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Abstract

We offer a technique to partition a centralized control-flow graph
to obtain distributed control in the context of asynchronous high-
level synthesis. The technique targets Huffman-style asynchro-
nous controllers that are customized to the problem. It solves
the key problem of handling signals that are shared between the
partitions—a problem due to the incompletely specified nature of
asynchronous controllers. We report encouraging experimental
results on realistic examples.

Introduction

Asynchronous circuits are receiving considerable attention of late
due to their promise in many areas including performance and
energy consumption. A central problem in asynchronous high-
level synthesis is that of partitioning a centralized control-flow
graph to obtain distributed controllers. A centralized controller
can often be more complex (in terms of logic) than a collection of
distributed controllers, and can have slower signal paths through
it. They can also result in increased wire lengths, involve timing
assumptions of a global nature. In this paper, we present the
automated control partitioning algorithm incorporated in our high-
level synthesis tool for asynchronous circuits called ACK which
accepts a subset of high-level Petri-nets as input and generates
partitioned two-phase controllers and the associated data-path as
output. A Verilog front-end is also available for ACK.

One way to obtain distributed control circuit realizations is
by employing macromodules [15]. However, most macromodule
libraries contain only a limited number of macromodule types,
and hence distributed control realizations based on macromodules
are often inefficient [6]. A class of controllers called burst-mode
controllers that are potentially more efficient than macromodules,
and can be customized [4, 11, 17] have been proposed and widely
used in a number of non-trivial designs. However, burst-mode
synthesis procedures cannot handle designs beyond a certain in-
put/output (I/O) size, due to the complexity of many of the global
optimizations used. Hence, in previous designs where this I/O size
was exceeded, burst-mode controllers were manually partitioned
largely depending on the designer’s intuitions. This procedure is
very tedious and results in burst-mode controller descriptions that
are incomprehensibleand hard to verify. Moreover, even when the
burst-mode synthesis of centralized controllers with large I/O sets
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is possible, the resulting controllers can be inefficient, as pointed
out above. Therefore, in an automated high-level synthesis envi-
ronment such as ACK, where large control graphs can be generated
from users’s high-level HDL description of non-trivial designs, an
automated controller partitioning method is essential. This is the
problem addressed in this paper.

A key problem in partitioning stems from the fact that asyn-
chronous controllers are, in general, incompletely specified. More
specifically, the steps of critical race free state assigment and
hazard-free logic minimization in burst mode synthesis rely on
the fact that the environment of the controller does not present any
of the unspecified behaviors. Under this assumption, the sharing
of signals between the partitions is a non-trivial problem. For
example, suppose an input signal is shared between a collection
of partitions. When the environment generates a change on this
signal, to which of these partitions must the change be sent to? We
provide a method to address this issue.

Related Work

In [10], a technique called process decomposition is proposed.
Process decomposition does not involve signal-sharing between
incompletely specified machines. Signal-sharing is addressed in
macromodule based design systems [1, 2] by using additional
macromodules such as Toggles [15] and Decision-waits [5] to
steer the global input to the correct sub-controller. In [3, 14], a
method called contraction has been suggested as a decomposition
technique for signal transition graph (STG) specifications. Con-
traction preserves the global nature of the controller. It does not
turn a large-grain controller into many smaller-grain controllers.
Contraction and partitioning are orthogonal techniques, and both
have been successfully integrated in ACK.

Overview of ACK

A design entered in ACK is a Petri-net description organized as
a collection of sequential processes communicating through CSP-
style channels. Each transition of the Petri-net (except fork and
join) is annotated with an action, which can be a two-phase [15]
signal transition on an input or output wire (input transition names
are underlined), an assignment statement, a Boolean expression
(used for choices), or a CSP-style communication primitive. Fork-
join concurrency is allowed within sequential threads. The fork
and join transitions are labeled by an “�” action denoting a no-op.

Synthesis in ACK proceeds by first allocating requisite data
path resources, which include library/Viewlogic-synthesized op-
erators for computation actions, C-elements for channel commu-
nication actions, select elements for data dependent choices, and
library registers for storage. The underlying control-graph is then
obtained by refining each high-level Petri-net action into two-
phase handshake actions, using standard approaches [1, 16]. The
end result is one centralized control graph per sequential process.

