
Time-constrained Code Compaction for DSPs

Rainer Leupers, Peter Marwedel

University of Dortmund, Dept. of Computer Science XII, 44221 Dortmund, Germany

email: leupersjmarwedel@ls12.informatik.uni-dortmund.de

Abstract{DSP algorithms in most cases are subject to

hard real-time constraints. In case of programmable DSP

processors, meeting those constraints must be ensured by

appropriate code generation techniques. For processors

o�ering instruction-level parallelism, the task of code

generation includes code compaction. The exact timing

behavior of a DSP program is only known after compac-

tion. Therefore, real-time constraints should be taken

into account during the compaction phase. While most

known DSP code generators rely on rigid heuristics for

that phase, this paper proposes a novel approach to local

code compaction based on an Integer Programming model,

which obeys exact timing constraints. Due to a general

problem formulation, the model also obeys encoding re-

strictions and possible side e�ects. 1

1 Introduction & related work

Design requirements for embedded systems including

DSP functionality strongly di�er from those for inter-

active environments such as workstations. While in the

latter case an "as fast as possible" behavior is desirable,

DSP algorithms (e.g. in audio and video processing) are

usually subject to hard real-time constraints, i.e. any

speed overhead violating the restrictions is unacceptable

for those systems. On the other hand, it is unnecessary

to optimize a DSP algorithm beyond the given timing

constraint.

This has consequences for code generation in case of pro-

grammableDSP processors. Instead of producing highly

optimized code, a DSP code generator should basically

answer the question whether there exists a machine pro-

gram whose execution does not take more than T cycles

for a given constraint T , and if so, construct that pro-

gram.

Code generation for DSPs is complicated by the fact

that a moderate to high degree of potential parallelism

is o�ered by contemporary DSP instruction sets. The

Motorola DSP56156 [1] for instance performs up to three

register transfers per cycle. Exploitation of available

parallelism during code generation is usually ensured by

1This work has been partially supported by the European
Union, ESPRIT project 9138 (CHIPS)

a code compaction phase, in which independent register

transfers may be scheduled together into a single con-

trol step thus resulting in a lower cycle count. The ex-

act timing behavior of a machine program is only known

after compaction. This implies that timing constraints

should be considered by a compiler at least during the

compaction phase.

Due to the steadily growing importance of embedded

DSP systems based on programmable processors, much

research e�ort has gone into the area of code generation

for DSPs during the last years. Compilers for DSPs have

to cope with highly irregular datapaths, highly special-

ized instruction sets, and peculiarities in the instruction

formats. Furthermore, a certain degree of retargetability

is desirable. Recent approaches to DSP code generation

include [2, 3, 4, 5, 6]. An overview of the state-of-the-art

is to be found in [7].

In those approaches, however, timing constraints are

neglected. Instead, focus is on retargetability and code

optimization. Due to the problem complexity, heuristics

are applied for solving the subtasks of code generation,

including code compaction.

While the presence of timing constraints has been sub-

ject to research for a long time in the area of hardware

synthesis, automatic time-constrained software gener-

ation is quite a new topic. In contrast to hardware

synthesis, time-constrained software generation for pre-

de�ned processors results in a both time and resource-

constrained problem de�nition. This implies that a given

problem does not necessarily have a solution.

The problem of time-constrained software generation

has also been addressed in the context of HW/SW co-

design. The technique described in [8] uses a very rough

estimation of machine program execution times, mak-

ing simplifying assumptions about the available instruc-

tion set. While such an approach makes sense from a

"system-level" point of view, it is unlikely to succeed

in actual code generation. A constructive system-level

technique for software scheduling in presence of real-

time constraints has been reported in [9]. In Timmer's

approach [10], both time and resource constraints are

exploited during code generation. Due to a sophistic-

ated execution interval analysis, the technique e�ciently

produces very high quality code. However, code gen-

eration is currently limited towards restrictive instruc-

tion formats. A more versatile code generation sys-

tem that actually considers exact program execution

times on a given processor was presented in [11]. In

that system, code generation is based on an Integer

Program (IP) formulation of the problem, a technique

that has also become quite popular in the area of high-

level synthesis (see e.g. [12, 13]). In fact, the approach

described in [11] tries to integrate several of the code

generation subtasks (including code compaction) into a

single Integer Program resulting in optimal programs

or time-constrained programs, respectively. However,

due to NP-completeness of Integer Programming, one

cannot expect to solve complex code generation prob-

lems within an acceptable amount of time, although it

is reasonable to permit much higher runtimes for a DSP

code generator than for a C compiler in a workstation

environment.

