
A Comprehensive Estimation Technique for High-Level Synthesis �

Seong Y. Ohmy, Fadi J. Kurdahiy, Nikil Duttz, and Min Xuz

y Department of Electrical & Computer Engineering
z Department of Information & Computer Science

University of California, Irvine, CA 92717

Abstract

We present an integrated approach aimed at predicting lay-
out area needed to implement a behavioral description for
a given performance goal. Our approach is novel because:
(1) it accounts for all types of RT level components (FUs,
buses, registers), (2) it is highly flexible, allowing the de-
signer to tradeoff one type of resources with another, and
considers dependencies between these different types, (3) it
is vertically integrated to include provably accurate physical
level estimators, and hence provides realistic accounting of
layout effects, and (4) it uses a timing model with finer gran-
ularity, accounting for various delays in RTL datapaths. We
demonstrate our technique on a variety of HLS benchmarks
and show that efficient and effective design space exploration
can be accomplished using this technique.

1 Introduction

Estimation plays a central role in guiding the design tasks to
optimal or near-optimal solutions. While accurate estimation
is somewhat important at physical and logic design tasks, it
is even more crucial when the design process is started at
a higher level of abstraction. Decisions made at this level
do have a pronounced impact on the final design. However,
the impact of these decisions cannot be found until later in
the design process. Therefore, in order for such high level
design tasks (mainly High-Level Synthesis (HLS)) to pro-
duce reliable results, such tasks must rely on realistic and
accurate models of hardware components. Without such re-
alistic models, it is likely to produce designs not satisfying
cost and/or timing constraints, resulting in unnecessary itera-
tions through the design cycle and increasing the design turn
around time.

Much of the earlier design prediction work assumed the
existence of netlist-based design descriptions as inputs, and
hence produced netlist-based estimators [1]. However, these
techniques can only be used after the design data path is
synthesized to provide back-end feedback. If, on the other
hand, the designer starts with no feedback at all, or with

�This work was supported by a MICRO grant from the Univer-
sity of California and Compass Design Automation Inc., and by a
Fellowship from the Korea Organization of Science and Engineer-
ing Foundation.

incorrect feedback, then there is no guarantee that the design
decisions initially made would indeed be the correct ones
which would produce the desired outcome. Thus it is very
important to provide the designer with front-end feedback for
guidance in making design decisions. Specifically, we need
to have the capability of bounding the design space prior to
starting the HLS tasks.

With the push towards sub-micron technologies, simple
models that use functional unit resources alone are not ac-
curate enough to allow effective design space exploration
since the effects of storage, interconnect and other layout
considerations can indeed dominate the cost function.

Our approach is novel and differs from previous ap-
proaches because it contains the following features:

1. At the RT level, our cost model accounts for registers
and buses as well as FUs.

2. Our approach is horizontally integrated and highly flex-
ible because we consider the dependencies between the
different types of resources as well as the ordering in
which the resources are allocated.

3. Our approach is also vertically integrated, since our
estimation is extended to the physical level. By linking
our RT level estimates to provably accurate physical
level estimators at both component level and chip level
[1], it is possible to account for layout effect on both
components (e.g. variations in area and delay with
component shape and aspect ratio), and complete RT
level designs (e.g. wiring effects, unused area).

4. Our timing model uses a finer granularity that permits
the modeling of FU, register, and interconnect delays.
Our approach accommodates all of these factors in esti-
mation along with transfer delays among these hardware
resources.

We have developed efficient algorithms and heuristics to
support this model. Our initial experiments on some HLS
benchmarks [2] indicate that this model is quite accurate.
This estimation scheme naturally lends itself to encapsula-
tion within system level synthesis frameworks by providing
early and accurate estimates of design quality when large
behavioral descriptions are partitioned onto several chips,
without the need of running HLS tools to obtain full design
netlists.



MUX

FU

R R R R R

FU

R R

MUX

........

FU FU R RR ....

(a) (b)
Figure 1: Architectural models: (a) multiplexor-based ar-
chitecture and (b) bus-based architecture.