The partitioned synthesis problem addressed in this paper is:
given a centralized control graph and a set of partitions on it chosen
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Figure 1: An Example Partitioned Petri-net

by the designer (as in Figure 1),how do we synthesize separate con-
trollers for each of the partitions that correctly orchestrate control
flow between the partitions and correctly handle signal sharings?
The identification of the partitions is not addressed here, though a
few automatable heuristics, such as keeping logically unrelated it-
erative loops that share signals in separate partitions, usually yield
good results in terms of increased performance and reduced logic
complexity.

Note that some places in the Petri-net in Figure 1 have been
omitted due to paucity of space.

Partitioning Algorithm

Centralized control graphs which form the input to the partitioning
phase of ACK are “state machines [13] with fork/joins” (SFJ), that
is, a single threaded graph with fork/join concurrency. SFJ graphs
are triples C = (P;T; F ) where P = fp1; p2 : : : ; png is a finite
set of places,T = ft1; t2 : : : ; tmg is a finite set of transitions, and
F � (P � T ) [ (T � P ) is a flow relation. T consists of fork
transitions (Tf ), join transitions (Tj ), and sequential transitions
(Ts) which have an in-degree and out-degree of one. For each
t 2 Tf , there is exactly one t

0

2 Tj (and vice versa) such that the
out-degree of t,N , is the same as the in-degree of t

0

. The ith output
place of fork transition t and the ith input place of corresponding
join transition t

0

are, respectively, the (only) input place and (only)
output place of a single threaded subgraph (STS) that models “the
i-th thread” of the fork/join. An STS, Cst = (Pst; Tst; Fst) is a
subgraph of C where Pst � P , Tst � Ts, and Fst � F is the
flow-relation restricted to Pst and Tst. An STS must be disjoint
from all other STSs (not share any place or transition). Tst should
not contain a fork or a join (but may contain choices). The unique
entry-place and exit-place of an STS are called its input place and
output place, respectively.

Each transition in Ts is annotated by a non-empty burst of
two-phase input- or output- (but not both) signal transitions. Tran-
sitions in Tf and Tj are labeled by �. To simplify things, we
assume that no two bursts labeling transitions contained in two
different STS graphs of the same fork/join involve the same wire
name. Also, in order to generate legal burst-mode machines [11]
from the partitions through burst-mode reduction [6], the origi-
nal SFJ graphs must obey the following restrictions, in that they
are (1) initially quiescent, and attain quiescence infinitely often
(a quiescent state is one where no output must be produced be-

fore consuming at least one input); (2) deterministic, (3) delay
insensitive, and (4) obey the subset property [11].

At the end of partitioning, the goal is to generate sequential
machines where each transition is annotated with input and output
bursts. It has been shown [6] that such a partitioned machineP can
be converted into a burst-mode machineC that has, as its interface
traces, the set of traces generated by P when operated in the
fundamental mode (P is allowed to attain quiescenceafter each set
of inputs to it). Thus, the real proof obligation of our partitioning
procedure (to be described) is to ensure that the interface traces for
a collection of burst-mode controllers implementing the partitions
of a well-formed SFJ graph are the same as that for a centralized
burst-mode controller implementing the same SFJ graph.

A partition of an SFJ graph is either any of the STS subgraphs
of a fork/join (these are called required partitions) or one of the
STSs obtained by the following procedure applied to each of the
fork/join pairs, (t; t

0

): (1) remove the fork/join pair and all the
STSs subtended by them; (2) assign the input place of t as the
output place of the STS preceding t; (3) assign the output place
of t

0

as the input place of the STS following t
0

. Any of the STSs
obtained above can be further partitioned into its constituent STSs.
The set of input- and output-places of the partitions of the given
SFJ are called partitioning places (PP). In Figure 1, Ik and Ok (for
k 2 1 : : : 3) are the input- and output places of the three partitions,
and form the partitioning places. Additional partitioning places
may be chosen from within the partition P3 (though we don’t do
so in our example). We do not consider STSs with an empty set
of transitions as partitions.