Therefore, in this contribution we propose an IP model

which focuses on the task of code compaction. Inputs

to the model are a sequence of register transfers and a

maximum time budget T for the compacted code. Run-

ning an IP solver on this model either delivers com-

pacted code with a cycle count � T or reports infeasib-

ility of the given problem. We do not explicitly consider

minimum timing constraints, since in code generation

those constraints usually can be met by inserting "no-

operations".

In extension to the work described in [11] which basically

considers resource conicts and dependencies between

microoperations during compaction, our model also hand-

les encoding restrictions and operations having side ef-

fects, i.e. the control code for one register transfer may

also trigger other di�erent register transfers. During

code compaction it must be ensured that live values in

registers are not destroyed by such side e�ects. Further-

more, we include the concept of alternative code ver-

sions into compaction. During compaction, an appro-

priate code version for each operation is selected. These

extensions make our approach suitable for a variety of

DSP processors. Although the problem to solve remains

NP-hard, we believe that an approach which directly in-

corporates timing constraints into the code generation

process is better suited for DSP requirements, since any

rigid heuristic trying to optimize the code might fail to

�nd an existing solution.

The next section gives a detailed de�nition of the code

compaction problem. Section 3 shows how one problem

instance can be transformed into an IP. Experimental

results are given in section 4, and the paper ends with

some concluding remarks.

2 Problem de�nition

As in [11] we concentrate on local code compaction, i.e.

within basic blocks. While on one hand this restricts

the solution space, it can be argued that the possible ad-

vantage of tackling the problem in a more global fashion

(at the expense of a possibly much larger search space)

might not be too high, since DSP algorithms typically

show mainly data ow and less control ow behavior.

With the appearance of VLIW machines, local micro-

code compaction became a popular research topic, and

a number of heuristic algorithms have been developed,

since the problem was shown to be NP-complete. An

extensive experimental study [14] revealed that some of

these heuristics very often �nd solutions close to the

optimum within polynomial time. In the area of DSP,

however, code optimality is not always necessary. Any

machine program that satis�es a given timing constraint

is a valid solution. Our problem de�nition therefore just

demands for such a valid solution.

We assume that a sequence of assignments

SA = (A1; : : : ; An)

has been generated by earlier phases of compilation.

The goal is to schedule the assignments into a control

step list that does not exceed a given length. An assign-

ment Ai is a pair

Ai = (Wi; Ri)

where Wi is the write location and Ri is a set of read

locations for the assignment. Write and read locations

are registers or memory cells. An assignmentAi writes a

value toWi that is a function ofRi. Let A = fA1; : : : ; Ang.
Three relations on A � A are important for preserving

correctness in the compacted assignment sequence. For

j > i we de�ne:

1. (Ai; Aj) 2 DD (data-dependency)

:() Wi 2 Rj.

2. (Ai; Aj) 2 OD (output-dependency)

:() Wi = Wj .

3. (Ai; Aj) 2 DAD (data-anti-dependency)

:() Wj 2 Ri.

In case that read or write locations are cells of an ad-

dressable memory, the problem of ambiguous memory

references occurs. Sometimes it is undecidable at com-

pile time whether or not two memory accesses refer to

the same address. We therefore assume that the three

relations incorporate potential depencencies in case of

unresolvable ambiguities.

Let CS(Ai) denote the control step to which Ai will

be assigned during compaction. Then, the following de-

pendency constraints have to be satis�ed in any valid

schedule:

1. 8(Ai; Aj) 2 DD [OD : CS(Ai) < CS(Aj).

2. 8(Ai; Aj) 2 DAD : CS(Ai) � CS(Aj).