2 Previous Work

BUD [3], an earlier works in linking behavior with physi-
cal level design, clearly indicated the significance of inter-
connect and other layout effects -traditionally considered as
second order in HLS- on the overall implementation area
and delay. This approach, however, constrains the designer
to explore a fraction of the design space. Furthermore, the
accuracy of the estimators was not reported.

There is some recent work on estimating lower bounds on
area cost and total control steps (or csteps). [4], [5], [6],
[7], and [8] are mainly concerned with FUs in their area cost
models. [9], [10], [11], [12], and [13] use more elaborate
cost function for estimation. However, they do not consider
both: (1) dependencies among different types of resources,
and (2) linkage to physical level. By contrast, our approach
considers both aspects.

3 Architectural Model and Problem
Definition

We consider two styles of target architectures as shown in
Figure 1: multiplexor-based and bus-based. In this paper,
however, we confine our scope to bus-based architectural
model (Figure 1(b)). We also assume that only registers are
used for storage resources. We do not take into account
single- or multi-port memories at this time. In the bus-based
architecture, we assume that each data transfer between an
FU and a register occurs only through buses and that each
data value produced by a functional unit should be stored in a
register through buses so that it is used in a later clock cycle.
However, the data value need not be stored in a register if its
source and destination operations are chained.

In our approach, the behavioral description, expressed in
the form of a data flow graph, is given as input, and the
total performance and clock period expressed in real time
are given as constraints. In addition, FU delays, register
delays, and interconnect delays are initially estimated by the
user or selected from a library. Given these information, we
estimate lower bounds on the number of FUs of each type, the
number of registers, and the number of buses (bi-directional
or uni-directional).

4 Our Approach

We describe an integrated approach which allows the estima-
tion process to begin from the behavioral level (as opposed
to RT level). This approach is illustrated in Figure 2. For a
given behavioral specifications, our system generates lower
bound estimates on resources needed in order to achieve a

user-defined performance goal. This in turn is used to obtain
an approximate topology of the resulting physical layout.

Our estimation methods are based on the following princi-
ple: If N objects are distributed over K slots, at least dN=Ke
objects are assigned to some slot within those K slots. This
can be stated slightly differently if we are talking about a
time slot interval Z = [X;Y ] whose length is Y � X + 1.
If Nz objects are guaranteed to be assigned within interval
Z, at least dNz=(Y �X + 1)e components are required to
perform these objects. That is, this value can be used as the
lower bound on the number of components to perform these
objects. In our context, an object may represent an operation
performed by an FU, a data value to be stored in a register, or
a data transfer between hardware resources, while each time
slot represent a control step (or clock cycle). To estimate
tighter lower bounds, we compute these values over all the
possible intervals, and then choose the maximum one as the
lower bound.

While this principle has been used for FU and register
estimation in prior work [13, 9, 6], in this work we extend
this approach for bus estimation as well.

In this paper, ASAPi (ALAPi) denotes the earliest (lat-
est) cstep in which operation Oi can be started without vi-
olating both timing constraint and precedence relations be-
tween operations, and ASAP 0

i (ALAP 0
i ) denotes the last

cstep where operation Oi is completed when it is scheduled
in ASAPi (ALAPi) cstep. The cstep interval [ASAPi,
ALAPi] is called the time frame of operation Oi. We esti-
mate the FU cost, register cost, and bus cost using these time
frames.

Figure 3 shows the overall structure of the area cost es-
timation algorithm LBE, when FU cost is first estimated,
register cost next, and bus cost finally. As shown later in
this paper, we can accommodate different orderings of these
steps and account for the conditional lower bounds.

The FU and register area cost estimation techniques were
published in [13]. In this paper, we concentrate on estimating
bus area cost and linking these estimates to the physical
(layout) level. In order to accomplish that, we need to do the
following:

1. estimate the number and type of buses needed to ac-

−

−

* * *

**

Input
Flowgraph

FU 
Constraints

Register 
Constraints

Bus 
Constraints

Performance
Constraints

Order of
Estimation
(e.g. FRB)

GENUSCompEst

ChipEstPhysical
Constraints
(e.g. aspect ratio)

Area 
Estimates

RTL Netlist

Area,
Delay

Component
Shape 
Functions

Layout
Topology

      FU

Estimation

   Module

  Register

Estimation

  Module

     Bus

Estimation

  Module

Figure 2: The structure of the estimation system.



