
Figure 1 Rule-driven vs Model-based Retargetable Code Generation

C

Graph Rewrite

Pattern Matching
and Covering

Global Scheduling

Register Assignment

Compaction

Machine Code

BDS I/S Spec Model

Pattern

Resource

Set

Classes
Structural

Graph

Assembly/Linking

C to Virtual Machine

Peephole Optimizer

Map to Real Machine

Compaction

Registers Decl

Instruct Format

Peephole Rules

Expansion Rules

Rule-driven Compilation Model-based Compilation

Industrial Experience Using Rule-driven Retargetable Code Generation for
Multimedia Applications

Clifford Liem1,2, Pierre Paulin2, Marco Cornero2, Ahmed Jerraya1

(1) TIMA Laboratory (2) Central R&D
Inst. Nat. Polytechnique de Grenoble (INPG) SGS-Thomson Microelectronics (ST)
46, ave Félix Viallet, 38031 Grenoble, France 850, rue Jean Monnet, 38921 Crolles, France
liem@verdon.imag.fr jerraya@verdon.imag.fr paulinp@stm.com cornerom@stm.com

Abstract

The increasing usage of Application Specific Instruction
Set Processors (ASIPs) in audio and video telecom-
munications has made strong demands on the rapid
availability of dedicated compilers. A rule-driven approach
to code generation may have benefits over model-based
approaches as the user is not confined to the capabilities
supported by the model. However, the sole use of
transformation rules may or may not be sufficient in
optimization abilities depending on the target architecture.
This paper outlines experiences with a rule-driven code
generation approach for two applications in audio and
video processing. The first is a controller for the
VideoPhone Codec at SGS-Thomson Microelectronics
[1][2]. The second is a VLIW (Very Large Instruction
Word) for High Fidelity and MPEG Audio at Thomson
Consumer Electronic Components [3]. The experience has
shown that a rule-driven approach to compilation is
applicable to both the controller and VLIW architectures;
however, is limited in optimization abilities for the latter.

 1 Introduction

Today’s designer for multimedia applications is
torn between the rush to meet market windows while
balancing the support of ever changing standards
and specifications. A key solution to these conflict-
ing requirements is the ASIP, an architecture tuned
to the application area while retaining the flexibility
for late changes through embedded firmware. As as-
sembly code is too cumbersome to maintain for in-
struction-set processors, users are making high
demands for code generation utilities.

Examples of retargetable code generation systems
based on a central model include the CodeSyn com-
piler of the FlexWare system [4], the Chess compiler
[5], and the MIMOLA compiler [6]. Retargeting to
new processors can be handled by changes to the in-
struction-set model at either the structural or behav-
ioural level. Although many recent advances
[7][8][9][10] show promise for this approach, the
state-of-the-art has not matured to the point where
these models can encompass all architecture types.

Figure 2 Steps in Rule-driven Compilation

C source

b = 5;

if (a < 3)
{

Virtual Machine

STORE 0x5 -> _b
LOAD _a -> R3
CMP R3, 0x3
BGE _label

_label:

Real Machine

MV 0x5->R4
ST R4->_b
LD _a -> R3 MV 0x3->R4
SUB R3,R4,FLAG
JMPI _label GEZ

_label:

0000 0000 0000 0010 1110
0010 0011 0000 0101 0110
0000 0000 0000 0010 1010
0010 1111 0000 0000 0000
0000 0000 0000 0010 1000

Assembled Code

On the other hand, a rule-driven approach [11] can
be a useful means to arrive rapidly at a dedicated
compiler. Rules can be written which do a step-by-
step transformation of the source algorithm into the
intended assembly and machine code. The quality of
the resulting compiler is directly dependent on the
skill of the user to write adequate transformation
rules. In addition, since there is less need for a heavy
intermediate representation and the maintenance of a
central model, a rule-driven approach has the poten-
tial for very short compilation time.

Independent of the approach used for compilation,
rule-driven and model-based approaches may con-
tain common parts. For example, the tasks of assem-
bly and linking can be formulated generally for both
approaches. As well, compaction may be shared
among the approaches. Figure 1 shows examples of
the two approaches to code generation starting from
the C source language.

