
A Model for the Coanalysisof Hardware and Software Architectures

Fred Rose, Todd Carpenter, Sanjaya Kumar, John Shackleton, Todd Steeves

Honeywell Technology Center
Minneapolis, MN

rose_fred@htc.honeywell.com

Abstract

Successful """tiprocessor system design for complex real-
time embedded applications requires powerful and com-
prehensive. yet cost-effective. productive. and maintain-
able modeling. The """ti-disciplinary. VHDL-based
modeling library developed by the Honeywell Technology
Center places heavy emphasis on multiprocessing and dis-
tributed communications. These models focus on detailed

hardware performance analysis along with multiple
abstraction levels for software representation and evalua-
tion. This paper will detail the processor model which pro-
vides the key element for the coanalysis of hardware and

software system architectures.

1 Introduction

The Honeywell Perfonnance Model Library (PML)
[1][2] was created to fill the analysis needs required for the
design of large. distributed. embedded real-time systems.
The Rapid Prototyping of Application Specific Signal Pr0-
cessors (RASSP) program [3] is a four and one-half year.
$150 million Advanced Research Projects Agency
(ARPA)/tri-Service initiative intended to dramatically
improve the process by which such complex digital sys-
tems. particularly embedded digital signal processors. are
designed. manufactured, upgraded. and supported. RASSP
seeks an improvement of at least a factor of four in the
time required to take a design from concept to fielded pr0-
totype or to upgrade an existing design. with similar
improvements in design quality and life cycle cosL The
motivation for RASSP is the need to provide affordable
embedded signal processors for a wide range of DaD sys-
tems that are state-of-the-art when they are fielded. rather
than when they are first defined.

RASSP program goals target systems requiring multi-
hundred node designs. The generic processor model pre-
sented here has been designed to model the processors of
such systems with sufficient granularity to exercise the
system software. runtime. and scheduling. as well as appli-
cation software ranging from abstract data flow to func-
tional detail. This paper focuses on the processor model

0-8186-7243-9/96 $05.00 @ 1996 IEEE

---- -----

and its capabilities to support both abstract and detailed
software models. Discussion will include the multi-pro-
cessor communication and distributed operating system
capabilities recently incoIporated into the processor
model A high level application of the performance model-
ing library to the Synthetic Aperture Radar (SAR) RASSP
benchmark is discussed. including both the benefits and
limitations of such an approach.

The PML is being used by several organizations within
the RASSP community. including technology base pr0-
grams and both RASSP primes. This library is being
incorporated into the commezeial Perfonnance Modeling
Workbench (PMW) product being developed by Omni-
view. Inc. Design features of this library include process-
ing elements. communication components (routers.
crossbars. etc.). system input/output and storage. topology,
software partitioning. allocation. and scheduling. 'JYpical
design parameters include the entire software design or
architecture. system software. and portions of the hard-
ware. Parameterizeable hardware attributes include

. number and types processors at individual nodes.

. memory features

. inttanode communication mechanism (bus vs. shared
memory)

. internode communication support i.e. custom vs. gen-
eral processor (shared or dedicated)

RASSP-wide standard interfaces to the performance
models have been defined. [4][5]

2 Other codesign approaches

Hardware/software codesign research has taken many
forms. There have been attempts to transfer technology
between the software and hardware engineering domains
[6]. Efforts have focused on the investigation of common
modeling representations for hardware and software.
Examples include concwrent processes. finite state
machines. and unified representations. such as MCC's
integrated semantic model [7] and the decomposition
graph [8]. Sevezal design environments have been devel-

94

oped to analyze hardware/software systems: SARA [9],
SES/Workbench [10], ADAS [11], SIERA [12], and
P1OLEMY [13].

A significant amount of effort has been devoted to
investigating hardware/software partitioning algorithms.
Many of these approaches have been utilized within
cosynthesis systems. Two classes of approaches are hard-
ware-oriented [14] and software-oriented [15]. Research
[16] has also been performed in the use of clustering tech-
niques to conttol the partitioning process. More recently,
an algorithm [17] which selects an appropriate objective
function at each step of the partitioning process has been
developed. The selection of an objective function is based
on (global) time criticality and local node characteristics,
which reflect tendencies towards software or hardware
implementation.