Partitioned Controller Synthesis

Each partition is supported by its own controller initialized to
its own initial state. The partition controllers also incorporate
provisions to hand-over control to other partition controllers. We
simplify our initial exposition by: (1) considering all PPs to be
either the input(s) or output(s) of forks and joins; (2) assuming
that signals are not shared between partitions. These assumptions
will be relaxed momentarily.
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Figure 2: Illustration of Decomposition, and Input Translators



Consider the controllerCi supporting the ith required partition
of a fork/join. Proper control hand-over between Ci and the
controller for the partition preceding the fork, C� , is arranged by
making the very first transition processed byCi from its start state
to be fdoneg, where done is the last signal transition generated
by C� before it goes back to its start state where it in turn waits
for a fdoneg signal from another partition, telling it to resume
execution. This ensures that whenever controller C� finishes its
execution, the Cis are all started. The remaining actions ofCi are
the same as the actions present in the STS graph of the ith required
partition. Proper control hand-over betweenCi and the controller
for the partition following the join,C+ , is arranged by making the
very last transition processed by Ci before it goes back to its start
state to be fdoneig. The very first transition processed byC+ out
of its start state, then, is f doneig, i 2 1 : : : K , where K is the
arity of the fork/join. This ensures that whenever all controllers
Ci finish,C+ takes over. Note that C� and C+ may be the same
partition.

Now, relax assumption (1) above and consider PPs that are not
associated with fork/joins. Every such PP demarcates two parti-
tions with their own supporting controllers starting in their own
initial states. The PP serves as a “merge” place for the threads
preceding it and as a “choice” place for the threads following
it. Observe that these threads are sequential with respect to ea-
chother. Consider the modifications that must be made to the
controller that supports the partition preceding PP. For this parti-
tion we add the output burst fdoneg to be the last action of this
controller before it goes back to its start state. Similarly, consider
the controller supporting the partition following PP; we add the
input burst fdoneg as the very first action of this controller from
its start state. This ensures that whichever way the merge-place is
entered, the choice-place is enabled. The controller then proceeds
to carry out the remaining actions of the partition following the
PP. Figure 2 illustrates these ideas.

Such a distributed control realization of an SFJ graph (as de-
scribed above) manifests exactly the same interface traces as a
centralized controller realization of the same SFJ graph when
the distributed control realization is operated in the fundamental
mode. This is because whenever control is handed over through
the “done” signals, the done signal generated by preceding parti-
tion(s) are (all) absorbed by the following partition(s) before the
environment is allowed to send any new inputs to the following
partition. Thus, as far as the environment is concerned, the right
set of partitions become active at the right times. The rest of this
paper concerns itself with relaxing assumption (2) above.

Synthesize Sharing Arrangements

Define the input set Inp(K) � W of a partition K to be a
set of input wires which K is sensitive to, meaning these inputs
make a transition somewhere within partition K . DefineOut(K)
similarly. If a partition is sensitive to a set of input and output
wires disjoint from that of all other partitions, it can be directly
implemented. For output wire o that is shared between partitions
K1 and K2, we rename o to o1 in K1 and to o2 in K2, and
synthesize the resulting controllers using our method. The outputs
o1 and o2 are then merged using an XOR-gate to produce the
output signal o. In Figure 2, output d is generated in this manner.
This method works because of the two-phase nature of the control
signals, and because any two occurrences of an output signal (the
two input signals of the XOR) transition are guaranteed to be
sequentially ordered.

The difficulty in handling input sharing is that we must ensure
that only the “right partition” must see the input transition in each
state. In Figure 2, the first and the second occurrences of input a

are seen by partition P1 while the third occurrence must be seen
by partition P3 if the choice is resolved through e, and by partition
P1 if the choice is resolved through f. As with shared outputs,
the first step is to rename the shared inputs within each partition.
An input-translator state machine is then derived that translates
the input signal from the environment into these renamed signals,
local to the componentmachines, at the right times. The controller
GlueI in Figure 2 achieves this for signal a, in our example.