This paper describes experience through the devel-
opment of rule-driven compilers for two industrial
projects. The first is the MicroSeQuencer (MSQ)
controller for the Videophone Codec from SGS-Th-
omson Microelectronics (ST) [1]. The second is an
evaluation VLIW (Very Large Instruction Word)
chip for High Fidelity and MPEG Audio at Thomson
Consumer Electronic Components (TCEC is an en-
terprise owned jointly beween SGS-Thomson Micro-
electronics and Thomson Multimedia). This
processor is an improvement on a previous chip [3].
While both compilers had a degree of success, the
experience has clearly shown the applicability and
limitations of a rule-driven approach.

The paper is organized as follows. Section 2 brief-
ly describes the major steps in the rule-driven code
generation approach. Section 3 describes the MSQ
architecture, a description of the compiler, and pre-
sents experimental results. Section 4 has similarily
these three sub-sections for the TCEC architecture. A
conclusion and summary is provided in Section 5 .

 2 Rule-driven Retargetable Code
Generation

The steps in the rule-driven approach used in these
projects are shown in the left side of Figure 1 and are
based directly on concepts in [11]. These steps are
explained here for clarity.

After the usual preprocessing step, the C source al-
gorithm is mapped onto a virtual machine for a ge-
neric architecture [12]. The virtual machine contains
a set of predefinedassembly-level operations for a
non-existing machine; however, it does contain reg-
ister sets indicated by the user. The user is able to
guide the register assignment by indicating which C
data-types a register may hold, whether a register is
to be used as a source and/or destination for opera-
tions, and other various restrictions on the usage of
each register. For example, some registers must be
set aside as places for intermediate calculations. In
other cases, it is sometimes useful to supply non-ex-
istent registers for use in the following stages.

Generic operations for the virtual machine are
passed to a peephole optimizer. The optimizer trans-
forms sequential occurences of operations into more
efficient operations through simple replacements.
The user indicates a source and target sequence of
code using keywords and wildcards. In addition to
optimizations, the peephole optimizer may be used to
transform sequences of virtual machine operations
not available on the target machine into feasible im-
plementations.

The operations that remain are then expanded into
operations for the real machine. Each expansion fol-
lows a rule provided by the user. Each rule indicates
a source piece of code and a target implementation in
the form of micro-operations representing bit fields
of the instruction-set. The target implementation may
be complex; that is, it can contain conditional state-
ments based on the operands of the source.

Micro-operations are subsequently compacted into
instructions. The compaction procedure follows rules
of read/write/occupy resources which are indicated

by the user. The compactor attempts to push the
maximum number of micro-operations to the earliest
possible positions. The straight-forward tasks of as-
sembly and linking immediately follow compaction.

Figure 2 shows an example of the steps in this ap-
proach, excluding peephole optimizations. The C
source is refined step-by-step into the required ma-
chine code. The virtual machine contains generic se-
quential instructions and is later transformed and
compacted into operations on the real machine.

 3 MSQ Controller for the ST
VideoPhone Codec

 3.1 MSQ Architecture Description

The MSQ (MicroSeQuencer) is the top-level con-
trol unit for the SGS-Thomson VideoPhone Codec
[1][2] and controls the functions of all the other
blocks found on the chip. The main functionality of
the unit is depicted in Figure 3.

Figure 3 MSQ Block Diagram for the ST
VideoPhone Codec

The architecture is a single execution stream control-
ler providing standard ALU operations (ADD, SUB,
AND, OR, CMP, SHIFT, etc); as well as standard
control operations (BR conditional/unconditional,
BR indirect). A Data RAM connects to one input of
the ALU and a dedicated register (ACC) connects to
the other input. Only one location in the Data RAM
may be referenced in each instruction; therefore, val-
ues are read and written to the same location. Moves
can occur by means of the ACC register.

A unique property of the MSQ is the existence of a
register interface which communicates with the rest
of the chip. This interface contains a set of registers

Data

ACC

SCH

INTERFACE

PC Prog ROM

ALU

Instruction Register

RAM

which can be accessed by both the interior and exte-
rior. A second unique property is a unit known as the
scheduler (SCH) which can affect the position of the
program counter independent of the natural order of
the program. The scheduler can access the interface
directly and make decisions depending on values
from the exterior. This block works in a polling fash-
ion checking the status of other blocks in the chip
and reacting upon this information.

 3.2 MSQ C Compiler Description

A rule base for a C compiler was developed for the
MSQ in approximately two person weeks. The com-
piler supports a subset of C; however, it does support
the entire functionality of the architecture. The Data
RAM is treated as a large register file, thus the sup-
port of a traditional memory is unnecessary. The in-
terface and scheduler are treated as special purpose
registers which can be accessed directly by the user.
Restricted subroutine calling is also supported.