For each Ai there is a set of alternative versions

Vi = fvi1; : : : ; vimi
g

A version vij is a partial control word setting, i.e. a bit-

string B 2 f0; 1; xgc, where c is the control word length.
One of these versions has to be selected for each Ai.

Two assignments Ai; Aj may only be scheduled within

the same control step with versions vik; vjl, if the ver-

sions are bit-compatible, i.e. there is no position m in

the bitstrings such that

vik[m] = 1 ^ vjl[m] = 0

and vice versa. The concept of versions is also used

in the MSSQ code generator [15]. Considering only

control code requirements for an assignment allows for

mapping resource conicts to instruction conicts. As a

consequence, no explicit information about resource us-

age of assignments has to be maintained. Furthermore,

versions also account for encoding restrictions within

the processor controller: In order to keep the instruc-

tion word length small, it is often the case that register

transfers cannot take place in parallel although being

resource-compatible. Like resource conicts, encoding

restrictions are implicitly represented by versions. The

presence of alternative versions for assignments reects

the fact, that in general there exist several implementa-

tions for a given assignment, each having di�erent con-

trol code requirements. The example in section 4 demon-

strates that taking into account those alternatives dur-

ing compaction is essential for obtaining acceptable res-

ults.

Preserving the semantical correctness of an assignment

sequence during compaction in general is further com-

plicated by the presence of side e�ects of register trans-

fers. As an example we consider the TMS320C25 DSP

[16]. A possible register transfer in the TMS320C25 is

to multiply register TR with a data memory value and

to store the result in register PR. However, there exist

di�erent versions to perform this operation (table 1).

The multiply (MPY) instruction does just the multi-

plication. The multiply-accumulate instruction (MAC)

additionally accumulates the previous product, causing

a side e�ect. Whenever the accumulator has to retain

its value, it must be ensured that during compaction the

MPY version is selected, while in other cases it would

be favorable to select the MAC version.

Especially in code generation for VLIW-like processors,

usually some bits in each control word remain "don't

care". However, it must be ensured that a later setting

of these don't care bits to either 0 or 1 does not trigger

an undesired register transfer that destroys a live value.

In order to eliminate such undesired side e�ects during

compaction, we assume that with every write location w

(register or memory) there is an associated set of "NOP

versions"

Nw = fnw1; : : : ; nwkwg

also being bitstrings in f0; 1; xgc. Packing a NOP ver-

sion nwl into a control step t ensures that location w

remains its state during that step. Although not being

"real instructions", NOP versions for a location w are

quite easy to obtain by inverting the sum of all versions

that write to w. Reference [17] describes how all ver-

sions can be extracted from a processor model given in

an HDL.

For elimination of undesired side e�ects during compac-

tion, any valid schedule must ful�ll the following state

preserving constraints:

Register states: If an assignment Ai writes a value

to a register R, it must be ensured that no other op-

eration destroys that value during its life range. On

the other hand, in order to avoid unnecessary restric-

tions, the register may be overwritten as a side e�ect,

whenever it does not contain a live value. Thus, for each

pair (Ai; Aj) of data-dependent assignments, which are

scheduled in non-subsequent control steps ti; tj, a NOP

version for the destination of Ai must be scheduled.

Memory states: If an assignment Ai writes a value to

a cell of an addressable memory M , the memory must

not be disabled during the lifetime of that value, since

this would prevent intermediate write accesses to other

cells of M . The dependency relations ensure that the

live value cannot be overwritten by other assignments.

In order to prevent undesired side e�ects, a NOP version

for M must be activated for each control step in which

no write access to M takes place.

We can now de�ne the problem of time-constrained code

compaction:

For an assignment sequence SA = fA1; : : : ; Ang and a

timing constraint T �nd a valid schedule of length � T .

A schedule is valid, if:

1. Each assignment is scheduled exactly once.

2. For each control step, the dependency, bit-compa-

tibility, and state preserving constraints are satis-

�ed.

Obviously, time-constrained code compaction is NP-hard.

Otherwise, one could solve the problem of optimumcode

machine instruction partial code functionality

MPY 00111000xxxxxxxx PR := TR * mem[...]

MAC 01011101xxxxxxxx PR := TR * mem[...]

