
Speed-Up Estimation for HW/SW-Systems
Wolfram Hardtt, Wolfgang Rosenstieltt

email: hardt@uni-paderbom.de

tUniversity of Paderbom, Warburger Str. 100 ttUniversity of Tubingen, Sand 13

33 095 Paderbom, Germany , 72 076 Tubingen, Germany

Abstract -casestimeconstraintsfor real time applicationscan be met
H UT/ 'SW d .

h b I. d t .d oj: if HW/SW-codesign is introduced. The aim of partitioning
yrr. -co eslgn as een app Ie 0 a WI e range OJ' . " . . .

applications. Several partitioning methods have been ISthe acceleratIOnofthe lime cntIca! p~ of the apphcatton
suggested. Thus the designer selects modules for HW or ~25]. Oth~r a~proaches op.ttilllze a HW/SW-
SW-implementation for the best possible peiformance Imple~entat~o~.~ll1Sleads to a.d.esIgnof the same behavior
within a set of performance and design constraints. This ?ut wIth ~mmII~l1zedHW-p~tIOn [~O].This i~.necessary
paper describes an estimation method to approximate a If the desIgnenvIronment restrIct the sIze of additIOnalHW.
priori the entire system peiformance. The estimation Further approachesare not constraint driven but focus on an
method has been integrated into the codesign tool COD and overall system optimization. The most important aspect is
first results could be generated. The estimated speed-up has the computation time of the whole application. HW/SW-
been determined for a ciphering algorithm and has been partitioning can raise the system perfonnance significantly
compared to the speed-up of the entire HW/SW-system. The and a trade-off between flexibility and perfonnance can be
estimation speed-up matches thefinal speedup. detennined [13, 22]. This is especially interesting because

1 I t d t ' standardcomponents and standard architecture concepts are. n ro UC IOn '.
used and extended by specIal purpose components WhICh
are application specific. But several effects of HW/SW-
partitioning may reduce the system perfonnance, e.g., data
transfer between HW- and SW-partitions are very
expensive and time consuming. Of course, these costs
depend on the chosen architecture as well as on the HWI
SW-partitioning and it is difficult to quantify the reached
improvements considering system perfonnance a priori
because not only the HW-partition must be in view but the

During the last decade raising computing power and
complex synthesis tools as well as decreasing chip size due
to technology improvements lead to a higher level of
automated design combining HW- and SW-components to
HW/SW-systems. It has been pointed out that the
partitioning process is rather complex and different
approaches have been suggested [23]. Some approaches use
estimation methods to capture the problem complexity. In
[16] an estimation of the partitioning costs is presented. The
estimated partitioning costs are used as partitioning criteria.
Derivations between estimated and real costs may occur
due to synthesis, compiler and communication effects.
Further estimation approaches consider the SW-part. If
constraints fonn the environment can be met by a SW-
implementation additional HW can be avoided. Therefore a
detailed estimation of SW-perfonnance is necessary. In [10]
an estimation of SW-perfonnance is suggested. Based on a
data flow graph a delay estimation is perfonned. Li and
Malik use ILP to detennine the bound on the running time
of a given program on a given processor [18]. This solution
considers all program paths implicitly and the drawbacks of
static code evaluation are eliminated and more precise
infonnation is obtained.

Beside different estimation and partitioning methods
different goals of HW/SW-partitioning are in view. In many

The authors would like to acknowledge the support provided by
Deutsche Forschungsgemeinschaft DFG, project SFB 358.

0-8186-7243-9/96 $05.00 @ 1996 IEEE

-- - ~-

synthesis
(SYN)

rlt~nthesis
(REPART)

Figure 1, PMOSS - design environment

whole system. Therefore we investigated in this subject and
in this paper we present a new estimation method
approximating the speed-up of HW/SW-systems. Our
estimation method is parameterized by the characteristic of
the architecture and can therefore be applied to different
codesign architectures. All data needed for speed-up
estimation is generated automatically by our design
environment PMOSS [6]. This environment (figure 1)

36

l

.

