
1995 High Level Synthesis Design Repository

Preeti R. Panda and Nikil D. Dutt

Department of Information and Computer Science

University of California, Irvine, CA 92717-3425, USA

Abstract

In this paper we briey describe a set of designs that
can serve as examples for High Level Synthesis (HLS)
systems. The designs vary in complexity from simple
behavioral �nite state machines to more complex de-
signs such as microprocessors and oating point units.
Most of the designs are described in the VHDL lan-
guage at the behavioral level. We divide the designs
into two categories. The �rst category contains de-
signs that have documentation on the speci�cations of
the designs along with the strategy used to test the in-
dividual design models. The second category contains
examples used in many HLS papers, but lack compre-
hensive documentation and/or test vectors.

1 Introduction

The e�ort at creating a repository of High Level
Synthesis (HLS) benchmark designs has been under
way since the 24th Design Automation Conference in
1987. An informal set of HLS benchmarks was created
after the High Level Synthesis Workshop in 1988 and
maintained at the SIGDA repository atmcnc.mcnc.org.
The purpose of maintaining this repository was to
serve as a basis of comparison of various approaches
to High Level Synthesis and to provide a means for
researchers and developers to exercise their synthesis
systems on a wide range of digital circuits.

This informal set was consolidated [DuRa92] into
nine benchmark designs whose functionality and veri-
�cation schemes were well documented. These bench-
marks, which include some simple controllers, digital
�lters, a microprocessor slice, and a USART design
among others, have been widely used as examples by
HLS researchers. In [DuRa92], guidelines for develop-
ing and submitting new benchmarks were also formu-
lated so as to make the benchmark collection an ongo-
ing process. With this paper we release another set of
designs that were submitted in accordance with these
guidelines, as well as a set of designs that have com-
plete HDL descriptions but lack comprehensive docu-
mentation and/or test vectors.

We present a new set of design examples that aug-
ment the existing benchmark suite. Most of these are
fairly large designs with reasonably complex data and
control structures. In most cases, the models are ac-
companied by test patterns that were used to verify
the correctness of the descriptions. The tests are, of
course, not exhaustive but are intended to check for

typical behaviors. In some cases, boundary conditions
have been extensively checked, while in others (like
the microprocessor examples) a few cases have been
tested for every instruction. We must mention that
while the models have all been subjected to simula-
tion checks, they may not all be directly synthesiz-
able, and might require modi�cation when used as an
example for a synthesis tool. Some of the constructs
used might make sense only for simulation. In such
cases, however, the test vector set should be useful
in determining the correctness of any modi�cations to
the design descriptions.

In Section 2, we outline the guidelines for submis-
sion of new designs for incorporation into the reposi-
tory. In Section 3, we present an overview of the de-
signs in the repository. We conclude with a summary,
where we also indicate the publicly accessible location
of the repository.

2 Guidelines for Submission of Designs

In this section, we mention the guidelines for the
submission of new designs to be incorporated into the
repository, in an e�ort towards introducing more rigor
into the benchmarking process, and towards the cre-
ation of a robust set of design examples for testing
High-Level Synthesis tools and systems.

2.1 \Well-Known" HDL Description

The design must be described using a "well-known"
HDL which has a publicly available Language Refer-
ence Manual (LRM), and which has a publicly avail-
able simulator. Sample HDLs that �t this criterion in-
clude VHDL and Verilog. The HDL description must
be liberally commented to allow readability.

2.2 Documentation, Assumptions and Sim-
pli�cations

The source of the design information should be spec-
i�ed (e.g., data sheet, initial design spec., etc.). A de-
scription of the design's functionality (using English,
owcharts, block diagrams, etc.) must accompany
the HDL description. All assumptions and simpli�ca-
tions made in writing the HDL model must be clearly
stated.



2.3 Simulation Vectors

A set of input and expected output functional test
vectors must accompany the HDL description for sim-
ulating typical operational behaviors of the design.
These test vectors need not be designed to exhaus-
tively test the design. Instead, they can give some
level of con�dence in the behavioral HDL model, and
allow translation and validation of the model into an-
other HDL or description style.