LBE()
f

parse input DFG;
read delay and area information;
read clock period and total performance;
total cstep number = b (total performance) / (clock period) c;

for each operationOi in input DFG,
determineASAPi; ALAPi;ASAP

0

i ;ALAP
0

i ;
Est FU Cost = Estimate FU Cost();
Est Reg Cost = Estimate Reg Cost();
Est Bus Cost = Estimate Bus Cost();
Est Area Cost = Est FU Cost + Est Reg Cost + Est Bus Cost;
return(Est Area Cost);

g

Figure 3: One formulation of our area cost estimation algo-
rithm.

commodate the needed data transfers, and

2. estimate the physical design topology based on the FU,
register, and bus estimates.

5 Bus Estimation

We assume that each data transfer between an FU and a
register occurs only through buses. Therefore, the number
of buses required is determined by the maximum number of
concurrent data transfers via buses. We find the maximum
number of concurrent data transfers from registers to FUs
and then that from FUs to registers.

Figure 4 shows our bus cost estimation algorithm. In this
algorithm,� is defined as the set of data values which should
be stored in registers. A variable whose source and destina-
tion can be chained into the same cstep need not be stored in a
register; such a variable is not included in�. 	I (Z) denotes
the set of data values to be transferred from registers to FUs
during cstep intervalZ, and 	O(Z) represents the set of data
values generated by FUs and transferred to be stored in reg-
isters during interval Z. Therefore, d j	I(Z)j = jZj e repre-
sents a lower bound on the number of data transfers from reg-
isters to FUs during intervalZ. Similarly, d j	O(Z)j = jZj e
represents a lower bound on the number of data transfers
from FUs to registers during interval Z. We enumerate all
the cstep intervals Z � [1; total cstep number] to get a
tighter lower bound and then select the maximum value over
all the such intervals as the lower bound on the corresponding
bus count.
	I(Z) in the algorithm, however, may include more than

two different fanout variables which represent the same data
value. If such data values are used during the same cstep, we
may need only one data transfer for those values, reducing
the size of concurrent bus access. In order to detect such the
fanout values, we analyze the time frames of the destinations
of the fanout variables, and determine whether they always
use the data value at the same cstep.

The total number of buses can be estimated using these
two lower bounds according to the bus style in the target
architecture: separate uni-directional buses (Input buses and
Output buses) or bi-directional buses (I/O buses). We add
the two lower bounds for the uni-directional bus style, while
choosing the maximum of them for the bi-directional bus
style.

Estimate Bus Cost()
f

� = fVi;j jOi and Oj CANNOT be chainedg;
for each cstep intervalZ � [1; total cstep number],

	I (Z) = fVi;j j Vi;j 2 � and [ASAPj ; ALAPj ] � Zg;
	O (Z) = fVi;j j Vi;j 2 � and [ASAP 0

i ;ALAP
0

i ] � Zg;
for each two variableVi;j and Vi;k in 	I (Z),

if (ASAPj = ALAPk and ALAPj = ASAPk ),
remove Vi;k from 	I (Z);

LBI Bus = maxz (d j	I (Z)j = jZj e);
LBO Bus = maxz (d j	O (Z)j = jZj e);
if (Bus is bi-directional)LBBus = max (LBI Bus; LBO Bus);
else LBBus = LBI Bus + LBO Bus ;
Est Bus Cost = LBBus �AreaBus;
updateEst Bus Cost;
return(Est Bus Cost);

g

Figure 4: Our bus cost estimation algorithm.

The initial lower bounds on bus counts can be refined fur-
ther to obtain tighter lower bounds. The details of the refine-
ment technique are described in [20]. Similar algorithms are
used for refining the lower bounds on FU counts and on reg-
ister count respectively as described in [13]. The total time
complexity of this algorithm is O(C2 � (E +N2) +N �E),
where C is the total number of csteps, E the number of
values, and N the number of operations.