integratesa codesign tool COD [11], a high level synthesis
tool SYN [9] and several frontfback ends (C/C++,
behavioral VHDL, RTL-VHDL, BLIF, KISS). Also re-
synthesisfrom RT-level is supported [5, 4]. Based on this
environmentan automated design flow down to RT-levelis
provided. Starting the design flow with HW/SW-par-
titioning the COD-tool performs several phases of
specification analysis as described later on. The design
specification will be partitioned in order to accelerate the
overall computation speed. The tasks performed by COD

, ,
C- system specification

specification analysis

PMOSS ,
: CODSpecAna II
I I

: CODPart II
I I

: CODSpeedUp II
I I

: SYN I
- - - -Z-cad - __I

r - - - _:r!- - - - -
~ - <':'o~~e~t~i~i~o~_:

ow ISW -partitioning

speedup estimation

implementation of HW

emulation

(a) (b)

Figure 2. HW/SW-codesign flow (a) and involved
tools from our design environment PMOSS (b)

are shown in figure 2. The HW-partition is passed to HW-
synthesis. Finally, the synthesized HW-partition is
integrated into the target system. Now, the performance of
the implemented HW/SW-system can be determined after
implementation, e.g., if appropriate benchmarks are exe-
cuted. But this is a time consuming process and runs out of
stream rather quickly if the partitioning process suggests
several capable partitions. This can be avoided by a priori
perfonnance estimation. But performance estimation must
regard not only the HW-partition but the whole HW/SW-
system. At least, there are three problems which must be
solved:

1. Beside the runtime comparison of a module's HW-
implementation with the corresponding SW-
implementation data transportation from and to the
HW-partition must be taken into account.

2. An accurate performance model for HW/SW-systems
is necessary. This model must be simple enough to
handle large systems of e.g., several thousand lines of
code and it must contain all details necessary to cover
the most important effects of the runtime behavior of a
HW/SW-system.

3. Performance model evaluation is rather important. All
necessary data must be extracted automatically form
the HW/SW-system's specification.

In this paper we suggest a solution for these problems

and present a speed-up estimation method. For
demonstration, we apply the developedspeed-up estimation
method to a ciphering algorithm [8]. The estimated speed-
up fit the speed-up determined experimentally.

The rest of this paper is organized as follows. First the
codesign architecture is described (chapter 2). In chapter 3
data transportation costs are classified (chapter 3.1), an
overview over the specification analysis task of the COD-
tool is given (chapter 3.2) and the performance model for
HW/SW-systems is defined (chapter 3.3). In chapter 3.4
the estimation method itself is presented. Our approach is
demonstrated by a case study (chapter 4). Finally, a
conclusion and some remarks to future work are stated.

2. Codesign Architecture

This subsection gives a short overview over the intended
HW/SW-architecture. As suggested in [12] our codesign
approach extends a powerful standard architecture by some
specific HW (figure 3). This provides the computation

sparc
standard architecture special function unit

Figure 3. Target system architecture

power of the host processor (e.g., a pipelined RISC
processors) as well as fast specific HW for special
applications. But it is important, that the features of the
standard architecture can be obtained also for HW/SW-
implementations. E.g., many architectures provide a very
fast cache which accelerates the data handling enormously.
If a HW/SW-implementation disables the cache usage, a
system speed-up can hardly be reached. This leads to a very
tight coupling of the standard processor with the specific
HW and requires a processor specific interface between
both parts. But in this way a fast data transfer between the
HW- and the SW-partition is reached.

2.1 The chosen Interface Concept

The specific HW and the HW/SW-interface (figure 3)
build the special function unit (SFU). The SFU is linked to
the standard CPU by a special coprocessor port. If this port
is not supported by some processors the interface must be
modified and a DMA unit must be integrated. But e.g., the
SPARC processor provides the coprocessor interface and a
standard configuration of the basic components (each
available as single chip) and the integration of the SFU is
depicted in figure 4. This interface concept allows the host
(standard cpu) to control the SFU. Both units can be
activated together and all data transfers are pipelined.
Furthermore, his concept. implies a bipartitioning of the

37

-~
~~
~

'"

~
~
;;..>.

