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Abstract

This paper proposes a state encoding method for asynchronous cir-
cuits based on the theory of regions. A region in a Transition
System is a set of states that “behave uniformly” with respect to
a given transition (value change of an observable signal), and is
analogue to a place in a Petri net. Regions are tightly connected
with a set of properties that must be preserved across the state en-
coding process, namely: (1) trace equivalence between the original
and the encoded specification, and (2) implementability as a speed-
independent circuit. We build on a theoretical body of work that
has shown the significance of regions for such property-preserving
transformations, and describe a set of algorithms aimed at effi-
ciently solving the encoding problem. The algorithms have been
implemented in a software tool called petrify. Unlike many
existing tools, petrify represents the encoded specification as an
STG, and thus allows the designer to be more closely involved in
the synthesis process. The efficiency of the method is demonstrated
on a number of “difficult” examples.

1 Introduction

In the last decade, Signal Transition Graphs (STGs) [7, 1] have
attracted much of the attention of the asynchronous circuit de-
sign community due to their inherent ability to capture the main
paradigms of asynchronous behaviour: causality, concurrency and
data-dependent and non-deterministic choice. STGs are Petri nets
whose events are interpreted with signal transitions of a modeled
circuit. The STG model, exactly like “classical” Flow Table mod-
els, may require some state signals to be added to those initially
specified by the designer. Adding those state signals is commonly
referred to as solving the Complete State Coding (CSC) problem.

Since [1] a number of different techniques have been proposed to
solve the CSC-problem. The first totally general method, described
in [8], used an algorithm whose complexity practically precluded
any optimization, but produced only one,often suboptimal, solution.
The most recent method [9] is based on the concept of an excitation
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region for a signal transition (a set of states in which a signal is
enabled to change its value). It has been able to improve on [8]
by adopting a coarser granularity in the exploration of the solution
space. This coarser granularity has a price, though: as we will show
in Section 6, there is a number of examples of STGs which could
not be solved by their method (nor by previous ones, mainly due
to the large number of states), unless changes in the specification
(e.g., reductions in concurrency)are allowed. Moreover, the authors
could not characterize the class of STGs for which their method was
guaranteed to find a solution.

Our approach differs from the previous work in the area, because
it is based on the notion of regions of states, which is more general
than, albeit related to, that of excitation regions (an excitation region
is a specific intersection of regions). By exploring a broader design
space than [9], we can thus solve a larger number of problems,
and potentially reach better solutions especially in terms of circuit
performance. For example, our approach can efficiently trade off
logic complexity with execution speed, by changing the level of
parallelism with which state signal transitions are inserted. On the
other hand, our search space is still reduced with respect to [8], and
thus we can claim better control on the quality of the solution.

This paper is organised as follows. Section 2 provides some
theoretical background (the interested reader is referred to [2] for
the details). Sections 3 and 4 define the idea of property-preserving
event insertion and apply it to solving the CSC problem. Sections 5
and 6 describe implementation aspects and experimental results.

2 Theoretical background

2.1 Transition systems and Petri nets
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Figure 1: A TS (a), the corresponding PN (b), its RG (c)

Informally, a TS ([6]) can be represented as an arc-labeled directed
graph. A simple example of a TS without cycles is shown in
Figure 1,a. A TS is called deterministic if for each state s and each



label a there can be at most one state s0 such that s
a
! s0 . A TS is

called commutative if whenever two actions can be executed from
some state in any order, then their execution always leads to the
same state, regardless of the order.

A Petri Net is a quadrupleN = (P;T; F;m0), whereP is a finite
set of places,T is a finite set of transitions,F � (P�T )[(T �P )

is the flow relation, and m0 is the initial marking. A transition
t 2 T is enabled at marking m1 if all its input places are marked.
An enabled transition t may fire, producing a new markingm2 with
one less token in each input place and one more token in each output

place (m1
t
! m2). A PN expressing the same behavior as the TS

from Figure 1,a is shown in Figure 1,b.
The set of all markings reachable in N from the initial marking

m0 is called its Reachability Set. A net is called safe if no more
than one token can appear in a place in any reachable marking. The
graph with vertices corresponding to markings of a PN and with
an arc (m1;m2) in the graph if and only if m1 ! m2 is called
its Reachability Graph (RG). One can easily check that the RG
Figure 1,c derived for the PN from Figure 1,b is isomorphic to the
TS (Figure 1,a).