Main issues arisen in the development of the C
compiler include the restrictions on source and desti-
nation of ALU operations. Since the MSQ allows
only one location in the Data RAM to be referenced
at one time, ALU operations with more than one
source and destination must be transformed to a se-
ries of moves by means of the ACC register. In some
cases an intermediate location is needed for tempo-
rarily storing a value. One location in Data RAM is
reserved for this purpose. These manipulations are
all handled in the expansion to micro-operations.

Other issues include the manipulation of the Cint
data-type into the single data-type supported by the
architecture, which differs from the ANSI standard;
the formulation of the interface and scheduler units
as special-purpose register structures; and supporting
the indirect branching instruction which provides
jump table capability for case statements. The latter
had to be carefully treated for alignment upon specif-
ic bits. As well, we introduced some nice features to
the compiler by providing the dynamic expansion of
a constant number of shifts into a series of single
shifts, as the processor provides only ashift by one
operation.

 3.3 MSQ C Compiler Results

Code was written for approximately 50% of the to-
tal expected embedded firmware and was compiled
using the MSQ C compiler. The examples contain a
cross section of the different types of tasks the MSQ
performs. The results are shown in Table 1. The av-

Figure 4 TCEC VLIW Audio Block Diagram

L2
L3

R2
R3

ACU X

ALU

Data

Controller
I/S Decoder

RAM X

AX1

ACU Y

ROM Y
Data

ROM
Prog

MAC

P

Data Bus X

Data Bus Y

R0
R1

L0
L1

IX1
AX2 IX2
AX3 IX3

MX mx

AY1 IY1
AY2 IY2
AY3 IY3

MY my

erage code size overhead is roughly 1% smaller
when compared with hand code. This indicates that
the compiler performs on average as well as an as-
sembly-level programmer.

Table 1 Number of Assembly lines: C vs
Hand Code for ST MSQ controller

One may argue that the hand assembly could have
been improved in some cases. However, we can
counter-argue that it is the nature of working on the
assembly level that made it difficult to write very
compact code. Thus, we conclude that Table 1 is a
fair comparison of the two coding levels.

Clearly the MSQ C compiler is a necessary and
sufficient compiler for today’s MSQ architecture.
The rule-driven approach had a small retargeting set-
up time and produced high quality results. The main
reason for this success may be the narrow range of
implementation possibilities for each C construct.

Modifications are planned for the MSQ architec-
ture to include more functionality. The C compiler
will be modified to meet these changes. It is also
hoped that the compiler be used as a method to ex-
amine hardware trade-offs. In this case, new rules for

Hand Code C Compiler

codec_gr 189 203 : (7% ov)

codec_mo 318 311 : (-2% ov)

codec_io 592 587 : (-1% ov)

codec_hi 710 676 : (-5% ov)

Average Overhead -1 %

the compiler will have to be added and trialed. While
a rule-driven compiler has rapid set-up time, it may
not be the best suited for architecture exploration, as
rules can be implemented only after a careful study
of hardware capabilities.

 4 TCEC VLIW Audio Architecture

 4.1 TCEC Architecture Description

A top-level diagram for the evaluation Thomson
Consumer Electronic Components VLIW architec-
ture for a High Fidelity and MPEG Audio applica-
tion is depicted in Figure 4. The architecture has a 68
bit wide instruction allowing several tasks to done in
parallel. It has two memories each with a dedicated
data bus and addressing unit. The ALU has separate
register files for the left input and right input. The
multiplier (MAC) has a dedicated register at its out-
put. Each ACU unit has address and increment regis-
ters including dedicated registers for modulo
addressing.

In one cycle, the TCEC architecture can perform
the following parallel operations: an access to RAM
(X) memory, an access to ROM (Y) memory, an
ALU operation, a MAC operation, an increment on
addressing unit X, and an increment on addressing
unit Y. These can take place within the context of
hardware loops, of which 3 nests are possible. Other
control features are the standard call/return and
branch instructions. On the RAM (X) memory, a
stack is available for software use. Each data memo-
ry supports three data-types.