The work described in this paper focuses on providing
an environment that supports early hardware/softwareper-
fonnance evaluation and trade-off exploration. Encom-
passed in this effort is the development of appropriate
abstractions for hardware and software.This environment

can also be used for hybrid modeling [18][22], simulating
performance models and implementation-level models in
a common environment.

The primary differentiator of this work is the attempt
to make the modeling library as generic, configurable, and
portable as possible. VHDL provides many capabilities to
support these features. The only tool requirement for using
this library is a fully compliant VHDL simulator. [19] The
library has been used with a numbel' of different VHDL
simulators.

3 Modelingenvironment

3.1 Process flow

The PML, and the subsequent commercial PMW,
establish a computer assisted environment for analyzing
and designing complex systems comprising large numbers
of hardware and software components. The PML is com-
prised of model-based representations of system building
blocks. The PML supports an ordered architecture devel-
opment process targeted at rationalizing architectural fea-
ture selection against measurable performance goals. The
process combines traditional system decomposition tech-
niques with simulation-based performance experimenta-
tion and analysis to support rapid system prototyping in a
virtual environment. This environment in turn provides a
platform for using predictive performance measurements
to analyzeand optimize system design trade-offs.

The RASSP approach to system development [20] is
basedon the spiral system development model which exe-

- ---

cutes in an iterative fashion, successively repeating the
requirement-design-test cycle at increasing levels of gran-
ularity until a sufficient amount of design detail is revealed
to adequately drive ezror-free implementations. Augment-
ing the spiral development model with virtual prototyping
yja simulation-based pt2'formance analysis supports rapid
iteration through multiple levels of granularity while vali-
dating and optimizing a leveled abstraction befme pr0-
ceeding to the next iteration. The result is a reduced
development timeframe for producing a validated archi-
tecture.

The rapid prototyping facilities centtal to the perfor-
mance-based spiral process model are made possible by
the reusable PML elements which support rapid assembly
and analysis of architectural structures using proven com-
ponent models.

3.2 Performance modeling

Models are evaluated in numerous ways. They may be
analyzed, simulated, emulated, or prototyped. The perfor-
mance models discussed here are primarily simulated.
Analytical models can mpidly become too complex to
fully represent important system features such as resource
contention. Emulation and prototyping are expensive,
time-consuming, and necessarily occur late in the design
cycle. Simulation provides results that may not be easily
attained via analytical models, and faster and at less cost
than prototyping. Additionally, simulation can accommo-
date mixed levels of design and various levels of fidelity
and accuracy. However simulation does suffer from signif-
icant startup costs, complexity, and significant execution
(CPU) times. A robust system design process should uti-
lize all model evaluation methods as appropriate.

The various names associated with modelling abstrac-
tions are frequently instance-specific and application-spe-
cific, which can lead to confusion. RASSP is no different
than other large distributed projects in this respect. A
RASSP taxonomy working group [4] has been formed to
address this within the RASSP community. For an exhaus-
tive model taxonomy, the reader is refe1Tedto Hein, et al.
[4] This taxonomy is also available at http://rassp.scra.org/
public/atVtaxonomy.html.The following definition of per-
formance modeling is based on Hein's work.

Performance is a collection of the measures of quality
of a design relating to the timeliness of the system in react-
iog to stimuli. Measures associated with performance
include response time, throughput. and utilization. A per-
fonnance model may be written at any level of abstraction.
A highly abstract performance model might only resolve
the time a multiprocessor cluster requires to perfonn
major system functions, or it can be a less abstract model
describing the time required to perform tasks such as

95

't

memoryaccess of a single CPU. In the context of RASSP,
however, the typical abstraction level of a performance
model is often at the multiprocessor network level, also
called a network architecture performance model. Internal
and external data values are not modeled, except for con-
trol information. Figure 1 shows the description of perfor-
mance models using the RASSP taxonomy.

Symbol Key:
. Model resolves information at specific

level relative to Table 1.

Model resolves information at any of
the levels spanned, case dependent.

c:=:::) Model optionally resolves information
at levels spanned.