The test vectors must also be accompanied by a
(English) description of what functionality is being
tested. The input and expected output vectors should
be described in a generic format that allows ease of
use in di�erent simulation environments. A brief de-
scription of the test vector format must accompany
the test vector set.

2.4 Simulator Details

Each benchmark design must indicate the name,
version, and availability (where appropriate) of the
simulator used to test the design.

2.5 Synthesis Outputs

The outputs of synthesis tools must be simulated
using the same simulator and test vectors used to
check the behavior of the input description.

3 Overview of the Designs

This section presents a brief overview of the designs.
Figures 1 and 2 summarize some of the important as-
pects related to the functionality and veri�cation of
these designs, such as typical control features present,
style of description, major data types used and the
extent to which the design example has been tested.
The number of lines of code (LOC) is mentioned to
give a rough idea of the design's size. The LOC in-
cludes lines with comments. (The lines of executable
VHDL code is typically 50 % of the total lines of code.
The LOC �gures must be used with caution, for writ-
ing styles vary and the sizes of the models are small
enough to permit erroneous estimations about design
size based on LOC alone.)

The �rst column gives the name of the design and
the second mentions the type of design. In the De-
sign Level column, Algorithmic Behavior refers to the
types of designs which are described in an algorithmic
fashion in a HDL.

The examples have been classi�ed into two groups:
those for which a substantial amount of documenta-
tion is available, and those for which the documenta-
tion is insu�cient. Some of the models are quite thor-
oughly tested for errors while others have not been
exercised very much.

Three examples in the repository are arithmetic cir-
cuits (FP Adder, FP Mult and FP Divider), all based
on the IEEE Floating Point Standard. In the case of
FP Adder and FP Mult, the operands and result are
represented by a sign bit, a 127-biased integer expo-
nent in the range 0..255, and a 23-bit vector mantissa

with a hidden 1 [HePa90]. In FP Divider, the Digit-
Recurrence Algorithm [LaEr94] is employed for the
division using radix 512, the operands and the result
being represented by a sign bit, a 10-bit 511-biased
integer exponent in the range 0..1023, and a 53-bit
vector mantissa with a hidden 1. All three models are
described in VHDL language.

Two examples (Prawn and RT-PC) are models of
CPUs, both described in VHDL. RT-PC [ThDu94] is a
VHDL description of the IBM RT PC processor, which
has an 8 bit data-bus and a 24 bit address-bus. Prawn
is an enhanced version of the Parwan RISC processor
described in [Nava93], with the instruction set hav-
ing been enhanced to include interrupt handling and
conditional branches.

Two examples (Volume and Answer) are modeled
as extended Finite State Machines, and are described
in SpecCharts [GVNG94] language. Volume models
an instrument for measurement of the volume of the
human bladder and Answer models the controller of a
Telephone Answering Machine.

Filter, FFT and Beamformer are three DSP-related
applications, the �rst described in Verilog language,
and the next two in VHDL. Filter [Ugur95] describes
an Interpolating Switchable 3rd Order FIR Filter that
samples its input either every two or four clock cycles
depending on a switch input. FFT models the Fast
Fourier Transform algorithm [CaSv93]. Beamformer
describes the behavior of a Beamformer system, an
example of a typical DSP application that involves
the temporal alignment and summation of digitized
signals from an N-element antenna array [BaGa93].

The set of examples titled Memory are C routines
related to image processing [PTVF92] that were used
in [KoND94] to validate some algorithms on memory
synthesis.