For the algorithm to generate input translators, we assume that
any input signal that resolves a choice (appears in the burst labeling
the transition immediately following a choice place) occurs in no
other partition than the partition that contains the choice. A solu-
tion that relaxes this assumption exist [8] and proof is in progress.
The steps in obtaining input translators are as follows: (1) Create
an input set for the input translator. This input set consists of the
shared input signal of interest and all the choice signals. Remove
all signals except members of the input set from the original ma-
chine. (e.g., erase b, c, d and g from Figure 1). (2) For a collection
of threads subtended by a fork/join pair, retain only that thread, if
any, in which the input signal of interest (a in our case) appears.
In our case, we retain partition P1. (3) In the resulting graph,
following each occurrence of the transition of the shared signal i,
introduce a corresponding output ok . In our example, following
the two occurrences of inputs a falling in partition P1, we generate
output a1 whereas following the occurrence of input a in P3, we
generate output a3. These, then, are internal signal transitions that
get sent to the right partition at the right time.

Synthesize Final Circuits

Each of the controller descriptions can now be synthesized into
asynchronous burst-mode circuits following the procedure de-
scribed in [6]. In order to obtain a burst mode controller spec-
ification from a two-phase controller specification, we need to
know the initial input signal values for each of the controllers.
The initial values of all external input signals are specified by the
user. All the internal signals that are introduced during partitioning
can be initialized to any value due to use of two phase protocol (we
initialize them to 0). The resulting description can be synthesized
into a burst-mode machine which can then be synthesized using
(e.g.) 3D tool [17] or ASSASSIN [9].

Results and Conclusions

We have conducted comparisons between centralized and parti-
tioned controllers on a large number of examples, some of which
are shown in Table 1. Apart from making it possible to synthesize
larger designs, partitioning can also decrease synthesis time by
several orders of magnitude. Partitioning also often significantly
decreases the number of literals in the synthesized design and in-
creases the overall controller performance compared to that of a
centralized implementation.

In Table 1 we show the partitioning results for a CD Player
Error Detector from [7], a barcode reader from the High Level
Synthesis Design benchmarks [12] adapted to asynchronousoper-
ation, a loop example, a factorial computation unit, and an iterative
implementation of the GCD algorithm. For the CD Player Error
Detector and the Barcode Reader the synthesis of the centralized
controllers did not complete due to the complexity of the synthesis
task. The results for these are marked with n:a: In the table the
#BM trans column is a measure of controller complexity and
shows the number of burst mode transitions in the specification
of the controller. IO size shows the size of the input and output
set of the controller, Synth time shows the time in seconds for
burst mode synthesis and # of literals stands for the number of



literals in the implementation of the controller. In theController
column Centralized means the centralized contoller, Part x
means partition number x and ISM x means Input Translator
State Machine number x.

For the examples where the centralized controllers finished
synthesis, a layout was generated from a two level standard gate
implementation and the performance between the centralized and
partitioned controllers was measured. The comparison showed
an average performance increase for the partitioned controllers of
between 10 to 30%. Note that this comparison only exploited per-
formance advantages due to temporal locality. Partitioning also
gives us the possibility to take advantage of spatial locality, which
as feature sizes gets smaller and wire delays become significant,
is an important factor for high performance designs.

In this paper, we have presented a method to deal with the
partitioning of asynchronous controllers. This work specifically
provides a partitioning method in the context of asynchronous
high level synthesis methods that target state machine controllers,
although the basic ideas can be extended to other asynchronous
partitioning problems.

Controller # BM IO Synth # of
trans size time literals

CD Error Det.
Centralized 1824 68 n.a. n.a.

Part 1 110 18 800 94
Part 2 32 29 220 96
Part 3 28 25 140 122

ISM 1-3 81 13 230 63
ISM 4 16 6 90 14
ISM 5 7 14 80 92

Barcode Reader
Centralized 960 49 n.a. n.a.

Part 1 26 14 34 14
Part 2 40 8 25 3
Part 3 72 19 500 13
Part 4 26 23 53 43

ISM 1-2 56 8 22 14
ISM 3 64 9 28 53
GCD

Centralized 126 25 33420 207
Part 1 22 15 30 33
Part 2 72 18 340 12

ISM 1-2 48 7 25 14
Factorial

Centralized 44 20 620 88
Part 1 12 13 24 6
Part 2 28 15 36 9

ISM 1-2 16 5 20 14
Loop example

Centralized 32 5 38 199
Part 1 14 5 20 58
Part 2 12 6 16 3

Table 1: Results for partitioning
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