Model resolves ~ information at
levels s~edi such as control but
not data values or functionality.

Model does not contain information
on attriMte.

)(

Figure 1: RASSP definition of performance models

An important additional benefit of perfonnance model-
ing is that it provides early interaction of system, hard-
ware, and software designers.

Performance modeling is used during functional analy-
sis, architecture selection and verification, and to a much
lesser extent, detailed design. These steps are shown in
Figure 2 in the context of the RASSP design process.
While performance modeling can be used at all these lev-
els, the particular model presented in this paper is focused
on architecture selection and verification. Architectural
level includes the actual device or entity under study such
as a signal processor, and its environment, such as sensors
and actuators. In the case of an electronics system, an
architectural level description would include information
about both the hardware and software. Note that the defini-
tion of "system" is loose here. While we consttain the
application of our performance models to electtonic sys-
tems (although we have perfonned human=>electronic
console operability studies with the performance library
[21]), the library is fully capable of representing systems
consisting of ASICs, boards, and subsystem cabinets, and
sensor netwooo. This library has also been used in
domains outside digital signal processing.

--- - - - - -- -

System definition

Requirements
&

Functional
Analysis

Architecture
Definition

R
E
U
S
E

Functional
Design

Architecture
Selection

L
I
B
R
A
R
Y

Detailed
Desi

Figure 2: The RASSP design process consists of
system definition, architecture definition, and

detailed design.

3.3 Library overview

Honeywell has developed the PML in VHDL using
standard commercial VHDL capabilities [1]. This allows
the systems architect to capture the system under study in
a consistent, verifiable form. The library consists of high-
level building blocks such as configurable input/output
devices, memories, communication elements, and proces-
sors. The processor model is the key element to the perfor-
mance modeling methodology as it facilitates hardware!

96

l

maJ External
Temporal
DataValue
FIIIdionaJ ::=II ..SlrucIInI
sw ProgrammiLevel

softwarecodesign and coanalysis. These building blocks
can be rapidly assembled and configured to many degrees
of fidelitywith minimal efforL

Standard output routines tabulate and graph perfor-
mancestatistics such as utilization and latency. The results
can be directly compared with the system specification to
verifythat the architecture meets the perfonnance require-
ments.Once the architecture is verified (the latency. utili-
zation. and throughput meet requirements. the system is
self consistent. and size. weight, and wwer limits are
met).the system is ready to proceed to detaned design.

As this paper is focused on the particular features of
the library that support hardware/software codesign. the
reader is referred to [1] for a complete description of the
PMLand its capabilities.

4 Hardware/software modeling

4.1 Processor model

A critical factor in evaluating performance of complex
system architecture is very often accurate characterization
of the processor(s) contained in the design; in particular.
the capability to model software. if appropriate. with the
full detail of actual code executing in the system. In addi-
tion. the driving requirement for many design methodolo-
gies is the ability to model the highly complex software
and hardware level interactions. As a result. much effort
was expended to develop a flexible. high fidelity processor
model. This model provides a powerful software modeling
capability over a wide range of model levels: from model-
ing of actual code to high level data flow representations.
The software modeling is built on top of the full capability
of VHDL. Additional features ha:vebeen added to handle
interrupt service. preemptive tasking. task communication.
task synchronization and other services' one would expect
from an executive or general purpose operating system.
The scheduling model can also support static and dynamic
tasking and even rate monotonic scheduling.

The processor model can automatically provide reports
that detail processor task activity timelines. missed dead-
line reports. processor utilization. task processor utiliza-
tion profiles. and overa11latency.

Figure 3 illustrates two types of processor models; the
Light Weight Processor and Multitask Processor models.
The Light Weight Processor (LWP) model provides the
equivalent of a bare processor. The LWP has less overhead
and provides a more efficient software modeling platform
for large multiprocessor simulations. All required system
services such as communication and scheduling must be
supported directly in the software application models.