2.2 Regions and Excitation Regions

Let S1 be a subset of the states of a TS, S1 � S. If s 62 S1

and s0 2 S1, then we say that transition s
a
! s0 enters S1. If

s 2 S1 and s0 62 S1, then transition s
a
! s0 exits S1. Otherwise,

transition s
a
! s0 does not cross S1. A region is a subset of

states with which all transitions labeled with the same event e have
exactly the same “entry/exit” relation. This relation will become
the predecessor/successor relation in the Petri net.

Let us consider the TS shown in Figure 1. The set of states
r3 = fs2; s3; s6g is a region, since all transitions labeled with a and
with b enter r3, and all transitions labeled with c exit r3. On the

other hand, fs2; s3g is not a region since transition s1
b
! s3 enters

this set, while another transition also labeled with b, s4
b
! s6, does

not.
A region r is a pre-region of event e if there is a transition labeled

with ewhich exits r. A region r is a post-region of event e if there is
a transition labeled with e which enters r. The set of all pre-regions
and post-regions of e is denoted with �e and e� respectively.

While regions in a TS are related to places in the corresponding
PN, an excitation region for event a is a maximal set of states in
which transition a is enabled. Therefore, excitation regions are
related to transitions of the PN. A set of states is called an excitation
region for event a (denoted byERj(a)) if it is a maximal connected
set of states such that for every state s 2 ERj(a) there is a transition
s

a
!. Since any eventa can have several separatedERs, an index j is

used for the distinction between different connected occurrences ofa
in the TS. In the TS from Figure 1,a there are two excitation regions
for event a: ER1(a) = fs1g and ER2(a) = fs5g. Similarly to
ERs, we define switching regions as connectedsets of states reached
immediately after the occurrence of an event.

3 Property-preserving event insertion

Event insertion is informally seen as an operation on a TS which
selects a subset of states, splits each state in it into two states and
creates, on the basis of these new states, an excitation and switching
region for a new event. Figure 2 shows the chosen insertion scheme,
analogous to that used by most authors in the area, in the three main
cases of insertion with respect to the position of the states in the
insertion set ER(x) (entrance to, exit from or inside ER(x)).
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Figure 2: Event insertion scheme

State signal insertion must also preserve the speed-independence
of the original specification, that is required for the existence of a
hazard-free asynchronous circuit implementation.

An event a of a TS A is said to be persistent in a subset S0

of states of S iff 8s1 2 S0; b 2 E : [s1
a
! ^(s1

b
! s2) 2

T ] ) s2
a
!. An event is said to persistent if it is persistent

in S. For a binary encoded TS, determinism, commutativity and
output event persistency guarantee speed-independenceof its circuit
implementation. Formally, we say that an insertion state setER(x),
in a TSA0 obtained from a deterministic and commutative TSA by
inserting event x, is a speed-independence preserving subset (SIP-
set) iff: (1) for each a 2 E, if a is persistent in A, then it remains
persistent in A0, and (2) A0 is deterministic and commutative.

The following two properties of insertion sets, based on theory
developed in [2], link together the notions of TSregions and SIP-sets
and provide a rationale for our approach.

Property 3.1
� (P1) If r is a region in a commutative and deterministic TS, then r

is an SIP-set.

� (P2) If r is an excitation region of an event a in a commutative and
deterministic TS and a is persistent in r, then r is an SIP-set.

� (P3) If r1 and r2 are pre-regions of the same event in a commutative
and deterministic TS, r1 \ r2 is connected and all exit events of
r1 \ r2 are persistent, then r1 \ r2 is a SIP-set.

These properties suggest that the good candidates for insertion sets
should be sought on the basis of regions and their intersections
(while the approach of [9] could exploit only case P2). Since any
disjoint union of regions is also a region, this gives an important
corollary that nice sets of states can be built very efficiently, from
“bricks” (regions) rather than “sand” (states).

4 Solving Complete State Coding

A Signal Transition Graph (STG, [1, 7]) is a Petri net labeled with
up and down transitions of a set of signals (denoted by x+ and x�

for signal x respectively).
A necessary condition for STG implementability is consistent

labeling. Informally, this means that in every firing sequence from
the initial marking, rising and falling transitions alternate for each
signal. In other words, each marking can be uniquely labeled with a
vector of signal values. Once consistency is ensured,Complete State
Coding (CSC) becomes necessary and sufficient for the existence
of a logic circuit implementation. A consistent STG satisfies the
CSC property if for every pair of states s; s0 of the associated TS,
such that v(s) = v(s0), the set of non-input transitions enabled in
both is the same.