Table 2 Number of Assembly lines: C vs Hand Code for TCEC VLIW

Hand
Code

C Compiler
(1) array style

C Compiler
(2) pointer style

C Compiler
(3) pointer style,
assigned registers

tcec_in 33 160 : (385% ov) 61 : (85 % ov) 33 : (0% ov)

tcec_in (inner loop) 11 47 : (327 % ov) 14 : (27 % ov) 11 : (0% ov)

Average Overhead 356 % 56 % 0 %

 4.2 TCEC C Compiler Description

A rule-driven C compiler prototype was success-
fully built for the TCEC architecture in approximate-
ly 3 person-weeks. It supports a much larger subset
of C than the MSQ compiler. This includes the sup-
port of data in the two different memories, denoted
through small extensions to the C syntax. Three C
data-types (char, short int, long int) are supported,
with a non-ANSI interpretation of the bit-widths.
The permitted arithmetic operations match the capa-
bilities of the ALU. Standard control-flow operations
are mapped to conditional and unconditional branch-
es in the standard manner. Subroutines and parame-
ters are supported in the traditional way as a stack is
available on the RAM (X) data memory. Hardware
do-loops are supported through built-in functions.

Many issues had arisen during the compiler devel-
opment of this complex architecture. The two data
memories were treated in the traditional load/store
model with local register files for the ALU. Priorities
were placed on the registers in order that the left and
right restrictions were not violated. For the wide in-
struction word, compaction legality rules had to be
carefully implemented. The three C data-types were
successfully mapped into the data-types supported
by the architecture by masking unused bits. Encod-
ing overlaps of fields in the micro-instruction some-
times limited the compaction capabilities. These
were overcome with special-purpose peephole opti-
mizations. Sequential occurences of compactable
virtual operations were mapped directly into ma-
chine operations. Operations which are not possible
on the address calculation units because of register
restrictions were converted into legal operations
through the insertion of moves to legal registers.

 4.3 TCEC C Compiler Results

Code was written for an example of the tasks for
the TCEC VLIW architecture. The results are shown
in Table 2. The example is given in two parts, the
overall function and the inner-most loop of the func-
tion which is indicative of the time-criticality of the

algorithm. The C code was written in three particular
styles as to improve compilation results (Note: This
was done not to condone the practice of writing low-
level code; but rather, to evaluate the level of usabili-
ty of this compiler). The first ((1) array style) is the
designer’s original code, closest to the intended algo-
rithm. It uses traditional looping constructs (e.g. for,
while) and array structures (e.g. x[i]). The second
((2) pointer style) is a direct transformation of the al-
gorithm using: hardware loops (e.g. for, while =>
hardware loop), loop-folding techniques, references
of the arrays by pointers (e.g. x[1] => x++; *x), and
liberal use of theregister storage class to encourage
the efficient use of the local registers. The third ((3)
pointer style, assigned registers) is an extension of
style (2) with all the registers hand assigned by the
programmer. With minor modifications (pre-proces-
sor replacements), all styles of the code can also be
made to compile on a standard workstation compiler.

It is clear from the inspection of Table 2 that the
compiler is unacceptable for a high-level C coding
style; the style closest to the designer’s original
concept. For high performance code, a low-level
coding style is required. As this chip is expected to
use an expensive on-chip ROM, any code size over-
head cannot be afforded. Therefore, coding of style
(3) is expected to be predominant in all of the C
code.

The main drawbacks with the rule-driven approach
for style (1) type of code are:

• Inability to take advantage of dedicated register
structures.

• Inability to efficiently use dedicated addressing
units for memories.

• The lack of data-flow analysis capabilities for opti-
mizations such as loop-folding.

• The disjoint effects of code generation tasks such
as register allocation and compaction.

 5 Conclusion

The two projects cited have shown clearly two ex-
tremes in the area of retargetable code generation.
The MSQ is a simple dedicated architecture for
which a compiler using a rule-driven approach per-
forms as well as an assembly-level programmer. The
set-up time was relatively short (2 person weeks) and
the compiler is fast and efficient. To date, the users
have been quite satisfied with its performance and
ease of use. The main drawback for this compiler is
the difficulty of being able to do hardware tradeoffs
for architecture exploration. To evaluate instruction-
set design choices, the retargeting time is longer than
the ideal, making interactivity difficult.

For a more complex programmable architecture
such as that of TCEC, it was shown that a rule-driven
compiler is possible, however with shortcomings.
Some of these shortcomings may be improved upon
with enhancements to the compiler through the addi-
tion of new rules, but it is clear that the approach is
limited. A low-level coding style is certainly neces-
sary to achieve both acceptable code size and run-
time performance. For an assembly level program-
mer, the compiler offers some benefits, but clearly
this is only a first step towards an acceptable full C
compiler. Moreover, architecture exploration tasks
for the TCEC architecture using the compiler would
become much too cumbersome. This is due to the
vast number and complexity of inter-dependent
rules. A model-based approach for this type of archi-
tecture clearly has benefits.