The MuliThsk Processor (MTP) model supports all the

Light Weight

MultiThsk Processor Model....................~U~.~1 4

~~~L:J~~ .3
1. Operating

SystemModel .............................................."'.""""""""'. ....................... ... . "" . ... . ...."""""",.""." .......
2

Processor Model

Common Services

Instruction Set Model

On-chip Memory
Cache Model

r'." ..........

'i'lIBii::::i:i.i.iii:[.
1

Standard Perfonnance Library Components---.
External Interface

Figure 3: Processor model architecture

services one would expect of a commercial OS as well as a
set of distributed multiprocessor OS services. Both forms
of the processor model can be used together in a single
simulation as shown in Figure 4. This brings the best of
both to bear on -large multiprocessor applications. The
M1P model would be utilized for control and scheduling
and the LWP would be used for dedicated applications
where scheduling and multiple threads are not necessary.

The multitask processor model contains a well defined
uni-processor operating system interface. denoted as inter-
face 3 in Figure 3. The highest level interface. identified as
4. provides the distributed scheduling and communication
services. This includes a network addressing. mailbox. and
name services capability.

Both processor types are supported by a single core
processor model. This core processor model supports the
interface. denoted as 2 in Figure 3. which can host single
thread applications directly or provides the platform for

97



MuItiTask Processor Models

Single Thread

AP~~n

8~
(;USIDm

Executive
and Services

Ip~r~11

LowLevelCommunication Mechanisms

Figure4: Multiprocessor system simulation

supporting the complete suite of operating system ser-
vices, multiprocessor communication, and distributed
scheduling,

The processor model can interface with any of the
wide variety of off-the-shelf performance library compo-
nents via the standard performance token. Shown as inter-
face I in Figure 3, the processor can interact with
memories, communication components, and co-processors
from the libraries. If necessary the user can supply custom
components which utilize token application specific fields.
The processor software models can read/write any of the
token fields for transfer of application unique data to and
from external components.

4.2 Softwaremodeling/representation

In digital systems, software accounts for an increas-
ingly larger portion of the overall system functionality.
Often preliminary software designs are never evaluated or
simulated against candidate hardware designs. These two
design activities are typically completed nearly indepen-
dently. The designs often don't meet until later in the inte-
gration stages. At these later stages any problems
encountered by mismatch of the two designs can have
serious consequences on either requirements or cost and
schedule. The PML, specifically the processor model, pr0-
vides a means to simulate both hardware and software
designs very early in the development process. At this

development stage any problems uncovered can be reme-
died very cost effectively. The processm' model provides
an essential link between hardware and software that can

be used from the very eMly design phases through detailed
design.

The level of hardwaremodel necessary to support soft-
ware models is quite flexible and need only contain hard-
ware performance level detail. As a minimum, a single
processor model can be used with its internal memory!
cache model As multiple processors are added to the
design, communicationcomponents such as network inter-
faces and Xbars must be added and the system topOlogy
captured. If processor/memory bus contention between
multiple bus elements is an issue, the processor memory
model must be extended to reference external memory
components.

Software models can be developed at various levels,
from performance level to complete detailed functional
models. An important aspect of the processor model is its
ability to support functional software models on a perfor-
mance level hardware model. If it is necessary for func-
oo~softwarecompo~tsto~mrewithfun~nal
hardware components, special adaptors known as hybrid
interfaces [22] are required. Functional data exchange will
occur outside the standaId token interface in these cases.

Often one begins with a performance level model of
software which is essentially a high level data flow repre-
sentations of the software architecture. This preliminary