~v"
$-
~
,

I
II

r

I

I

L~

I.
r~

system specification into one HW- and one SW-partition
because there is one communication interface. Both

partitions may contain several modules. A module is

Bus
Address

Data Bos

Cache
Controller
and MMU

Control Signals

Mbos (64-bit moltiflexed data/address bo~

Figure 4. Standard configuration of a sparc
. architecture [3]

defined by a procedure (or function in 'COsyntax) of the
system specification. A module is understood as smallest
unit that can be transferred from SW to HW. Thus the
designer can influence the partitioning process by varying
the size and the number of modules in the system
specification.

2.2 Structure of the Specific Function Unit

The HW/SW-interface provides fast data and instruction
transportation. Instructions for data transfer and status
information are implemented. Details can be found in [14].
Application execution may be divided into three parts.
Input read, result computation including handling of
temporary data and writing back the output are different
tasks to perform. Generally, these are not sequentially
executed. Input registers, a data path computing the results,
result registers, and a controller must be provided. We call
the data path specific function HW (SFHW). A block build

Pipelined
CPUISFU
Interface Specific

HW

Figure 5. SFUstructure

up of this four units is called specific function subunit
(SFSU). In figure 5 a high-level block diagram is given. The
number of input and result registers can be varied due to the
implemented application up to 32. This SFSU is connected
to the HW/SW-interface via a 46 bit bus. This bus consists
out of 32 data bits, two times 5 bit to address input and
result registers and some control and status bits. Such a
SFSU is complex enough for a variety of applications. But
there are also applications using more input or result
registers. Furthermore there may be several modules

- -- --- -- - ~--

mapped to Hw. Due to this fact the specific HW may be
build up generic in the number of SFSUs. The necessary
SFSU selection is realized by an additional input register.
The number of SFSU is limited because of technical
reasons to 219.This SFU structure requires no modification
of the extern environment.

3. Speed-Up estimation

With respect to this codesign architecture the COD-tool
partitions the system specification in a HW- and a SW-part
in order to speed-up the whole system by adding a capable
amount of HW. For speed-up estimation the time for data
transportation is apProximated and based on the results of
specification analysis the entire speed-up is determined.
First the problem of data transportation is discussed.

3.1Data Transportation

Data transportation influences system performance
enormously [15]. Considering a SW-implementation
different types of access to data cause data transportation in
some kind. Table 1 distinguishes four types of data access
and defines two access categories. In addition each category

Types of data access

access to global data

parameter transfer

access to data via pointer

access to local data
I

Table 1: Classification of data access

Access category

distinguishes a read and a write class of data access. In
practice the execution time of these data accesses vary and
depend on the system memory hierarchy. But the two
categories local data access (Aloe) and global data access
(Aglob) can be identified clearly. A more detailed
classificationdistinguishes first and second level caches and
main memory as well as very slow secondary storage (disc,
tape). The runtime behavior of the system memory
hierarchy depend on the operating system. We regard such
effects as external influences not to be considered in this
context. However, the time characteristics of the defined
categories are obviously not the same for HW- and SW-
implementations. This is a critical aspect for system
performance. Depending on the integration concept access
from the HW to main memory can become extremely slow
[21,7]. We express these architecture characteristics
concerning data transportation by eight constants related to
both data access categories and their classes. This constants
parameterize the speedup estimation task. We present the
characteristics of four different architectures in table 2. This
parameter concept allows speed-up estimation for varying
sparc based architectures with different HW/SW-interfaces.

38

Beside the type of the data access the number of data
accessis important. If a SW-implementation is in view the

Table 2: Data trans.fer characteristics

a. read b.write

timefor all data transportations (DTSW)can be determined
asthe sum of all data access weighted by the corresponding
accesstime. For a HW-implementation the time for all data
transportations (DTHW) can be determinedin the same way.
Only the adequate constants describing the HW behavior
are used. The effects of the differences in data
transportation between HW- and SW-implementations
depends on the number of data access. In practice the
number of main memory accesses per module varies
enormously. Thus the data transportation aspect may
decrease or increase the system performance. This can be
expressed by an efficiency coefficient 11DTderived from
data transportation:

DTSW

11D1'=: DTHW

If llDT is smaller than I data transportation will reduce
2,00
1,80
1,60
1,40
1,20
1,00
0,80
0,60
0,40
0,20
0,00 .

if ~~ .#
.s> .JY",of go

~

Figure 6. 11DTfor some benchmarks [1]

the systemperformance otherwise a HW-implementation of
this module increases system performance because of data
transportation. Our codesign architecture (chapter 2) is
described by the parameters of the first architecture
(table 2) due to tight coupling of processor and specificHW.