6 Integrated Resource Estimation

In the previous sections, we assumed that the estimation al-
gorithms for each class of resources (i.e. FUs, registers, or
buses) are applied independently given a data flow graph and
timing constraints. However, since resource requirements
are interdependent, such a strategy could lead to overall es-
timates representing non-feasible solutions. Thus, we need
to consider the dependencies between the different types of
resources to get more realistic estimates.

As an example, consider the simple data flow graph shown
in Figure 5(a). For this example, there exist only 2 possible
schedules shown in Figure 5(b) and 5(c) respectively, if the
total cstep number is 2. The schedule in Figure 5(b) requires
2 adders, 1 multiplier, and 2 registers, whereas that in Fig-
ure 5(c) requires 1 adder, 1 multiplier, and 3 registers. This
means that the lower bounds on the numbers of adders and
multipliers are 1 respectively and that on register count is 2,
since we consider all the possible schedules in our estima-
tion. However, there is no possible schedule which can be
implemented by 1 adder, 1 multiplier, and 2 registers. There-
fore, in this case, it is more realistic to estimate 1 adder, 1
multiplier, and 3 registers as lower bounds if the area cost of
register unit is less than that of adder, or to estimate 2 adders,
1 multiplier, and 2 registers if the area cost of register unit is
larger than that of adder.

In order to obtain more realistic lower bounds, we estimate

*

+

+

a b

e

c

d

O2

O1

O3

(a) Data Flow Graph

*

++

b

e

c

d

O2O1

O3

a

* +

+

b

e

c

O2

O1

O3

a

d

       (c) Schedule 2       (b) Schedule 1

Figure 5: Dependency between the different types of re-
sources.



a conditional lower bound on a type of resource subject to
other types of resources rather than an absolute lower bound.
We assume that resources of a particular type are allocated
as many times as the estimated lower bound at the estimation
step for that type. This constraint may restrict the time
frames of the operations and the lifetimes of variables, and
thus affect the estimation of other resources.

Consider the example in Figure 5 again, assuming that the
FU cost estimation is followed by register cost estimation.
When we estimate the register cost for that example, we as-
sume that 1 adder and 1 multiplier are used, since their lower
bounds estimated in the FU cost estimation step are 1 each.
This constraint forces addition operation O2 to be scheduled
in cstep 2, and also fixes the lifetimes of input/output values
of O2. From the fixed lifetimes, our algorithm estimates 3
registers as the lower bound on storage.

7 Physical Level Estimation

Once we have obtained estimates of FU, register, and bus
costs, we can generate an RT level netlist in VHDL based on
the architectural model shown in Figure 1. Given the netlist
specification, we use two physical level estimation tools[1]:
CompEst and ChipEst to obtain an approximate topology of
the layout. CompEst is a component estimation tool which
predicts the area and delay of a given RT level component
netlist. While CompEst can handle different design styles,
we currently assume that components are implemented in
standard cells for three reasons: (1) standard cells can im-
plement arbitrary components using component generators
such as GENUS [21], (2) standard cells provide flexibility in
generating alternative physical implementations which can
result in highly efficient floorplans of the overall design, and
(3) this methodology is used by several leading tool vendors
such as Compass and others to implement RT level designs.

Given a specification of a particular component, we first
use GENUS to generate a set of Boolean equations to im-
plement the required functionality. Next, we use CompEst
to predict the shape function for each component. CompEst
predicts the effects of some logic synthesis tasks such as
technology mapping as well as the effects of physical design.
This shape function can be obtained by estimating the dimen-
sions of a standard cells block with varying number of rows.
An example shape function for an ALU is shown in Figure
6(a). Additionally, CompEst estimates the critical path de-
lay of each configuration taking into account wiring delay as
well as false paths. Benchmarking has shown that CompEst
can estimate area with about 5% accuracy and static delay
with about 7-10% accuracy [1].