model aids in identifying critical areas of the software that
will possibly require more detailed model development
The user may decide to functionally model all elements of
the software or just the critical areas. In either case, these
functio~ models can be taken all the way down to indi-
vidual instructions of the final software. The hardware
architecture can be evaluated against the evolving soft-
ware design.

One other possible scenario is when the designer
begins with existiitg algorithms in pseudo-code or another
programming language such as C or Ada. The first step in
this case will be to translate those algorithms in VHDL,
which is uncustomary since VHDL is not often thought of
as a language for software or high-level modeling, Never-
theless, VHDL is a full expressive language, so the trans-
lation of the algorithms is straight forward.

Once translated the designer has a vehicle for the sub-
sequent detailed design activities. These algorithms can
initially be hosted on a very elementary model of the hard-
ware, as simple as a single processor, memory, and com-
munication components. Once these pieces are brought
together the hardware and software designs can be per-
formed collaboratively.

98



The main software design activities will be develop-
mentof the architecture which include partitioning, alloca-
tion, scheduling, communicationand possibly some
hardwaresoftware ttade-otfs. The hardware activities will
includeprocessor evaluation, processor clock rate, pr0ces-
sorcount, communication network bandwidth and topol-
ogy.

4.3Multiprocessorcommunication

Extending the performance models to a parallel pr0-
cessingenvironment requires extensions in the physical
communicationmodel which relate to the lowest levels of
OSI stack, process<r model extension to accommodate
portionsof the network layer extending up through layers
4 to 5, and distributed OS capabilities such as remote task
execution. Figure 5 shows how the low communication
layers do not provide adequate services f(X'application
processes to communicate in a multiprocessing environ-
menL

PMW OSI Stack
Communication LayersModel

Supported by
software model
utilities and ser-
vices hosted on
the processor

Application Application

Presentation

Session

Transport

Network

Data

Physical

Figure 5: Communication architecture

The communication layers are supported through the
communication model extensions. This includes primarily
the physical and data layer and a portion of the network
layer. Models can be enhanced to support generalized link
types, access modes, and operational modes. Access
modes include: frequency division multiplex, time divi-
sion multiplex, and demand access with recovery. Opera-
tion modes are primarily circuit switched and packet
switched.

Software models hosted on the processor will support
services from the network layer and higher. The primary
objective of this capability is to provide a process unique

mailbox service which is accessible throughout the net-
work. The upper most levels of the OS! such as presenta-
tion level will likely not be included in the models
capabilities.

4.4 Communication services

4.4.1Addressing

One of the"key elements of multiprocessor communi-
cation is network addressing. The address shall consist of
a four tuple with the following fields shown in Table 1.

Thble 1. Network address SbUcture

Processor element is a physical processor number (X'iden-
tifier. Virtual to physical processor element translation is
not necessary. Thsk type is a unique id for all application
tasks available on the system. Two instances of the same
task executing on the same processor will have the same
first two field of address. They will be distinguished by the
Thread Numbers. For dynamic tasks a unique thread num-
ber will be assigned for each instance and will no longer
be valid once the task has terminated. A unique thread id is
supplied by the scheduler when the task is spawned. Rate
monotonic tasks will utilize the same thread id for ongoing
execution. Port number is an optional field that may be
needed to support sophisticated communication sbUctures
which could require multiple ports per thread. Tasks may
request additional ports which are accessible through the
port number field of the address. These additional ports
will visible both to internal and external processes. Port
number 0 will be ihe default port which is assigned at task
instantiation. The LWP model communication layers do