Figure 6 shows the detailed results for some benchmarks.
Depending on the number of global data accesses a system
speed-up can be reached (KMP, gcd, kalman, fibonacci).
11DTis limited by 2 due to the architecture parameters. The
computation of 11DTis subject of one phase of specification

analysis and can be performed automatically. The next
paragraph gives a brief overview over the specification
analysis task. Details are presented in [11].

3.2 Specification Analysis Task

During specification analysis a design is thought of as a
set of interacting modules. The suitability of eachmodul for
HW-implementation is examined during four phases. The

Figure7. Specificationanalysis scenario

analysis task takes static aspects (SA), dynamic runtime
characteristics (DA), parameter transportation costs
(PA) and main memory access (MA) into account. These
specification analysis phases result in a cost vector
'¥ = (SA,DA,PA,MA) E JR4. In figure 7 the analysis
scenario is presented.

3.2.1 Static Specification Analysis

Static specification analysis examines assembler code
without execution. A lower bound on the execution time for
a SW-implementation is computed. Also the number of
jump instructions and bit-level instructions, e.g., AND,
EXOR per module are counted because these instructions
can be executed in HW much quicker than in SW. E.g., the
comparison of two single bits can be done in HW very fast
by only one gate. A SW-implementation e.g., for a
pipelined architecture needs one cycle at least. However, in
order to reach a reasonable speed-up the accelerated module
must be of an appropriate size. The approximated runtime
of a SW-implementation is interpreted as heuristic
definition of the module size. These aspects determine the
SA component of the cost vector.

3.2.2 Dynamic Specification Analysis

Dynamic specification analysis examines the runtime
behavior. Profiling data generated by execution of the SW-
implementation of the design is analyzed. Considering a
single module three aspects, the absolute, average and
relative runtime of a module are taken into account:

. RT!l:s: The time consumed by a module during the
whole execution of the SW-implementation of the

39

Implementation Software Hardware

Category local global local global

Architecture R W R W R W R8 Wb

cache, pipelined 2 3 2 3 1 1 6 9
interface.

without cache 5 6 5 6 1 1 9 12

simple Interface 2 3 2 3 1 1 30 30

serial interface 2 3 2 3 1 1 2200 2200
(115 KBit/s)

design..RTsW ; The average of all execution times Peraverage
module found during the whole execution of the SW-
implementation of the design.

.RT~:r:The percentage of a modules absolute runtime of
the execution time of the SW-implementation of the
design.

3.2.3 Parameter Analysis

Furthermore the interface problem comes into
perspective. Obviously the module parameters and the
computed results also must be transferred from SW to HW
and vice versa. This may lead to a performance reduction
due to data transportation. For this reason we analyze also
the module parameter during the static specification
analysis phase.

3.2.4 Memory Access Analysis

Using high-level description languages data access is
often described by references to memory addresses. Some
of them are local data values others are of global range and
stored in main memory. The number of accesses to main
memory can only be evaluated during runtime because of
data dependencies. In our approach the behavioral
description is read by a parser and automatically modified
in order to generate a protocol of all memory accesses
during the application execution. The modified
specification is compiled to an executable and test pattern
are applied. The generated data is examined during the
design execution and the number of local and global read
accesses as well as the number of local and global write
accesses to main memory are computed and transferred to
the central codesign data structure (module graph). Thus an
automated procedure is provided to generate all data
necessary for the computation of llDT'

All four phases of the specification analysis task are
performed automatically and provide detailed system
characteristics. Because design execution instead of design
simulation is used the runtime consumed by specification
analysis is very short.

3.3Performance Model for HW/SW-Systems

The single aspects of HW/SW-systems presented above
must be integrated into a performance model. This model
considers:

.the whole HW/SW-system

.all data transports

. and the performance characteristic of the HW-partition.