ACCU := ACCU + PR

Table 1: Di�erent versions for multiplication

compaction in polynomial time by time-constrained code

compaction combined with a binary search on the pos-

sible schedule lengths. Therefore we may map the prob-

lem to an Integer Program formulation without loss of

e�ciency.

3 IP formulation

Given an assignment sequence A = (A1; : : : ; An) and a

maximum timing constraint T , the IP model contains

two classes of decision variables:

Version variables:

8i � n; j � jVij; t 2 R(Ai) : vi;j;t = 1 :() version

j of assignment i is scheduled in control step t. R(Ai)

denotes the range of Ai, i.e. the interval

[ASAP (Ai); ALAP (Ai)]

induced by the dependency relations in accordance with

T . We assume that each Ai is executable within a single

machine cycle.

Any maximum timing constraint T less than the maxi-

mum ASAP value can be rejected in advance, since no

valid schedule can have a smaller length than the critical

path. Likewise, timing constraints greater than n need

not be considered, since for T � n the original sequence

can simply be kept.

NOP variables:

nw;j;t = 1 : () NOP version j is activated for write

location w in control step t. NOP variables are only

de�ned in case of occurence in the state preserving con-

straints.

The constraints guaranteeing semantical correctness of

the compacted sequence are the following:

Each assignment scheduled once:

8Ai :
X

t2R(Ai)

jVijX
j=1

vi;j;t = 1

For each Ai one version must be selected and be assigned

to one control step within the range of Ai.

Strong dependency constraints:

8 (Ai; Aj) 2 DD[OD; C := R(Ai)\R(Aj) : 8t 2 C :

jVjjX
k=1

vj;k;t �
X

t0<t;t02C

jVijX
k=1

vi;k;t0

Assignments Ai have to be scheduled before their data-

and output-dependent assignments Aj.

Weak dependency constraints:

8 (Ai; Aj) 2 DAD; C := R(Ai)\R(Aj) : 8t 2 C :

jVjjX
k=1

vj;k;t �
X

t0�t;t02C

jVijX
k=1

vi;k;t0

Assignments Ai have to be scheduled before or in the

same control step as their data-anti-dependent assign-

ments Aj .

Register state preserving constraints:

8 (Ai; Aj) 2 DD; Wi = (register)R :

8 t 2 [ASAP (i) + 1; ALAP (j)� 1] :

X
t0<t

jVijX
k=1

vi;k;t0 +
X
t0>t

jVjjX
k=1

vj;k;t0 � 1 =

jNRjX
k=1

nR;k;t

If Ai and Aj are data-dependent and are not scheduled

in subsequent control steps, a NOP version for Wi = R

must be activated for each intermediate control step.

Memory state preserving constraints:

8Wi = (memory)M; AM := fAj :Wj =Mg; 8t :

1�

0
@ X
Aj2AM ;t2R(Aj)

jVjjX
k=1

vj;k;t

1
A =

jNM jX
k=1

nM;k;t

For each memory M and each control step t, a NOP

version for M is activated in t if and only if no write

access to M takes place in t.

Bit-compatibility constraints:

Let "6�" denote the bit-incompatibility of two bitstrings.

8 (Ai; Aj) =2 DD [OD; C := R(Ai) \R(Aj) 6= ; :

8t 2 C; 8k 2 f1; : : : ; jVijg; 8k0 2 f1; : : : ; jVjjg;

vi;k;t 6� vj;k0;t : vi;k;t + vj;k0;t � 1

Two assignment versions may only be scheduled into the

same control step, if they are bit-compatible, i.e. there

are neither resource nor encoding conicts. We omit

the complementary constraints that hold for combina-

tions between assignment and NOP versions, as well as

between NOP versions only.

Running an IP solver without an objective function on

an instance of this model either yields a compacted sched-

ule with length � T , or proves that no such schedule

exists. This implies that we solve the IP as a decision

problem instead of an optimization problem. Although

both variants show same computational complexity, the

decision problem is solved faster, since only one solution

has to be found.

Since the number of assignments and versions is �xed,

the number of variables in the IP model is mainly inu-

enced by the ASAP/ALAP ranges of the assignments.