Assume that the set of states S in a TS is partitioned into two
subsets which are to be encoded by means of an additional signal
to solve some CSC conflicts. Let r and r = S � r denote the
blocks of such a partition. In order to implement such an encoding,
we need to insert appropriate transitions of the new signals in the
border states between the two subsets.

In this paper we shall consider the so-called exit border (EB) of
a partition block r, denoted byEB(r), which is informally a subset



of states of r with transitions exiting r. We callEB(r) well-formed
if there are no transitions leading from states in EB(r) to states in
r �EB(r).

Consider the example in Figure 3 (enabled signals have their
value followed by � in the signal label). State pair (1�1; 1�1�) has
a CSC conflict, assuming that signal a is input and b is non-input,
and so do (1�1; 1�1�) and (0�1; 01�) (while (00�; 0�0�) does not,
because b is enabled in both). The partition r = r2; r = r20

separates all conflicting pairs, and can thus be tentatively used to
solve the conflicts. The borders, in this case, are denoted by the
shaded areas. If they are selected as excitation regions for the new
signal y, we obtain the TS (c). Note that some border states are
conflicting. This means that the new TS will still have secondary
CSC problems, that must be solved by iterating the procedure (the
proof of convergence is given in [2]).
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Figure 3: Illustration of event insertion

Note that we need each new signal x to orderly cycle through
states in which it has value 0, 0�, 1 and 1�. We can formalize
this requirement with the notion of I-partition ([8] used a similar
definition).

Given a TS TS = (S; T; E; sin), an I-partition is a partition of
S into four blocks: S0, S1, S+ and S�. S0(S1) defines the states
in which x will have the value 0 (1). S+(S�) defines ER(x+)

(ER(x�)). For a consistent encoding of x, the only allowed events
crossing boundaries of the blocks are the following: S0 ! S+ !
S1 ! S� ! S0, S+ ! S� and S� ! S+ (the latter two would
cause a persistency violation, though).

The problem of finding an I-partition is reduced to finding a
bipartition S. Each block b of S induces a bipartition fb; bg, (b =

Snb). Given a block b, an I-partition can be calculated by defining
S+ and S� with the following recursion:

1. fs 2 b j 9 s! s0 ^ s0 2 bg � S+

fs 2 b j 9 s! s0 ^ s0 2 bg � S�

2. [s 2 S+ ^ s0 2 b ^ s! s0] ) s0 2 S+

[s 2 S� ^ s0 2 b ^ s! s0] ) s0 2 S�

and finallyS0 = b�S+ andS1 = b�S�. The sets of states defined

bricks = calculate all bricks ()
frontier = good blocks = fthe best FW bricksg
repeat /* heuristic search */

new frontier = ;
for each bl 2 frontier do

for each br 2 bricks adjacent to bl do
new bl = bl [ br

if cost(new bl) < cost(bl) then
good blocks = good blocks [ fnew blg
new frontier = new frontier [ fnew blg

frontier = select the best FW blocks from new frontier
until new frontier = ;
return the best block in good blocks

Figure 4: Heuristic search to find a block for event insertion

by condition 1 correspond to the smallest “legal” exit border ofbwith
respect to b (EB(b)). The additional states of condition 2 define
the smallest well-formed EBs. We will denote by MWFEB(b) the
minimal well-formed EB of b.

The set of candidates explored by our encoding algorithm will
be restricted to be an I-partition by construction. We proved in [2]
that the method is complete, in that it can solve CSC for any safe,
consistent, output-persistent STG.

5 A heuristic-search strategy to solve CSC

The main algorithm for the insertion of one state signal is as follows:

1. Generate a set of I-partitions that preserve speed independence
(figure 4)

2. Estimate the cost of the generated I-partitions

3. Select the best I-partition

4. Increase the concurrency of the inserted signal

Initially, all bricks of the TS are calculated by (1) obtaining all
minimal regions of the TS and (2) calculating all possible intersec-
tions of pre-/post-regions of the same event. Since the number of
pre- and post-regions of an event is usually small, an exhaustive
generation is feasible.

The best block for event insertion is obtained as the union of
adjacent bricks. At each iteration of the search, a frontier of FW
(frontier width, a parameter trading off solution quality versus time)
“good” blocks is kept. Each block is enlarged by adjacent bricks
and the new obtained blocks are considered candidates for the next
iteration only if they are “better”, according to the cost function,
than their ancestors. The final block for insertion is calculated as
the union of best disconnected blocks. A greedy block merging
approach guided by the cost function is used.