In this paper we restrict ourselves to a HW/SW-
bipartitioning which contains one SW-partition containing
severalmodulesandoneHW-partitioncontainingonlyone

-- - --- - - ---'-

module. In principal, the HW-partition is build up by
several modules and implemented on one special function
processor. But the presented performance model and the
estimation method capture this also. We define the HW/SW-
system (UUC= llnit llnder !:odesign) as set of all modules
needed to specify the system. The runtime of a pure SW-
system can be build up by the runtime of all modules
(RTSW (UUC)= L RT~~d)

mod

with mod E'uuc. Transferring one (or more) modules
(Mi) into HW reduces the SW-partition's complexity and

runtime (L RT~~d). Additional runtime is consumed
mod*-Mi

by the HW-partition itself (RTHW) and additional data
transportation (DTSW) must be performed. The runtime of
the HW/SW-system can be summerized as;

RTHWSW(UUC) = L RT~~d
mod*-Mi

+ RTHW (M) +

DTHW(M.) -DTsw(M.)I I

In figure 8 the characteristics denoted by RTHWSWare
pointed out. All data transport to main memory is handled
by SW. The HW-partition has no direct access to main
memory. Due to our HW/SW-interface this data transport
can be executed very efficiently.Also the memory hierarchy
of the standard architecture is not restricted. So full cache
usage can be provided for the HW/SW-system.The speed-

sw sw

(a)
'" RTsW£.. mod
mod (b)

Figure 8. Data ap~ess from SW (a) and HW (b)
up of the HW/SW-system is strongly influenced by data
transportation. An implementation as HW/SW-system is
only suitable if the runtime reduction by. a HW-
implemented module is not payed with more additional
runtime for data transportation between the partitions. In
formal terms: RTsW- RTHW(DTHW- DTsw)

The important influence of data transportation is evident.
Based on this performance model our estimation method
approximates these effects.

3.4 Estimation method

The abstract performance model is approximated by our
estimation method determining the speed-up reached by a
HW/SW-implementation of the initial SW-system. Speed-
up is understood here as the reduction of system runtime in
percent. The computed speed-up reached per module which

40

--1

is implemented in
CODSpeedUp(UUC,m) =

[

RTHW (m) InstSW (m)

]
RTsW(m) x schedule + AccsW (m) x Is

rei RTSW (m) mem InstSW (m)approx

HW is defined

This equation is based on three components:

.RT!e~: The module Mj is transferred to Hw. The runtime
of the remaining SW-partition is reduced by the

runtime of Mj' This builds the basis for speed-up
estimation. Theoretically, the reached speed-up cannot
exceed RT~:;(Amdahl's Law). An approximation of the
real acceleration is determined by:

RTHW. s~';dule: This quotients compares two static run-RT . .. HW "approx tIme approxImatIons. RT h d I relers tosc e u e
the number of control-steps on the longest acyclic path
through the finite state machine of the controller of the

HW-implemented module. RT~:;rox denotes the static
approximation of the executIon time of a SW
implementation. Here, the longest acyclic path through
the data flow graph is regarded. Both approximations are
static and consider every loop only once. The quotient of
both approximations gives an rough idea of the speed-up
reached by HW implementation if no data transfers are
taken into account. But the advantages of HW-
implementation because of intensive usage of inherent
parallelism etc. are taken into account. Because this is
only a static relation not regarding any influence of data
dependencies this quotient is related to the dynamic
runtime of the regarded module Mj' The speed-up
reduction of data transportation is captured by the last
component:

InstSW

.Acc~~m x Ins;W : whereby Acc~~m ~sdetermined by
TJDT-l representIng the performance

improvement caused by data transportation. As
mentioned above this improvement can be negative (in
relative terms Acc~~m < 1) but this is only for data
transportation instructions (lnst~w) relevant. So the
relative improvement from data transportation is
weighted by the relative number of data transportation
instructions (Inst~W/lnstSW) which is obtained from
specification analysis phase SA (compare with R3 and
R4 in table 4).

4. Speed-up Estimation for a Ciphering
Algorithm

For demonstration of our estimation method we present
in this paper a case study. In this case study one algorithm
has been implemented and examined. The estimation
method has been applied and the estimated system speed-up
is compared to the experimentally determined system

- -

as: performance. For this case study, we chose a ciphering
algorithm [8] because ciphering algorithms need high
computation power and are typical candidates. This
algorithm belongs to the class of stream ciphering
algorithms and is used for encryption of numerical
messages.

