70 54 1.8 5.3 16.9 6.9 1.8 22.9
p1 57 57 59 59 55 60 59 -3.4 -3.4 0.0 0.0 -6.8 1.7
p2 236 238 245 215 183 258 154 34.7 35.3 37.1 28.4 15.8 40.3

s13207 92 101 101 81 89 83 9.8 17.8 17.8 -2.4 6.7
s15850 112 120 120 122 75 73 34.8 39.2 39.2 40.2 2.7
s9234 53 59 59 57 58 55 -3.6 6.8 6.8 3.5 5.2
struct 45 47 52 45 45 38 15.6 19.1 26.9 15.6 15.6
19ks 142 150 150 141 153 136 120 15.5 20.0 20.0 14.9 21.6 11.8

biomed 83 83 83 122 91 164 88 -5.7 -5.7 -5.7 27.9 3.3 46.3
industry2 428 501 501 492 378 392 254 40.7 49.3 49.3 48.4 32.8 35.2

t2 115 115 115 124 105 105 91 20.9 20.9 20.9 26.6 13.3 13.3
t3 72 72 72 78 90 67 58 19.4 19.4 19.4 25.6 35.6 13.4
t4 86 88 97 94 88 61 58 32.6 34.1 40.2 38.3 34.1 4.9
t5 97 97 149 109 96 101 82 15.5 15.5 45.0 24.8 14.6 18.8
t6 71 71 71 70 63 70 81 -12.3 -12.3 -12.3 -13.6 -22.2 -13.6

Total Cuts 1776 1888 1971 1898 1655 1484 1380 22.3 26.9 30.0 27.3 16.6 25.9

Table 2: Comparisons of cutset sizes on ACM/SIGDA benchmark circuits for the 50-50% balance criterion produced by three versions of FM (with 20, 40
and 100 runs), LA-2 and LA-3 (each with 20 runs), PROP (with 20 runs) and WINDOW [1] in which clustering is followed by 20 runs of FM. On executing
LA-2 with 40 runs (this makes the times for LA-2 and PROP almost equal—see Table 4) instead of 20, a total cutset of 1647 is obtained; this represents a cutset
improvement of 16.2% for PROP.

Test Sun Sparc-5 DEC 3000 Sun Sparc-10
Model 500 AXP

Case FM-bucket FM-tree LA-2 LA-3 PROP EIG1 Paraboli MELO WINDOW
x100 x100 x40 x20 x20

balu 0.21 0.42 0.42 0.94 0.78 6.2 15.5 7
bm1 0.24 0.58 0.56 1.12 1.02 4
p1 0.24 0.57 0.51 1.10 0.96 3.1 18.3 8
p2 1.28 3.53 2.87 4.95 6.94 17.6 137.4 89 > 115.7

s13207 3.39 10.23 7.14 10.36 8.87 43.5 2060.4 710
s15850 3.39 10.60 8.55 13.09 14.55 78.4 2730.9 1197
s9234 2.22 6.64 4.71 7.04 6.93 24.2 490.3 516
struct 0.46 1.15 1.55 2.14 2.08 6.9 35.2 38
19ks 1.15 3.12 2.66 5.27 4.33 79

biomed 2.96 7.24 5.55 8.74 12.49 521.2 710.9 496 > 421
industry2 7.27 24.18 17.56 37.05 43.34 706.6 1367.3 1855 > 1385

t2 0.46 1.18 1.45 40.99 3.20 29
t3 0.56 1.33 1.14 23.32 2.56 27
t4 0.41 1.02 1.22 39.57 2.46 24
t5 0.81 2.13 2.27 69.84 4.86 67
t6 0.50 1.09 0.87 1.33 3.77 31

Total 2555 7501 2361.2 5331 2383/1939/1255 1408 7567 5177 > 1922
(all ckts.,�100) (all,�100) (all,�40) (all,�20) (all/9/3,�20) (9 ckts.) (9 ckts.) (all) (3 ckts.)

Table 4:Comparisons of CPU times in secs per run, and total times over all circuits and all runs made for various algorithms.

for timing minimization, that we will explore in the future.

References
[1] C.J. Alpert and A.B. Kahng, “A general framework for vertex orderings,

with applications to circuit clusterings”,Proc. IEEE/ACM International
Conference on CAD, Nov. 1994, pp. 63-67.

[2] C.J. Alpert and S-Z Yao, “Spectral Partitioning: The more eigenvectors
the better”,Proc. Design Automation Conf., 1995, pp. 195-200.

[3] D. G. Schweikert and B. W. Kernighan, “A Proper Model for the Par-
titioning of Electrical Circuits”,Proc. 9th Design automation workshop,
1972, pp. 57-62.

[4] S. Dutt, “New faster Kernighan-Lin-type graph-partitioning algo-
rithms”, Proc. IEEE/ACM International Conference on CAD, Nov. 1993.

[5] S. Dutt and W. Deng, “A Probability-Based Approach to VLSI Cir-
cuit Partitioning”, Tech. Report, EE Dept., Univ. of Minnesota, 1996—
available at ftp site ftp-mount.ee.umn.edu in file /pub/faculty/dutt/vlsi-
cad/papers/dac96-ext.ps.

[6] C.M. Fidducia and R.M. Mattheyses, “A linear-time heuristic for im-
proving network partitions”,Proc. Nineteenth Design Automation Conf.,
1982, pp. 175-181.

[7] L. Hagen and A. Kahng, “Fast spectral methods for ratio cut partitioning
and clustering”,Proc. Int' l. Conf. Computer-Aided Design, 1991, pp. 10-
13.

[8] M.A.B. Jackson, A. Srinivasan and E.S. Kuh, “A fast algorithm for per-
formance driven placement”,Proc. IEEE/ACM International Conference
on CAD, 1990, pp. 328-331.

[9] B.W. Kernighan and S. Lin, “An efficient heuristic procedure for par-
titioning graphs”,Bell System Tech. Journal, vol. 49, Feb. 1970, pp.
291-307.

[10] B. Krishnamurthy, “An improved min-cut algorithm for partitioning
VLSI networks”, IEEE Trans. on Comput., vol. C-33, May 1984, pp.
438-446.

[11] B.M. Riess, K. Doll and F.M. Johannes, “Partitioning very large cir-
cuits using analytical placement techniques”,Proc. ACM/IEEE Design
Automation Conf., 1994, pp. 646-651.

[12] C. Sechen,VLSI Placement and Global Routing Using Simulated An-
nealing, Kluwer, B.V., Deventer, The Netherlands.

[13] Y.C. Wei and C.K. Cheng, “Towards efficient hierarchical designs by
ratio cut partitioning”,Proc. Int' l. Conf. Computer-Aided Design, 1989,
pp. 298-301.

[14] Y.C. Wei and C.K. Cheng, “A two-level two-way partitioning algo-
rithm”, Proc. Int' l. Conf. Computer-Aided Design, 1990, pp. 516-519.

	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index