The experience with these two architectures has
shown that the rule-driven compilation approach has
benefits in the following areas:

• Simplicity of data-structures: this allows rapid set-
up time and compilation time.

• Ease of implementation: the user is able to quickly
write and adapt rules for architecture peculiarities.

However, the experience has also shown that rule-
driven compilation has drawbacks in the following
areas:

• Disjoint steps in compilation flow: this may lead to
inefficient code.

• Limited data-flow representation: this restricts the
optimization abilities.

• Not automatically retargetable: this makes archi-
tecture exploration difficult.

In our experience, by far the greatest advantage to
using a rule-driven approach is the retargeting flexi-

bility to control the compilation process for architec-
ture idiosynchrocies that could not be anticipated
(the very reason that makes compilation to today’s
embedded processors difficult). This aspect makes
rule-driven compilation an attractive industrial route.

Acknowledgements

The authors would like to thank Michel Harrand of
SGS-Thomson for his valuable assistance with issues
of the VideoPhone Codec. As well, we would like to
thank Laurent Bergher, Jean Marc Gentit, and Xavier
Figari of Thomson Consumer Electronics Compo-
nents for their assistance and discussions of the High
Fidelity and MPEG Audio VLIW architecture.

References

[1] SGS-Thomson MicroElec., “STi1100 VideoPhone
CODEC Preliminary Data Specification”, Aug 1993.

[2] M. Harrand, et. al., “A Single Chip Videophone Video
Encoder/Decoder”,Int. Solid-State Circuits Conf.,Feb
1995, pp. 292-293.

[3] L. Bergher, X. Figari, F. Frederiksen, M. Froidevaux,
J.M. Gentit, O. Queinnec, “MPEG Audio Decoder for
Consumer Applications”, submitted to CICC’95.

[4] P. Paulin, C. Liem, T. May, S. Sutarwala, “FlexWare:
A Flexible FirmWare Development Environment”, in
Code Generation for Embedded Processors, ed. by P.
Marwedel, G. Goossens, Kluwer Acad. Pub., 1995.

[5] J. VanPraet, G. Goossens, D. Lanneer, and H. DeMan,
“Instruction Set Definition and Instruction Selection
for ASIPs”, Int. Symp. on High-Level Synthesis,May
1994, pp. 11-16.

[6] P. Marwedel, “Tree-Based Mapping of Algorithms to
Predefined Structures”,Int. Conf. on Computer Aided
Design,Nov 1993, pp. 586-593.

[7] C. Liem, T. May, P. Paulin, “Instruction-Set Matching
and Selection for DSP and ASIP Code Generation”,
European Design & Test Conf.,Feb 1994, pp. 31-37.

[8] C. Liem, T. May, P. Paulin, “Register Assignment
through Resource Classification for ASIP Microcode
Generation’’,Int. Conference on CAD, Nov 1994.

[9] D. Lanneer, M. Cornero, G. Goossens, H. DeMan,
“Data Routing: a Paradigm for Efficient Data-path
Synthesis and Code Generation”, Int. Symp. on High-
Level Synthesis, May 1994, pp. 17-22.

[10]R. Leupers, W. Schenk, P. Marwedel, “Retargetable
Assembly Code Generation by Bootstrapping”,Int.
Symp. on High-Level Synthesis,May 1994, pp. 88-93.

[11]R.P. Gurd, “Experience Developing Microcode Using
a High-Level Language”,Proc. of the 16th Annual Mi-
croprogramming Workshop,Oct 1983, pp. 179-184.

[12]S. Antoniazzi et. al., “A Methodology for Control-
Dominated Systems Codesign”,Int. Workshop on
Hardware/Software Codesign,Sept 1994, pp. 2-9.

[13]P. Paulin, C. Liem, T. May, S. Sutarwala, “DSP Design
Tool Requirements for Embedded Systems: A Tele-
communications Industrial Perspective”,Journal of
VLSI Signal Processing, 9., K.A.P., 1995, pp. 23-47.

	Compendium95
	ISSS95
	Front Matter
	Table of Contents
	Session Index
	Author Index