Once we have obtained a shape function for each compo-
nent, we use ChipEst to generate an approximate topology
of the overall design. ChipEst employs a partial slicing tech-
nique to generate a highly efficient approximate topology of
the design, and choose the most appropriate implementation
of each component. Experience has shown that component
area and delay do vary (and sometimes significantly) with
aspect ratio [17]. Thus this step provides valuable feedback
to the designer by comparing the resulting estimated com-
ponent area and delay figures to the ones assumed initially.

0.0 200.0 400.0 600.0 800.0 1000.0
width (micron)

0.0

200.0

400.0

600.0

he
ig

ht
 (

m
ic

ro
n)

LBE_MUX4 LBE_BUS4 LBE_REG

LBE_MUX4

LBE_BUS4

LBE_MUX4 LBE_MULT

LBE_ALU

LBE_MUX4

LBE_BUS4

LBE_MUX4

LBE_REG
LBE_BUS4 LBE_MUX4

LBE_MUX4 LBE_BUS4 LBE_REG

LBE_MUX4

LBE_BUS4

LBE_MUX4 LBE_MULT

LBE_ALU

LBE_MUX4

LBE_BUS4

LBE_MUX4

LBE_REG

LBE_BUS4 LBE_MUX4

(a) (b)

Figure 6: (a) Shape function for an ALU (b) An example
output of ChipEst.

If large differences are observed, then the user may have to
go back and modify his/her assumptions accordingly. An
example output produced ChipEst is shown in Figure 6(b).

Since at this point no particular binding is assumed, we
cannot estimate the overall system delay or clock cycle since
that would depend heavily on connectivity, which has not
been determined yet. In a bottom up design methodology,
the designer can use the estimated topology as a guidance to
the design process and attempt to minimize the contribution
of wiring by properly binding components to abstract op-
erations, values, and transfers. Such approaches have been
shown to produce good results [18].

8 Implementation and Experiments

We implemented our integrated estimation approach in the
C language on a SUN Sparcstation. The structure of the sys-
tem is shown in Figure 2. In the first phase, the behavioral
description of the target design is specified in the form of
Data Flow Graph (DFG). A constraint on the total execution
time is also specified by the user. The user can addition-
ally control individual resource counts and run the system to
estimate the remaining resources. A library of components
provide the area and delay data for each component. The
main components used in this library are shown in Table 1.
The area and delay figures were estimated using netlists gen-
erated by GENUS and estimated by CompEst. Components
are assumed to have a square aspect ratio in this phase only.
This first phase produces a fully-connected netlist in VHDL.
This VHDL netlist is then passed on to the physical level es-
timation tools. In this phase, the full shape function of each
component is generated by CompEst and used by ChipEst to
predict the layout topology of the whole design. If the user
specifies an aspect ratio constraint, then the system will re-
port one alternative which most closely matches the desired
aspect ratio. Otherwise, a shape function is produced.

In order to validate our estimation system, we applied it

Table 1: GENUS/VTI 0.8� standard cell component library.
Unit (4 bit) Area (sq. micron) Delay (ns) Aspect Ratio

Multiplier 386259 146.4 1:1
ALU 76220 59.8 1:1

Register 27244 20.1 1:1



Table 2: Comparison with actual designs for EWF example.

Schedule Actual Designs Our Estimation
Length InSyn [14] ALPS[15] (FRB)

FU reg bus FU reg bus FU reg bus

17 3+,3� 8 7 3+,3� - 6 3+,3� 8 6
3+,2? 8 7 3+,2? - 6 3+,2? 7 6

18 2+,2� 8 5 2+,2� - 6 2+,2� 6 4
3+,1? - - 3+,1? - 6 3+,1? 6 4

19 2+,2� 8 4 2+,2� - - 2+,2� 6 3
2+,1? 8 4 2+,1? - 6 2+,1? 5 3

20 2+,2� - - 2+,2� - 4 2+,2� 5 3
2+,1? - - 2+,1? - 4 2+,1? 5 3

21 2+,1� - - 2+,1� - 4 2+,1� 6 3
2+,1? - - 2+,1? - - 2+,1? 4 3

-+: adder, �: multiplier(2 cycle), ?: 2-stage pipelined multiplier
- reg: Input/output values are not stored in registers.
- bus: Bi-directional buses are used.

to some well-known High-Level Synthesis Benchmarks[2],
including the AR Filter (ARF), the 5th order Elliptic Wave
Filter (EWF), and Discrete Cosine Transformer (DCT). We
also tried our estimation on a large example, the Jacobian
Transformer [19].