The remaining examples include a variety of appli-
cations, like a barcode reader (Barcode - [BhBD93]) in
VHDL; an E.C.G. Application chip (QRS - [BhBD93])
in VHDL; an algorithm for adaptive interpolation for
digital audio signals (Adaptive - VeJaVr86) described
in Silage; a Period Counter in Verilog, that counts
the length of a complete cycle of an input signal in
terms of the number of clock cycles it takes [Ugur95];
a Robotics application that describes in C, an algo-
rithm for the computation of the Jacobian [PaMu93]
of an open kinematic chain and a Di�erential Heat
Release Computation algorithm, described in VHDL,
that models the heat release within a combustion en-
gine [CaSv93].

4 Summary

In this paper we presented an overview of the 1995
High Level Synthesis Design Repository. The designs
are available from the design repository at U.C Irvine
(anon ftp; site: ics.uci.edu; location: pub/HLSynth95).
[PaDu95] gives a more detailed overview about the
functionality and testing strategy of the individual de-
signs in the repository.

We welcome any feedback on the design examples
and their accompanying documentation. We also wel-
come the submission of more designs for future inclu-



D
e

si
g

n
N

a
m

e
D

e
si

g
n

D
e

sc
rip

tio
n

D
e

si
g

n
L

e
ve

l
D

e
sc

rip
tio

n
S

ty
le

C
o

n
tr

o
l

fe
a

tu
re

s
D

a
ta

Ty
p

e
s

Te
st

V
e

ct
o

rs
L

in
e

s 
O

f
C

o
d

e

F
P

_
A

d
d

e
r

F
lo

a
tin

g
P

o
in

t A
d

d
e

r
A

lg
o

rit
h

m
ic

B
e

h
a

vi
o

r
1

 V
H

D
L

P
ro

ce
ss

N
e

st
e

d
 If

s
F

o
r 

L
o

o
p

s
P

ro
c/

F
u

n
c

B
it 

Ve
ct

o
r

In
te

g
e

r
E

n
u

m

4
1

7
 C

yc
le

s
6

4
0

 (
V

H
D

L
)

F
P

_
M

u
lt

F
lo

a
tin

g
P

o
in

t
M

u
lti

p
lie

r

A
lg

o
rit

h
m

ic
B

e
h

a
vi

o
r

1
 V

H
D

L
P

ro
ce

ss
N

e
st

e
d

 If
s

F
o

r 
L

o
o

p
s

P
ro

c/
F

u
n

c

B
it 

Ve
ct

o
r

In
te

g
e

r
E

n
u

m

1
6

9
 C

yc
le

s
4

2
5

 (
V

H
D

L
)

F
P

_
D

iv
id

e
r

F
lo

a
tin

g
P

o
in

t D
iv

id
e

r
A

lg
o

rit
h

m
ic

B
e

h
a

vi
o

r
 1

 V
H

D
L

 P
ro

-
ce

ss
. F

u
n

c 
in

se
p

a
ra

te
 p

a
ck

a
g

eF
o

r 
L

o
o

p
C

a
se

 S
tm

t
In

te
g

e
r

S
td

L
o

g
ic

Ve
ct

o
r

1
0

 C
yc

le
s

4
1

0
 (

V
H

D
L

)

P
ra

w
n

C
P

U
8

-b
it,

 4
0

in
st

ru
ct

io
n

s

In
st

ru
ct

io
n

S
e

t
B

e
h

a
vi

o
r

1
 V

H
D

L
P

ro
ce

ss
N

e
st

e
d

 If
s

C
a

se
 S

tm
t

B
it 

Ve
ct

o
r

1
6

0
0

 C
yc

le
s

7
0

0
 (

V
H

D
L

)

R
T-

P
C

C
P

U
8

-b
it,

 1
1

9
in

st
ru

ct
io

n
s

In
st

ru
ct

io
n

S
e

t
B

e
h

a
vi

o
r

M
u

lti
p

le
 E

n
ti-

tie
s.

 F
u

n
ct

io
n

s
in

 s
e

p
. p

a
ck

.