not intetpret the task type, thread id, and port number
fields of the address but instead pass this information
directly along to the single active thread The task type,
thread id, and even port id can be interpreted by the single
application thread.

4.4.2 MailBoxes

Every rate monotonic and active dynamic task is
assigneda uniqueeventid whichoperatesas a tokenmsg
queue or mailbox. These are the same tokens utilized
throughoutthe modelingenvironmentfor both hardware
and software.The managementof event id assignmentis

99

Address Foun Bits Full lightWeight
Processor Processor

Processor Element 8 l..PE l..PE

Processlfask 1YPe 8 IuTI_MAX Don't Care

Thread Number 4 L.TN_MAX Don't Care

Port Number 4 luPN Don't Care



performed by the mailbox manager. The mailbox manager
also bandies translation of network task address to appli-
cation task. which includes translation of both event id's
and task slots. When messages or tokens are received by
the Network IIF, the mailbox manager reads the address
and directs the message to the applOpriate task. Dwing
task initialization, particuJarly for Rate Monotonic Sched-
uling (RMS) tasks, the task will register its task type.
Dynamics task are registered with the mailbox manager at
the time they are spawned.

4.5 Operation

The basic network address operation and structure for
a typical processor is shown in FJgUre6. Each task thread

PE lei12: ActIve tasks mailbox assignment
Task Task

Mailbox Address TYpe Thread

Figure 6: 'Thsknetwork addressing

is assigned a unique mailbox for receiving data. The mail-
box manager receives all incoming network messages
from the communication manager through a single mail-
box. The messages are then sorted and distributed to the
apPlopriate application mailboxes. Messages sent by all

local application tasks are sent to a the mailbox managers
mailbox. If the mail is local, based on the PE Id check. the
address is looked up and the mail sent directly to the mail-
box for the local task. If it is not local the mail will be
passed down to the communication manager to be sent out
on the network

Most of the local interprocess communication will not
be supported on the LWP model. Since the LWP supports
a single thread any network address with the appropriate
PE id will received by the single application thread. The
single thread application can interpret these addresses,
including task type, thread id, and port number and then
send out the appropriate responses. These response can be
to other LWP in which case the task type and thread may
or may not be need, but any communication to a MTP
model will require these fields to be set

4.6 Distributed OS capabilities

The scope of activities required to develop a disUib-
uted operating system is large. In order to keep the prob-
lem weD bounded, the PML provides a basic set of
distributed services that are capable of supporting high-
level scheduling models. Rather than define and imple-
ment a complete set of high level scheduling services we
believe the resources should be applied to providing a gen-
eral weD designed basic set of distributed services as a
foundation, which can be easily evolved into the needed
capabilities. This will require developers of application
models to embed some of the high level scheduling
directly into their applications models. The distributed ser-
vices that are currently supported are centered around the
capability to ttansparently, with respect to location, spawn,
communicate with, control, and terminate tasks.

Figure 4 illustrates the major components utilized for
multiprocesSor communication and scheduling. In addi-
tion to the main scheduling component which is also inte-
gral to the generic processor model, there exists a number
of system level components necessary to support the high-
level services of a true multiprocessing environment
Included here are scheduling and communication compo-
nents that handle most of the needed distributed services.
The lightweight processor model, illusttated as PE 2 in the
figure, can be used interchangeably with the multitask pr0-
cessor model.

5 Results/examples

The RASSP Benchmark One focuses on a SAR design
[23]. We constructed a performance model using the PML,
based on the SAR perfonnance model handcrafted by the
Lockheed-Martin Advanced Technology La1xntory
(ATL) RASSP team [24]. The intent of our modeling
activity was multifold:

100

IApplication

12,8,0,0 ITIID CD 0
12,8,0,1 ITIID
12,9,0,0 rn:m
12,9,0,1 rn:mCD 0
12,9,0,2 rn:m
12,9,0,3 rn:m