– Experiment 1: Quality of the estimates

To demonstrate the quality of our estimation, we compared
our results with actual designs obtained through conven-
tional scheduling and allocation processes. We compared
our results with actual designs generated by several existing
systems including OASIC [10], InSyn [14], ALPS [15], and
ILP [16]. In Table 2 we show our comparison results for one
particular experiment using the EWF example. Since pre-
vious synthesis systems used a fixed ordering of allocation
(i.e., FUs first, then registers, and buses finally), we applied
our estimation in the same order to enable comparison. More
experimental results are presented in [20]. Overall, these ex-
perimental results clearly show that our estimates are quite
accurate. Indeed, the FU count is exactly the same as the
optimal results generated by both systems. Furthermore, in
most cases, the lower bound on register (bus) cost is 1 or 2
units below the actual register (bus) count. We have done
many additional extensive experimental results on FU and
register counts for other benchmarks which are reported in
[20]. In this paper, we concentrate on the bus and over-
all area estimation and report on comparisons with the EWF
since this was the only publishedexample for which we could
find designs reporting resource counts for FUs, register, and
buses.

– Experiment 2: Exploring the design space

In the second set of experiments, we used the estimation
system shown in Figure 2 to explore the design space of the
HLS benchmarks above. The first parameter in the explo-
ration is the estimation order. Since there are three classes of
resources (FU, Register, and Bus), there can be six orderings
of the estimation sequence. For each benchmark, we first
setup an initial constraints on Total Execution Time (TET).
Next, we ran the system six times each with a different es-
timation order. This is repeated for different constraints on
execution time.

Table 3 summarizes the estimation results for three bench-
marks: ARF, EWF, and DCT. CPU times for these exper-

Table 3: Summary of Experimental Results.

Ex. Total Execution Estimation RTL Estimation ChipEst
Time (TET) (ns) Order # of Components Area (�2 )

1680 all 4a 4� 6r 4/4b 3713005
1960 FRB,FBR,BFR 8a 3� 5r 4/4b 3697920

RFB,RBF,BRF 4a 4� 5r 4/4b 3609600
ARF 2240 FRB,FBR,BFR,BRF 2a 3� 5r 4/4b 2579202

RFB,RBF 2a 3� 4r 4/4b 2382120
2520 all 2a 2� 4r 3/3b 1928960
2800 all 2a 2� 4r 3/3b 1928960

2520 all 4a 2� 10r 6/4b 5227530
2800 all 3a 2� 9r 5/4b 4848740

EWF 3080 FRB,FBR,BFR,BRF 3a 1� 9r 4/3b 2625700
RFB,RBF 3a 1� 8r 4/3b 2592588

3360 all 3a 1� 8r 4/3b 2592588
3500 all 3a 1� 8r 4/3b 2592588

1120 all 12a 8� 14r 10/10b 19958124
DCT 1400 all 7a 6� 10r 8/8b 8838396

1680 all 6a 4� 8r 6/6b 6998538
1960 all 5a 4� 8r 6/6b 5731092

- TET is a constraint set by the user. (clock cycle = 280 ns)
- a: ALU, �: multiplier, r: register, b: input/output bus

iments were between 10 and 250 seconds. In this table, a
character string consisting of ‘F’, ‘R’, and ‘B’ implies the
ordering of the estimations. For example, “FRB” means
FUs are estimated first, then registers with FU constraints,
and finally buses with FU and register constraints. Notation
“x/yb” denotes the lower bound on number of input buses is
x while that of output buses is y. In these experiments, we
assumed that all input and output data values are considered
to be stored in registers.