F
o

r 
L

o
o

p
W

h
ile

 L
o

o
p

C
a

se
 S

tm
t

S
u

b
ty

p
e

s
B

it,
 in

t A
rr

a
y

O
ve

rlo
a

d
e

d
 o

p

9
0

0
 C

yc
le

s
3

0
0

0
(V

H
D

L
)

B
a

rc
o

d
e

B
a

rc
o

d
e

R
e

a
d

e
r

A
lg

o
rit

h
m

ic
/

H
ig

h
 L

e
ve

l
F

S
M

1
 V

H
D

L
P

ro
ce

ss
N

e
st

e
d

L
o

o
p

s
S

u
b

ty
p

e
s

In
te

g
e

r
1

 T
e

st
 S

u
ite

11
0

 (
V

H
D

L
)

Q
R

S
E

.C
.G

A
p

p
lic

a
tio

n
C

h
ip

A
lg

o
rit

h
m

ic
/

H
ig

h
 L

e
ve

l
F

S
M

1
 V

H
D

L
P

ro
ce

ss
L

o
o

p
s

N
e

st
e

d
 If

s
S

u
b

ty
p

e
s

In
te

g
e

r
4

3
0

0
 C

yc
le

s
2

8
0

 (
V

H
D

L
)

A
d

a
p

tiv
e

A
d

a
p

tiv
e

In
te

rp
o

la
tio

n
A

lg
o

rit
h

m

A
lg

o
rit

h
m

ic
B

e
h

a
vi

o
r

S
e

t o
f S

ila
g

e
F

u
n

ct
io

n
s

F
u

n
c 

C
a

lls
,

N
e

st
e

d
 L

o
o

p
M

u
lti

 D
im

e
n

-
si

o
n

a
l I

n
te

g
e

r
A

rr
a

ys

6
 T

e
st

S
u

ite
s

8
1

0
(S

ila
g

e
)

Vo
lu

m
e

B
la

d
d

e
r

Vo
lu

m
e

C
o

m
p

u
ta

tio
n

F
S

M
 w

ith
D

a
ta

p
a

th
S

e
t o

f S
e

q
/C

o
n

c
S

p
e

cC
h

a
rt

s
B

e
h

a
vi

o
rs

T
ra

n
si

tio
n

A
rc

s,
 F

o
r/

W
h

ile
 L

o
o

p
s

B
it 

Ve
ct

o
r

In
te

g
e

r 
A

rr
a

y
2

0
 T

e
st

C
a

se
s

2
2

0
(S

p
e

cC
h

a
rt

s)

A
n

sw
e

r
Te

le
p

h
o

n
e

A
n

sw
e

rin
g

M
a

ch
in

e

F
S

M
 w

ith
D

a
ta

p
a

th
S

e
t o

f S
e

q
/C

o
n

c
S

p
e

cC
h

a
rt

s
B

e
h

a
vi

o
rs

T
ra

n
si

tio
n

A
rc

s,
 F

o
r/

W
h

ile
 L

o
o

p
s

In
te

g
e

r
B

it 
Ve

ct
o

r
2

3
 T

e
st

S
e

q
u

e
n

ce
s

6
4

0
(S

p
e

cC
h

a
rt

s)

Figure 1: Features (in brief) of Designs with Complete Information



D
e

si
g

n
N

a
m

e
D

e
si

g
n

D
e

sc
rip

tio
n

D
e

si
g

n
L

e
ve

l
D

e
sc

rip
tio

n
S

ty
le

C
o

n
tr

o
l

fe
a

tu
re

s
D

a
ta

Ty
p

e
s

Te
st

Ve
ct

o
rs

L
in

e
s 

O
f

C
o

d
e

M
e

m
o

ry
(7

 m
o

d
e

ls
)

Im
a

g
e

P
ro

ce
ss

in
g

A
p

p
lic

a
tio

n
s

A
lg

o
rit

h
m

ic
B

e
h

a
vi

o
r

1
 C

 fu
n

ct
io

n
fo

r 
e

a
ch

e
xa

m
p

le

N
e

st
e

d
L

o
o

p
s

2
-D

im
e

n
-

si
o

n
a

l fl
o

a
t

A
rr

a
ys

N
o

 T
e

st
S

u
ite

A
va

ila
b

le

E
a

ch
 ~

2
0

L
in

e
s 

(C
)