Given a block b, S+ and S� are initially calculated as the
MWFEB of b and b respectively. This leads to a solution with
minimum concurrency of the inserted event. Concurrency can be
increased by enlarging S+ and/or S�([8]). In our approach, after
having calculated the best configuration for event insertion, S+ and
S� are greedily enlarged by adding bricks that are adjacent to them.
The enlargement is only accepted if the new configuration improves
the cost of the solution. The following factors are considered in the
cost function for the insertion of signal x (in order of priority):

� ER(x+) and ER(x�) must be SIP blocks.

� The insertion of x must not modify the specification of the
environment (e.g., x cannot be inserted before input events).



benchmark places trans. signals states CPU
master-read 37 26 18 18856 927
master-read�2 74 52 38 5:4� 108 10849
par8 43 36 26 1:7� 106 1175
par16 83 68 40 2:8� 1012 13546
pipe8 24 16 19 87480 371
pipe16 48 32 38 1:9� 109 15689

Table 1: Results for STGs with a large number of states

� The number of solved CSC conflicts must be maximized.

� The estimated complexity of the circuit must be minimized.

In the current implementation, the complexity of the circuit is ap-
proximated by the sum of the number of trigger signals for each
ER. Each trigger signal labels one of the transitions which enter an
ER and corresponds to a fan-in signal in the implementation. More
accurate estimations are foreseen for future implementations.

6 Experimental results

The region-based approach presented in this paper has been inte-
grated in petrify, a tool for the synthesis of Petri nets [3]. We
have used several benchmarks that no other automatic tool, such as
SIS or ASSASSIN, has been able to solve. Some of them are even
difficult to solve manually by expert designers. Our approach has
succeeded in all of them.

One of the most important features of the CSC algorithm imple-
mented in petrify is the capability of managing extremely large
state graphs generated from STGs with high concurrency. Two fac-
tors are essential for this capability: (1) the symbolic representation
and manipulation of the state graph by means of Ordered Binary
Decision Diagrams (2) the exploration of blocks of states at the
level of regions rather than states. Table 1 presents the CPU times
(in seconds on a SPARCSTATION 20) required to satisfy CSC for
some examples with a vast state space, which cannot be solved in a
reasonable amount of memory or time by SIS or ASSASSIN.

Table 2 reports the results obtained withpetrify in comparison
with the ones obtained by ASSASSIN ([5]). The quality of the
results is comparable to those obtained by ASSASSIN. Even with
the estimation of logic performed in petrify, ASSASSIN can
still offer slight improvements in a few examples. This means that
an estimation of logic based on only trigger signals is not accurate
enough.

7 Conclusions

In this paper we have presented a method and associated algorithms
for solving state coding problems by means of state signal insertion.
Our main target here was solving Complete State Coding problem,
one of fundamental issues in asynchronous circuit synthesis from
Signal Transition Graphs. We believe that our approach to: (1)
Transition System partitioning, (2) new signal insertion, and (3) re-
construction of the model in Petri net form, based on the concept
of region of states, will prove useful in solving other problems
in asynchronous circuit synthesis. In particular, the technology
mapping problem for Speed-Independent circuits ([4]) can be cast
in this form.

ASSASSIN petrify
benchmark states area CPU area CPU

adfast 44 390 0.4 294 10.5
nak-pa 56 456 0.7 456 4.8
alloc-outbound 17 350 0.1 350 5.4
nowick 18 340 0.1 428 2.6
ram-read-sbuf 36 406 0.2 406 6.0
sbuf-ram-write 58 764 0.7 300 23.9
sbuf-read-ctl 15 244 0.0 244 1.4
mux2 99 1386 3.0 1774 142.2
postoffice 58 1094 1.0 800 0.0
duplicator 20 294 0.1 294 5.9
spec seq4 20 236 0.1 236 6.2
seq mix 20 324 0.1 324 7.5
seq8 36 480 0.4 480 37.8
trcv-bm 44 826 0.6 824 56.5
tsend-bm 41 1010 0.6 962 0.0
ircv-bm 44 842 0.4 1042 64.3
mod4 counter 16 648 0.1 648 0.0
master-read 1882 726 607.7 750 75.7
mmu 174 698 10.6 732 51.9
mr0 302 1008 40.0 626 153.6
mr1 190 912 17.9 650 23.0
mmu0 174 886 8.4 610 48.4
mmu1 82 700 1.8 514 45.0
par 4 628 506 206.4 506 88.0
divider8 18 848 0.4 914 18.7
vme2int 74 1014 0.8 938 44.4
combuf2 11 270 0.2 262 3.7
total 17658 902.8 16364 927.4

Table 2: Experimental results compared with ASSASSIN
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