4.1 The Algorithmic Concept

The basic concept of the ciphering algorithm named
crypt is given in"figure 9. Three nested loops are executed.
The outer loop (line 1) is executed for each pair of inputs.
The given pair of integers (input) is transferred into a binary
coding, e.g., the ASCII code. For each input a sequence of
pseudorandom numbers (PRS) is generated. The length of
this sequence determines the coding quality and can be set
by the designer, e.g., 1000 is a commonly used length. The
number of iterations of the first loop depends on the input
length. The second loop (line 3) handles each value of the

1 for each pair (n,m) of integer inputs
2 compute a pseudorandom integral

sequences N,M
for each value v of sequence N, M

converted v into a fibonacci

binary sequence vN' vM
for an appropriate t

perform the bitwise logical
sum of the central portions

of vN' VM
7 end
8 end
9 end

3
4

5
6

Figure 9. Ciphering algorithm of Filipponi
computed PRSs. Thus the number of iterations of this loop
is fixed by the sequence length. For each value a
representation as binary fibonacci sequence is computed.
This sequence contains only fibonacci numbers and the sum
of these numbers are equal to the value in view (v). So, this
sequence can be represented by a binary vector indicating
which fibonacci number must be summed up. The last step
is performed in the inner loop (line 5). The binary fibonacci
sequence ob both input values are combined by an logical
operator.

That means, for the input pair (h, i) the integer pair (104,
105) is generated. Now the FRS is computed, e.g., PIS(1O5)
= 59922, 1914249, 5398140, 5398269, 5402268,
7924660... Each of this values is transformed into the
fibonacci binary sequence (FBS), e.g., FBS(222208) =(1, 0,
1,0, 1, ...,0). The last step combines a part of these FBSs
by a binary operator. It has been shown in [2] that a
fibonaccibinary sequence is unique. Based on this sequence
a fairly satisfactory ciphering sequence can be generated.
See also [[Fi96]].

41

,

4.2 HW/SW-Partitioning

Wehave implemented this algorithm in C++ on an unix
workstation. Some general information about the
implementation shows table 3. The SW-implementation

Table 3: Characteristics of benchmark crypt

consists out of 104 modules and ca. 7000 lines of (SPARe)
assembler code. This shows that the size of this algorithmis
large enough that a HW/SW-implementation can be
considered. And a more fine granular analysis, e.g., on data
flow graph basis is hardly capable. But our specification
analysiscan be performed rather quick. The exact execution

Table 4: Results of static spec. analysis

time is mainly determined by the dynamic analysis phase
because the algorithm is executed several times with
different inputs. The static specification analysis phase (SA)
computes a detailed statistic about the used instructions as
derived in table 4. These results were automatically
computed for the crypt algorithm and are listed in table 5 for
the most important modules. Some of these results are

Table 5: Results of SA for benchmark crypt

relevant for our speed-up estimation method (R3, R4, R6).
The partitioning task is based on the results of all four
specification analysis phases and classifies the module
fibonacci_n as suitable for HW-implementation. This
module computes the n-th fibonacci number. The dynamic
analysis points out that this module consumes 11% of the
system runtime. Figure 6 shows that the memory analysis

- - -- - --- - -- ~--

phase results with a very good value for TJDT(1.94). Thus,
the partitioning seems to be good and speed-up estimation
was applied in order to determine the speed-up for the HW/
W-system.

4.3 Speedup Estimation

All data needed for computation of the speed-up has been
generated automatically. As mentioned above specification
analysis anq.scheduling are performed before. The obtained
data is given in table 6.Now the speed-up estimation can be

Table 6: Obtained data for estimation method

computed easily: CODSpeedUp (crypt,jibonacci) = 8 %

A reasonable speed-up of the whole system of 8% has
been estimated. This indicates also that the generated
partitioning will speed-up the system. This could be proved
by implementation and emulation of the HW/SW-system.