F
ilt

e
r

“S
w

itc
h

a
b

le
”

3
rd

 o
rd

e
r

F
IR

 F
ilt

e
r

A
lg

o
rit

h
m

ic
B

e
h

a
vi

o
r

1
 V

e
ril

o
g

m
o

d
u

le
If 

S
tm

t
B

it 
Ve

ct
o

r
N

o
 T

e
st

S
u

ite
A

va
ila

b
le

3
5

(V
e

ril
o

g
)

P
e

rio
d

C
o

u
n

te
r

P
e

rio
d

C
o

u
n

te
r

A
lg

o
rit

h
m

ic
B

e
h

a
vi

o
r

1
 V

e
ril

o
g

m
o

d
u

le
W

h
ile

 L
o

o
p

If 
S

tm
t

B
it 

Ve
ct

o
r

N
o

 T
e

st
S

u
ite

A
va

ila
b

le

9
0

(V
e

ril
o

g
)

B
e

a
m

fo
rm

e
r

F
ilt

e
r

V
e

ct
o

r
P

ro
d

u
ct

/
S

u
m

m
a

tio
n

1
 V

H
D

L
P

ro
ce

ss
N

e
st

e
d

 F
o

r
L

o
o

p
s

(4
 le

ve
ls

)

3
-d

im
 a

rr
a

y
o

f I
n

te
g

e
r

N
o

 T
e

st
S

u
ite

A
va

ila
b

le

1
0

0
(V

H
D

L
)

Ja
co

b
ia

n
R

o
b

o
t

M
o

tio
n

C
o

m
p

u
ta

tio
n

A
lg

o
rit

h
m

ic
B

e
h

a
vi

o
r

S
e

t o
f C

F
u

n
ct

io
n

s
F

o
r 

L
o

o
p

s
S

tr
u

ct
P

o
in

te
rs

2
-d

im
 a

rr
a

y
o

f ‘
d

o
u

b
le

’
tr

ig
o

n
. f

u
n

c

N
o

 T
e

st
S

u
ite

A
va

ila
b

le

4
5

0
 (

C
)

F
F

T
F

a
st

 F
o

u
rie

r
T

ra
n

sf
o

rm
A

lg
o

rit
h

m
ic

B
e

h
a

vi
o

r
1

 V
H

D
L

P
ro

ce
ss

N
e

st
e

d
W

h
ile

 L
o

o
p

s
A

rr
a

y 
o

f
B

it 
Ve

ct
o

r
N

o
 T

e
st

S
u

ite
A

va
ila

b
le

1
4

5
(V

H
D

L
)

D
H

R
C

D
iff

e
re

n
tia

l
H

e
a

t
C

o
m

p
u

ta
tio

n

A
lg

o
rit

h
m

ic
B

e
h

a
vi

o
r

1
 V

H
D

L
P

ro
ce

ss
W

h
ile

 L
o

o
p

s
A

rr
a

y 
o

f
B

it 
Ve

ct
o

r
N

o
 T

e
st

S
u

ite
A

va
ila

b
le

1
0

0
(V

H
D

L
)

Figure 2: Features (in brief) of Designs with Incomplete Information



sion - preferably, those whose functionality does not
overlap with that of the existing designs. This variety
in the design examples is important and is in accor-
dance with our goal of making realistic design exam-
ples available to the HLS community as well as to
serve as a reliable basis for stimulating new research,
as well as for meaningful comparison of HLS systems
and algorithms.

5 Acknowledgments

We would to thank the following people who have
contributed towards the development of the designs in
the repository: Jesse Pan and Bob McIlhenny (FPAd-
der and FPMult), Alberto Nannarelli (FPDivide), Al-
fred Thordarson (RT-PC), Tadatoshi Ishii (Prawn),
Franc Brglez (Barcode and QRS), David Kolson (Im-
age Processing Applications), Lode Nachtergaele (Adap-
tive Interpolator), Fatih Ugurdag (Filter and Period
Counter), Jie Gong (Answering Machine and Volume
System) and Smita Bakshi (Beamformer, FFT, DHRC
and Jacobian.)