12,9,2,0 mID CD12,9,2,1 mID 9 2
12,9,2,2 mID

12,12,1,0ITIIII 0 1

E
I/)
C
as

1ii:::::E

itie-.2
.B

IDe
c-E

E
8



. Demonsttate how the PML can be used to model a

large distributed application

. Compare process, model, and results to the custom
performance modeling approach.

The model we developed has two primary constituents,
the hardware and software. One of the features of the PML

is that the distinction between the two can be clearly, and
easily made. We modeled a critical computational portion
of the SAR algorithm, consisting of the three following
code modules:

. Input Module -Distributes range vectors to the com-
pute processes.

. Compute process -(1) Receives a range vector, com-
putes range compression, and then sends comer turn
data to its neighbors; (2) it registers the comer turn
data it received from the other compute nodes, per-
forms the comer turn; (3) the process computes azi-
muth compression on the comer turn vectors; and (4)
sends the data to the output process. Depending on the
mapping, this data can be from the previous frame,
and sent during range processing or azimuth process-
ing to minimize wasted bandwidth.

. Output process -collects all the output data.

Note that the model of the above softwareis done
using algorithmicVHDL, only to a level sufficient to
model the expected performance aspects of the algorithm.
In particular, actual computations on data are not part of
this model, though such computations could easily be inte-
grated at a later point. The following is an example of how
simple this code is. It uses function calls standard to the
processor model:

-- Range Processing
RangeProcessing: FOR pulse %B 0 20 '

«NPulse/NPEsPerPolar)-ll LeO.
-- Receive in-coming data.
local wait until (pending events,ProcRequest,- P rocReply ,INPUT EVENT);-- Compute the Range-prIlse.
execute (ProcRequest, ProcReply, FLOP,

NumRangeInst*(WordSlze/ word 32)*NSamples,
INST, DEBUG); -

compute target :- pid;-- Sena the Corner-turn data
SendCornerTurn: rea k I. 1 20 NPEsPerPolar-l LeO.

compute target :- next computeJPid (pid,
- compute'f:argetl;

send data event (Proc~equest, ProcReply,

- - CORNEREV~NT
rOll e i~ bomp te tar et ;woras~e &Ran 8e~NP~spe~polar,
yORNEREUT PaI RITY,

IHD LOOr SendCorne ~~fi; EB6G);
IBD LeO. Rangeprocesi!ng;

The other major part of the model is the hardware
architecture, and that breaks down into the primary pieces
of the network and the processors. We are using the light-
weight processor model, since each SAR processing node
is basically single threaded, and the capabilities of our
scheduler is unnecessary for this model.

The communications network is an interconnected fab-

ric of Mercury Raceway crossbar components, arranged in
a ttee configuration specified by ATI..which is shown in
Figure 7. This example uses several specialized communi-

Figure 7: Mercury raceway SAR topology

cation components to model the 6 port crossbar, which
measures the throughput and latency, and also accounts for
message retries and preemption.

Figure 8 shows a slice of the simulation results. It is an
activity plot, showing when hardware and software com-
ponents are active in the system. Tune is on the horizontal,
and is in nanoseconds. Objects of interest are on the verti-
cal, and in this case show paths through the crossbars, as
well as processor activity. Some of the crossbars are fairly
constantly loaded, while others are lightly loaded. Num-
bers on the right indicate utilization of those components.

6 Summary

The SAR example is intended to demonsttatehow
coarse grained, abstractmodels could be rapidly devel-
oped using the PML. This examplealso points out the
coanalysisfeaturesof the processormodel.The processor
model and software was developedand debuggedover

101



exu.

1

CD.O
831IO'0_""a:

DOOO.
DOO.O
101114.'
IODI.
IODO.
IOD.l
IOD.O

100111""a:
100110-0118..

_10.
10011.
10010.

, 1001.0
1001.1
1001.0

1000'1 MIa:
1O00I0-0II8a:

_00.
10001.

:::0.. ~
1000.1.
1000.0

.-- It
It
t5
It
It
to

II II U7
II II a 7- - - - - I. - _I- 511__- 51100

17
51
5
5
7
Z8
Z8
to
n
51
5
5
7
Z8
Z8

- - - I. - _I-. . .. . .II II II. . . I. . ...... .. I. .....
- - - - - 1-- --. . .. . .II II U. . . . ... . I.". . . ..11.-

Figure 8: SAR Simulation Results

several weeks, and included writing some fajrly portable
routing routines. This processor model will be the exact
same one used for the more detailed communications
model The majority of this model is reusable for more
detailed explorations and refinement