As can be seen, the estimation order does affect the area
prediction in some instances especially for the ARF and the
EWF. These results were obtained without forcing any con-
straints on the resource count. The user can explore the de-
sign space further by constraining any class(es) of resources
and invoking the estimator to predict the remaining resources
and the overall layout area. Figure 7 depicts graphically the
area estimates obtained for these three benchmarks shown
in Table 3. For each benchmark, we compare three mod-
els for area estimation: Model (1) using FU+register area
only, Model (2) using FU+register and a constant bus cost,
and Model (3) using ChipEst. As noted before, ChipEst and
CompEst have been benchmarked to estimate layout area and
delay with about 10-15% accuracy [1], and therefore one can
assume that they provide a reasonably close prediction of
the physical design phase. It can be clearly seen that there
are significant discrepancies between the three models. The
sources of discrepancies between models (1) and (2), and
model (3) can be attributed mainly to the following factors:

1. variation in component area and delay with aspect ratio:
models (1) and (2) assume single values for area and de-
lay per component (corresponding to unity aspect ratio)
whereas ChipEst may select a different shape result-
ing in different area/delay not only for each component
type, but also for each component instance.

2. physical design constraints: ChipEst produces different
alternatives corresponding to different layout aspect ra-
tios. This is illustrated by showing several area points
for each design in the ChipEst model in Figure 7.

3. Wiring area: is not accounted for in (1), and only par-
tially in (2).



1000.0 1500.0 2000.0
Delay Constraint (ns) - Set by User

0.0

50.0

100.0

150.0

200.0

250.0

Ar
ea

 (e
+0

5 s
q. 

mi
cro

n)

Discrete Cosine Transformer (DCT)

1500.0 2000.0 2500.0 3000.0
Delay Constraint (ns) - Set by User

0.0

10.0

20.0

30.0

40.0

Ar
ea

 (e
+0

5 s
q. 

mi
cro

n)

AR Filter

2400.0 2700.0 3000.0 3300.0 3600.0
Delay Constraint (ns) - Set by User

0.0

10.0

20.0

30.0

40.0

50.0

60.0

Ar
ea

 (e
+0

5 s
q. 

mi
cro

n)

Elliptic Wave Filter (EWF)

 FU+Reg Area
 FU+Reg+Fixed Bus Area 
 ChipEst

Figure 7: Area estimates for ARF, EWF, and DCT(multiple
points indicate different aspect ratios).

4. Tiling effects: unused area which is not accounted for
in (1) or (2).

These figures underline the importance of considering the
layout effects on the overall area. Thus, it is clear that simple
cost models do not perform well in assessing the overall
design cost, and comprehensive models such as the proposed
model are necessary to accurately explore the design space.

9 Conclusions

In this paper, we motivated the need for a more comprehen-
sive lower boundestimation algorithm that takes intoaccount
not only functional unit costs, but also the costs of storage
and interconnects. We also motivated the need to account for
a better characterization of components, and to consider the
variations in component area and delay for different physical
implementations.

Our estimates of hardware resource requirements are quite
accurate and validate our approach for these examples. Our
approach is integrated and flexible, and accounts for the de-
pendencies in the ordering of the FU, register,and bus estima-
tion. Thus, our system allows easy exploration of the design
space, and evaluation of alternatives prior to committing to
an architecture.

Since no binding or scheduling are performed prior to or
during estimation, there is no information on connectivity
readily available to the estimator. Thus our system does
not consider wiring delay in its estimation. In addition, it
does not allow loops and branches in the input behavioral
description. These topics and others will be addressed in
future work.

References

[1] C. Ramachandran, F. J. Kurdahi, D. Gajski, V. Chaiyakul, and
A. Wu, “Accurate Layout Area and Delay Modeling for System
Level Design,” Proc. ICCAD ’92, Nov. 1992.

[2] N. Dutt and C. Ramachandran,“Benchmarks for the 1992 High-
Level Synthesis Workshop,” Tech. Report #92-107, Informa-
tion & Computer Science Department, UC Irvine, 1992.

[3] M. C. McFarland, “Using Bottom-Up Design Techniques in
the Synthesis of Digital Hardware from Abstract Behavioral
Descriptions,” Proc. 23rd DAC, pp. 474-480, July 1986.