4.4 Implementation and Emulation

After speed-up estimation the module fibonaccCn has
been implemented in HW using our synthesis tool SYN.
This tool generates a multiplexer based RT-Ieveldescription
of this module. The RTL-description consists out of a
controller and a data path. The controller is necessary
because the number of iteration which are needed to
compute the n-th fibonacci number depends on the
parameter n. So loop unrolling is not possible. The
generated RTL-VHDL description was optimized and
mapped to a HW library using the Synopsys design
environment [19]. The optimized design was transferred to
a EDIF-netlist [17]. This netlist was given to the Concept-
Silicon-Software of Zycad [26]. This step is needed to
partition the netlist for implementation of the emulator HW.
The Zycad emulator is build up by two boards. Each board
contains eight daughter boards and each daughter board
contains three FPGA components. The designer can chose
an automated partitioning process or partition the netlist
manually. During the last step the partitioned netlist is
mapping to the FPGA components (Xilinx 4010) [24]. The
complete circuit used 2500 gates on the emulator and fits
into one FPGA.

Once the module is implemented runtime experiments
can be performed. For the same input data a speed-up of the

42

--1
.

Characteristic Value

lines of C++ code 578

lines of assembler code 7006

number of modules 104

SA-Result Note

Rl number of jump-operations per module

R2 number of bit-level-operations per modul

R3 number of load/store-operations per modul

R4 number of operations per modul

R5 control-dominance =(Rl+R2) / R4

R6 approximated maximal SW-runtime

Module Rl R2 R3 R4 R5 R6

CompCiphring 53 19 65 272 26 134

CompLvalue 12 9 23 97 21 229

contents 4 0 4 20 20 21

fibonacci_n 4 0 14 31 12 18

Component of estimation method Obtained data

RTsW 11%rei
RTSW 18 cyclesupprox

RTsW 6 clock stepsschedule

Accm 0.73

InstSW 14Is
InstSW 31

module by HW-implementation of 94% was reached
(table8). But this include no data transfers to the SW-
partition.Now, the module is integrated into the codesign
architecture and emulation can be performed again.
Thereforeit is assumed, that the special function unit and
thehost processor run by the same clock rate. It could be
obtaineda speed-up for the whole system of 10% (table 8).
Thisexperiment include the execution of the SW-partition
on a SPARe-based workstation, the data transfers via the
HW/SW-interface, the execution of the HW-partition and
alldataaccesses from the HW-partition.

Table 7: Experimental determined speed-up

The determined speed-up of the HW/SW-system crypt is
10%.This is close to the estimated speed-up of 8%. The
same experiment for further benchmarks is under
development.The estimation method was implemented and
can be performed automatically. Thus the speed-up for the
whole HW/SW-system can be approximated very fast and
the implementation of inefficient partitions can be avoided.

5. Conclusionand future work

In this paper we presented an automatically performed
estimation method to approximate the speed-up of a SW-
system implemented as HW/SW-system. Therefore a
performance model was established, data-transfer costs
classifiedand an estimation method defined. The estimated

speed-up meets the experimentally determined speed-up.
Although the design flow is widely automated the
experiments are quite time consuming because a lot of
technical problems have to be solved. But we will apply our
estimation method to more complex benchmarks in near
future.

6. References

[1] Benchmarks for the 6th International Workshop on High-Level Syn-
thesis. Available through electrOliic mail at ics.uci.edu, November 2-
4 1992. Proc. of the 6th International Workshop on High-Level Syn-
thesis.

[2] J. L. Jr. Brown. Zeckendorfs Theorem and Some Applications. In
The Fibonacci Quaterly 2, 1964.

[3] Cypress Semiconductor Ross Technology Subsidiary, 3901 North
First Street, San Jose, CA 95134. SpardRISC User's guide, 1990.

[4] H.-J. Eikerling. Entwurfsdarstellung durch BDDs fiir die Resynthese.
In GI/ITG-Workshop Anwendungen formaler Methoden im Syste-
mentwurf, Frankfurt, March 21-221994.

[5] H.-J. Eikerling and R. Camposano. CP-/DP-Partitionierung und Re-
synthese. In 6. E.I.S.-Workshop, Tubingen, November 25-261993.

[6] Heinz-Josef Eikerling and Wolfram Hardt. PMOSS: Paderborner

--

Modular System for Synthesis and HW/SW-Codesign. University of
Paderborn, Warburger StraBe 100,33098 Paderborn, 1995.

[7] R. Ernst and J. Henkel. Hardware-Software Co-design of Embedded
Controllers based on Hardware Extraction. In Proc. of the 2nd ACM
Workshop on Hardware/Software Codesign, October 1992.