We also thank Manu Gulati for his useful comments
and suggested improvements on the Barcode and QRS
designs.

This work was supported in part by SRC Grant
94-DJ-146. We are grateful for their support.

References

[BaGa93] S. Bakshi and D. D. Gajski, \Design
Space Exploration for The Beamformer Sys-
tem," Technical Report 93-34, University of Cal-
ifornia, Irvine, 1993.

[BhBD93] S. Bhattacharya, F. Brglez and S. Dey,
\Transformations and Resynthesis for Testabil-
ity of RT-Level Control-Data Path Speci�ca-
tions," IEEE Transactions on VLSI Systems,
September 1993.

[CaSv93] F. Catthoor and L. Svensson, \Application-
Driven Architecture Synthesis," Kluwer Aca-
demic Publishers, 1993.

[DuRa92] N. D. Dutt and C. Ramchandran, \Bench-
marks for the 1992 High Level Synthesis Work-
shop," Technical Report 92-107, University of
California, Irvine.

[GVNG94] D. D. Gajski, F. Vahid, S. Narayan and J.
Gong, \Speci�cation and Design of Embedded
Systems," Prentice-Hall, 1994.

[HePa90] J. L. Hennessy and D. A. Patterson, \Com-
puter Architecture - a quantitative approach,"
Morgan Kaufman Publishers 1990.

[KoND94] D. J. Kolson, A. Nicolau and N. D. Dutt,
\Integrating Program Transformations in the
Memory-Based Synthesis of Image and Video
Algorithms," Proceedings, ICCAD'94, pp 27-30,
San Jose, CA, Nov. 1994.

[LaEr94] M. D. Ergegovac and T. Lang, \Division
and Square Root - Digit-Recurrence Algorithms
and Implementations," Kluwer Academic Pub-
lishers, 1994.

[Nava93] Z. Navabi, \VHDL : analysis and modeling
of digital systems," McGraw-Hill 1993.

[PaDu95] P. R. Panda and N. D. Dutt, \1995 High
Level Synthesis Design Repository," Technical
Report 95-04, University of California, Irvine,
1995.

[PaMu93] F. C. Park and A. P. Murray, \Computa-
tional and Modeling Aspects of the Products-of-
Exponentials Formula for Robot Kinematics,"
IEEE Transactions on Automatic Control, 1993.

[PTVF92] W. H. Press, et. al., \Numerical Recipes in
C: The Art of Scienti�c Computing," Cambridge
University Press, 1992.

[RTPC85] IBM RT PC Hardware Technical Reference
(C), 1985.

[ThDu94] A. B. Thordarson and N. D. Dutt, \A
VHDL Model and Testbench for the IBM RT-
PC Risc Processor," CADLAB document, Uni-
versity of California, Irvine, 1994.

[Ugur95] H. F. Ugurdag, Personal Communication,
1995.

[VaGN94] F. Vahid, J. Gong and S. Narayan, \The
SpecCharts/SpecSyn User's Manual," Univer-
sity of California, Irvine, 1994.

[VaNG91] F. Vahid, S. Narayan and D. D. Gajski,
\SpecCharts: A language for system level syn-
thesis," Proceedings of the International Sympo-
sium on Computer Hardware Description Lan-
guages and their Applications, 1991.

[VeJV86] R.N.J. Veldhuis, A.J.E.M. Janssen and L.
B. Vries, \Adaptive Interpolation of Discrete-
Time Signals That Can Be Modeled as Au-
toregressive Processes," IEEE Trans. Acoustics,
Speech and Signal Processing, Vol. 34, No. 2,
1986.


	Compendium95
	ISSS95 
	Front Matter
	Table of Contents
	Session Index
	Author Index