7 Acknowledgments

This work has been sponsored by the following con-
tI3cts, F33615-94-C-1495 (Omniview PMW), DAALO1-
93-C-3380 {Lockheed-Martin), F33615-94-C-1495
(VHDL Hybrid Models) and F33615-92-C-3802 (COO).
The majority of the work presented in this paper was
developed under the Lockheed Martin A1L RASSP pr0-
gram.

8 Reference

[I] Rose, F., T. Steeves, and T. Carpenter, "VHDL
Performance Models," Proceedings 1st Annual RASSP
Conference, pp 60-70, Arlington, VA, August, 1994.

[2] Steeves, T., F. Rose, T. Carpenter, J. Shackleton,
O. von der Hoff, "Evaluating Distributed Multiprocessor
Designs," Proceedings 2nd Annual RASSP Conference, pp
95-102, Arlington, VA, July, 1995.

[3] Richards, M., "The RASSP Program: Ov«view
and Accomplishments," Proceedings 1st Annual RASSP
Conference, pp 1-8, Arlington, VA,August, 1994.

[4] Hein, C., et at. '"'RASSP VHDL Modeling
Terminology and Taxonomy -Revision 1.0," Proceedings
2nd Annual RASSP Conference, pp 273-281, Arlington,
vA, July, 1995.

[5] Honeywell Technology Center, VHDL
Performance Modeling Interoperability Guideline, Version

~

1.6, November, 1995.

[6] Smith, C. U., R. R. Gross, "Technology Transfer
between VLSI Design and Software Engineering: CAD
Tools and Design Methodologies," Proceedings of the
IEEE, Vol 74, No.6, June 1986, pp. 875-885.

[7] F~e, D. W., M. K. Purvis, "An Overview of
Hardware/Software Codesign," International Symposium
on Circuits & Systems, May 1992, pp. 2665-2668.

[8] Kumar,S., J. H. Aylor,B. W. Johnson,W.A.
Wulf, The Codesign of Embedded Systems: A Unified
Hardware/Software Representation, Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1996.

[9] Eslrin,G., R. S. Fenchel, R. R. Razouk.M. K.
Vernon, "SARA: Modeling, Analysis, and Simulation
Support for Design of Concurrent Systems," IEEE
Transactions on Software Engineering, Vol. SE-12, No.2,
February 1986,p. 293-311.
[10] Scientific Engineering Software, Inc. SESI
Workbench User's Guide, Austin, Texas, April 1989.

[11] Frank, G. A., et aI. "An Architecture Design and
Assessment System for SoftwarelHardware Codesign",
Proceedings 22nd Design Automation Conference, 1985,
pp.417-424.

[12] Srivastava, M. B., R. W. Broderson. "Rapid-
Prototyping of Hardware and Software in a Unified
Framework", Proceedings of the International Conference
on Computer-Aided Design, 1991, pp. 152-155.

[13] KaJavade, A, E. A Lee, CIAHardware-Software

Codesign Methodology for DSP Applications," IEEE
Design and Test, September 1993, pp. 16-28.

[14] Gupta, R. K., G. De Micheli, "Hardware-
Software Cosynthesis for Digital Systems," IEEE Design
and Test, September 1993, pp. 29-40.

[15] Ernst, R., J. Henkel, T. Benner, "Hardware-
Software Cosynthesis for Microcontrollers," IEEE Design
and Test, December 1993, pp. 64-75.

[16] Barros, E., W. Rosenstiel, CIA Method for
Hardware/Software Partitioning," Proceedings Compeuro,
IEEE CS Press, 1992.

[17] KaJavade, A., E. Lee, "A Global Criticality/Local
Phase Driven Algorithm for the Constrained Hardware!
Software Partitioning Problem," 3rd International
Workshop on Hardware/Software Codesign, Grenoble,
France, September 22-24, 1994,pp. 42-48.

[18] Aylor, J. H., R. Waxman, B. W. Johnson, R. D.
Williams, "'TheIntegration of Performance and Functional
Modeling in VHDL" in Performance and Fault Modeling
with VHDL, J. Schoen, 00., Prentice-Hall. Englewood
Cliffs, N. J., 1992.

[19] IEEE Standard VHDL Language Reference

102



Manual, IEEE SUI 1076-1993, IEEE Customer Service,
445 Hoes Lane, PO Box 1331, Piscataway, New Jersey
08855-1331.

[20] Pridmore, J., and W. Schaming, "RASSP
Methodology Overview," Proceedings 1st Annual RASSP
Conference, pp 71-85, Arlington, VA, August, 1994.

[21] Carpentez, T., and C. Miller, "Modeling Human
Factors with VHDL," Proceedings Fall 1993 VHDL
International Users Forum, pp 65-75, San Jose, CA,
October, 1993.

[22] Meyassed.M., R. McGraw,J. Aylor,R. Klenke,

R. Williams, F. Rose, and J. Shackleton,"A Framework for
the Development of Hybrid Models," Proceedings 2nd
Annual RASSP Conference, pp 147-154, Arlington, VA,
July, 1995.

[23] Zuerndorfer, B., and G. Shaw, "SAR Processing
for RASSP Application", Proceedings 1st Annual RASSP
Conference, pp 253-268, Arlington, VA, August, 1994.

[24] Hein, C., and D. Nasoff, "VHDL-based
Performance Modeling and Vu1ual Prototyping",
Proceedings2nd Annual RASSP Conference,pp 87-94,
Arlington,VA,July, 1995.

103


	Main Page
	CODES96
	Front Matter
	Table of Contents
	Author Index