[4] S. Y. Ohm and C. S. Jhon, “A Branch and Bound Method for
the Optimal Scheduling,” Proc. CICC ’92, May 1992.

[5] R. Jain, A. C. Parker, and N. Park, “Predicting System-Level
Area and Delay for Pipelined and Non-pipelined Designs,”
IEEE Trans. CAD, vol 11. no. 8, pp. 955-965, August 1992.

[6] Y. Hu, A. Ghouse, and B. S. Carlson, “Lower Bounds on the
Iteration Time and the Number of Resources for Functional
Pipelined Data Flow Graphs,”Proc. ICCD ’93, pp. 21-24, 1993.

[7] A. H. Timmer, M. J. M. Heijligers, and J. A. G. Jess,
“Fast System-Level Area-Delay Curve Prediction,” Proc. 1st
APCHDL, pp. 198-207, 1993.

[8] S. Chaudhuri and R. A. Walker, “Computing Lower Bounds on
Functional Units before Scheduling,” Proc. 7th International
Workshop on High-Level Synthesis, pp. 36-41, May 1994.

[9] A. Sharma and R. Jain, “Estimating Architectural Resources
and Performance for High-Level Synthesis Applications,”
IEEE Trans. VLSI Systems, vol 1. no. 2, pp. 175-190, June
1993.

[10] C. H. Gebotys and M. I. Elmasry, “Simultaneous Schedul-
ing and Allocation for Cost Constrained Optimal Architectural
Synthesis,” Proc. 28th DAC, pp. 2-7, June 1991.

[11] Kayhan Küçükçakar, “System-Level Synthesis Techniques
with Emphasis on Partitioning and Design planning,” PhD The-
sis, EE-systems Dept., USC, Sept. 1991.

[12] P. Gupta and A. C. Parker, “SMASH: A Program for Schedul-
ing Memory-Intensive Application-Specific Hardware,” Proc.
7th International Workshop on High-Level Synthesis,pp. 54-59,
May 1994.

[13] S. Y. Ohm, F. J. Kurdahi, and N. Dutt, “ComprehensiveLower
Bound Estimation from Behavioral Descriptions,” Proc. IC-
CAD ’94, pp. 182-186, Nov. 1994.

[14] A. Sharma and R. Jain, “InSyn: Integrated Scheduling for
DSP Applications,” Proc. 30th DAC, pp. 349-354, June 1993.

[15] J. H. Lee, Y. C. Hsu and Y. L. Lin, “A New Integer Linear
Programming Formulation for the Scheduling Problem in Data
Path Synthesis,” Proc. ICCAD-89, pp. 20-23, November 1989.

[16] S. Chaudhuri, R. Walker, and J. Mitchell, “Analyzing and Ex-
ploiting the Structure of the Constraints in the ILP Approach to
the Scheduling Problem,” IEEE Trans. VLSI Systems, Decem-
ber 1994.

[17] P. Jha, C. Ramachandran, N. Dutt, and F. J. Kurdahi, “An
Empirical Study on the Effects of Component Styles and Shapes
on High-Level Synthesis,” Proc. VLSI’94, 1994.

[18] J. P. Weng and A. C. Parker, “3D scheduling: High-Level syn-
thesis with Floorplanning,” Proc. 5th International Workshop
on High-Level Synthesis, Buhlerhohe, Germany, 1991.

[19] S. Bakshi and D. Gajski, “A Strategy for Design Space Explo-
ration,” Tech.Report #93-10, Information & Computer Science
Department, UC Irvine, 1993.

[20] S. Y. Ohm, F. J. Kurdahi, and N. Dutt, “A Unified Method-
ology for Estimating Resource Requirements for Early Design
Space Exploration,”Tech. Report # 94-11-03,ECE Department,
UC Irvine, March 1994.

[21] P. J. Jha and N. Dutt, “The GENUS User Manual and C
Programming Library,” Tech. Report #93-32, Information &
Computer Science Department, UC Irvine, 1994.


	Compendium95
	ISSS95
	Front Matter
	Table of Contents
	Session Index
	Author Index