The assignment versions may be exploited for further re-

duction of those ranges without restricting the solution

space. One means of such a reduction is the following

rule: Whenever two assignments Ai; Aj are data-anti-

dependent, and all versions for Ai; Aj are pairwise bit-

incompatible, they can be treated like being strongly

dependent, i.e. the data-anti-dependency induces a <

relation on CS(Ai) and CS(Aj). Apparently, the ef-

fectiveness of such reduction rules strongly depends on

the instruction set of the target processor and is not

further discussed here.

4 Example

Due to the NP-completeness of time-constrained code

compaction and IP, respectively, the model in general

cannot be applied for very large assignment sequences.

Like IP models in the area of high-level synthesis, it is

intended to work on small to medium size subproblems,

whose solutions can be combined to a global one as pro-

posed in [11]. For instance, a large DSP algorithm with

a timing constraint T could be subdivided into smaller

blocks for each of which an exact solution for a "small"

timing constraint is determined. Obviously, it is still

a di�cult problem how to obtain an appropriate block

structure, and several iterations will be required in gen-

eral.

On the other hand it can be stated that especially for

DSP processors focus must be on careful local compac-

tion of register transfers. This is due to the application

area, where many multiply-accumulate and data move

operations occur. Most DSP instruction sets permit to

parallelize such operations, and meeting real-time con-

straints in most cases demands for exploitation of po-

tential parallelism. Again, we consider an example for

the TMS320C25. The equation

u(n) = u(n�1)+K0 �e(n)+K1 �e(n�1)+K2 �e(n�2)

is needed in a PID control loop. The following assign-

ment sequence computes this equation (all signals are

assumed to reside in data memory):

(1) ACCU := u(n-1)

(2) TR := e(n-2)

(3) PR := TR * K2

(4) TR := e(n-1)

(5) e(n-2) := e(n-1)

(6) ACCU := ACCU + PR

(7) PR := TR * K1

(8) TR := e(n)

(9) e(n-1) := e(n)

(10) ACCU := ACCU + PR

(11) PR := TR * K0

(12) ACCU := ACCU + PR

(13) u(n) := ACCU

The cycle count without any compaction is 13. Sup-

pose, a hard timing constraint of 9 cycles is given. The

TMS320C25 instruction set comprises a number of dif-

ferent versions for each of the assignments (e.g. MPY

and MAC for the multiplications). The compactor has

to look for common versions for independent assign-

ments in order to achieve a tighter schedule. Running

the IP solver2 on the corresponding IP formulation of

the problem (containing 157 decision variables) yields

the following compacted schedule within 16 seconds on

a SPARC-20 (jj denotes parallel execution, NOPs not

shown):

(1) ACCU := u(n)

(2) TR := e(n-2)

(3) PR := TR * K2

(4) e(n-2) := e(n-1) ||

TR := e(n-1) ||

ACCU := ACCU + PR

(5) PR := TR * K1

(6) e(n) := e(n-1) ||

ACCU := ACCU + PR ||

TR := e(n)

(7) PR := TR * K0

(8) ACCU := ACCU + PR

(9) u(n) := ACCU

In control steps (4) and (6) the compactor exploited

the TMS320C25 "LTD" instruction for meeting the con-

straint, which loads TR, accumulates a previous product

in PR, and in parallel performs a data memory move.

The relatively high runtime for this example indicates

2"lp solve V1.5" by Michel Berkelaar, Eindhoven University of
Technology, The Netherlands

that the IP solver has to scan a large search space in

order to �nd the schedule. In turn, this implies that

any heuristic compaction algorithm is likely to fail in

this case. Therefore, in presence of timing constraints,

a higher runtime is acceptable for compaction. Further-

more, the TMS320C25 is a fairly complex example. For

processors with a less restrictive instruction set, solu-

tions for blocks with more than 100 assignments have

been found within a second of CPU time. Thus the ac-

ceptable assignment sequence length clearly depends on

the target processor, and no quantitative remarks about

the runtime behavior are possible. Due to the fact that

DSP algorithms typically are short and computation-

intensive, we however expect that our approach, which

allows to handle sequence lengths between 10 and 100

within a reasonable amount of time, is su�cient in most

cases.