[8] P. Filipponi and E. Montolivo. Application of Fibinacci Numbers,
pages 89-99. Kluwer Academic Publishers, BostonIDordrechtILon-
don, 1990.

[9] R. Geneviere and A. Hoffmann. PMOSS - A Modular Synthesis and
HW/SW-Codesign System. Technical Report SFB - 358 - B2 - 2/94,
University of..Paderborn, Technical University of Dresden, 1994.

[10] R. K. Gupta and G. De Micheli. Constrained software generation for
hardware/software systems. In Third International Workshop on
Hardware /Software Codesign, pages 56-64, Grenoble, September
1994.

[11] W. Hardt. An Automated Approach to HW/SW-Codesign. In lEE
Colloquium: Partitioning in Hardware-Software Codesigns, London,
Great Britain, February 13 1995.

[12] W. Hardt and R. Camposano. Trade-Offs in HW/SW-Codesign. In
Proc. of the 3rd ACM Workshop on Hardware/Software Codesign,
Cambridge, MA, October 7 - 8 1993.

[13] W. Hardt and R. Camposano. Specification analysis for hw/sw-parti-
tioning. In W. Grass and M. Mutz, editors, 3. GI/ITG Workshop: An-
wendungformaler Methodenfiir den Hardware-Entwurf, pages 1-10,
Passau, March 1995. Shaker-Verlag, Aachen.

[14] W. Hardt, A. Gunther, and R. Camposano. Pipelined Interface for
HW/SW Codesign. Technical Report SFB - 358 - B2 - 3/94, Univer-
sity ofPaderborn, Technical University of Dresden, 1994.

[15] J.L. Hennessy and D.A. Pattersopn. Computer Architecture: A Quan-
tititive Approach. Morgan Kaufmann Publishers, San Mateo, CA,
1990.

[16] D. Herrmann, J. Henkel, and R. Ernst. An approach to the adaptation
of estimated cost parameters in the cosyma system. In Third Interna-
tional Workshop on Hardware /Software Codesign, pages 100--107.
IEEE Computer Society Press, September 1994.

[17] Interim standard. EDIF/EIAL Library of Parameterized Modules,
1993.

[18] Y. Li and S. Malik. Performance analysis of embedded software using
implicit path enumeration. In DAC_95, pages 456--461, DACadc95,
June 1995. ACM/IEEE.

[19] Synopsys, Inc., Mountain View, CA. VHDL Design Analyzer (tm)
Manual, 3.0 edition, 1992.

[20] F. Vahid, J. Gong, and D Gajski. A Binary-Constraint Search Algo-
rithm for Minimizing Hardware during Hardware/Software Partition-
ing. In Proc. of the European Design Automation Conference, pages
214-219, Grenoble, France, September 1994.

[21] M. Wendling and W. Rosenstiel. A Hardware Environment for Proto-
typing and Partitioning Based on Multiple FPGAs. In Proc. of the Eu-
ropean Design Automation Conference, pages 77-82, Grenoble,
France, September 1994. IEEE.

[22] J. Wilberg, R. Camposano, and W. Rosenstiel. Design flow for hard-
ware/software cosynthesis of a video compression system. In Third
International Workshop on Hardware /Software Codesign, pages 73-
80. IEEE Computer Society Press, September 1994.

[23] W. Wolf. Hardware-Software Codesign of Embedded Systems. Pro-
ceedings of the IEEE, 83(7):967-989,1994.

[24] Xilinx Corporation. Xilinx Programmable Gate Array Data Book,
1994.

[25] W. Ye, R. Ernst, Th. Benner, and J. Henkel. Fast Timing Analysis for
Hardware-Software Co-Synthesis. In Proc. of the International Con-
ference on Computer-Aided Design, pages 452-457, Santa Clara, CA,
1993. IEEE.

[26] Zycad Corporation, Inc., USA. Concept Silicon Software (tm) Manu-
al, 6.0 edition, 1994.

43

Benchmark Note Result

fibonacci_n SW-Implementation 56 us

fibonaccCn HW-Implementation 3 us

fibonacci_n speed-up 94%

crypt speed-up 10%

	Main Page
	CODES96
	Front Matter
	Table of Contents
	Author Index