5 Conclusions

With growing importance of programmable DSP pro-

cessors integrated in embedded systems, time-constrained

code generation has become a complementary research

topic to time-constrained hardware synthesis. In this

contribution we introduced a method that exactly solves

a subproblem of time-constrained code generation, name-

ly code compaction. This method is implemented in

Record, a retargetable compiler for DSPs.

Due to the NP-completeness of the problem, we for-

mulated an Integer Programming version. The IP for-

mulation permits �nding solutions for small to medium

size problems within an acceptable amount of time. For

complex DSP processors and tight timing constraints

such an approach seems favorable, since heuristic com-

paction algorithms are likely to fail in those cases. Es-

pecially, this holds in presence of encoding restrictions

and operations with side e�ects, which occur in contem-

porary DSPs. The presented IP model provides means

of handling those peculiarities.

Further research is necessary on integration of code com-

paction and other phases of retargetable code genera-

tion. Furthermore, an a priori reduction of the search

space as used by Timmer [10] would be favorable in or-

der to decrease run time.

Acknowledgement

The authors would like to thank Birger Landwehr for

his helpful comments on Integer Programming issues.

References

[1] DSP56156 User's Manual, Motorola Inc. 1992

[2] C. Liem, T. May, P. Paulin: Instruction-set match-

ing and selection for DSP and ASIP code generation,
European Design & Test Conference (ED & TC), 1994

[3] A. Fauth, A. Knoll: Translating signal owcharts into

microcode for custom digital signal processors, Proc.

ICSP, 1993

[4] B. Wess: Optimizing signal ow graph compilers for

digital signal processors, Proc. ICSPAT 1994

[5] J. Van Praet, G. Goossens, D. Lanneer, H. De Man:
Instruction set de�nition and instruction selection for

ASIPs, 7th Int. Symp. on High-Level Synthesis, 1994

[6] R. Leupers, R. Niemann, P. Marwedel: Methods for

retargetable DSP code generation, IEEE Workshop on
VLSI Signal Processing, 1994

[7] P. Marwedel, G. Goossens (eds.): Code generation for
embedded processors, Kluwer Academic Publishers, to

appear: June 1995

[8] R. K. Gupta, G. De Micheli: Constrained software gen-

eration for hardware-software systems, 3rd Int. Work-
shop on Hardware/Software Codesign, 1994

[9] P. Chou, G. Borriello: Software scheduling in the co-

synthesis of reactive real-time systems, 31st Design

Automation Conference, 1994, pp. 1-4

[10] A. H. Timmer, M. T. J. Strik, J. L. van Meerbergen, J.

A. G. Jess: Conict Modelling and Instruction Schedul-
ing in Code Generation for In-House DSP Cores, 32nd

Design Automation Conference, 1995

[11] T. Wilson, G. Grewal, D. K. Banerji: An integrated ap-

proach to retargetable code generation, 7th Int. Symp.
on High-Level Synthesis, 1994

[12] C. H. Gebotys, M. I. Elmasry: Global optimization

approach for architectural synthesis, IEEE Trans. on

CAD, Vol. 12, No. 9, 1993

[13] B. Landwehr, P. Marwedel, R. Doemer: Optimum sim-
ultaneous scheduling, allocation, and resource binding

based on integer programming, Euro-DAC, 1994

[14] Davidson, D. Landskov, B. D. Shriver, P. W. Mallet:

Some experiments in local microcode compaction for

horizontal machines, IEEE Trans. on Computers, vol.

30, No. 7, 1981

[15] L. Nowak: Graph Based Retargetable Microcode Com-

pilation in the MIMOLA Design System, 20th Annual

Microprogramming Workshop (MICRO-20), 1987, pp.
126-132

[16] TMS320C2x User's Guide, Rev. B, Texas Instruments,

1990

[17] R. Leupers, P. Marwedel: A BDD-based frontend for

retargetable compilers, European Design & Test Con-

ference (ED & TC), 1995

	Compendium95
	ISSS95
	Front Matter
	Table of Contents
	Session Index
	Author Index

