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ABSTRACT

We address the problem of minimizing power consumption in be-
havioral synthesis of data-dominated circuits. The complex na-
ture of power as a cost function implies that the effects of several
behavioral synthesis tasks like module selection, clock selection,
scheduling, and resource sharing on supply voltage and switched
capacitance need to be considered simultaneously to fully derive
the benefits of design space exploration at the behavior level. Re-
cent work has established the importance of behavioralsynthesis in
low power VLSI design. However, most of the algorithms that have
been proposedseparate these tasks and perform them sequentially,
and are hence not able to explore the tradeoffs possible due to
their interaction. We present an efficient algorithm for performing
scheduling, clock selection, module selection, and resource allo-
cation and assignment simultaneously with an aim of reducing the
power consumption in the synthesized data path. The algorithm,
which is based on an iterative improvement strategy, is capable
of escaping local minima in its search for a low power solution.
The algorithm considers diverse module libraries and complex
scheduling constructs such as multicycling, chaining, and struc-
tural pipelining. We describe supply voltage and clock pruning
strategies that significantly improve the efficiency of our algorithm
by cutting down on the computational effort involved in explor-
ing candidate supply voltages and clock periods that are unlikely
to lead to the best solution. Experimental results are reported to
demonstrate the effectiveness of the algorithm. Our techniques can
be combined with other known methods of behavioral power opti-
mization like data path replication and transformations, to result in
a complete data path synthesis system for low power applications.

1. INTRODUCTION
Low power consumption has been established as an important

metric for VLSI design. Recent work [1, 2, 3] has shown that
the most savings in power consumption are often obtained at the
higher levels of the design hierarchy. In this paper, we concentrate
on the behavioral synthesis process, that takes as its input the behav-
ioral description of a design, and produces a register-transfer level
(RTL) circuit that implements the specified behavior. Behavioral
synthesis can be sub-divided into several tasks including module
selection, clock selection, scheduling, allocation and assignment.
It is important to note that these tasks interact, and solving each
one separately is likely to compromise the quality of the design.

Pioneering work in architectural power optimization was pre-
sented in [1], which used data path replication and pipelining to
enable supply voltage scaling for power reduction. A methodology
that used a variety of architectural transformations to reduce power
consumption was presented in [2]. Module selection [4], alloca-
tion and assignment [5, 6] methods have also been proposed to
reduce power consumption. While all the above methods perform
some subset of the behavioral synthesis tasks to reduce power con-
sumption by reducing the supply voltage or reducing the switched
capacitance, few explore the tradeoffs involved in considering the
interaction of the various tasks.
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9319269.
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Figure 1: CDFG for dot product and a schedule/assignment

In this paper, we present an iterative improvement algorithm
for low power data path synthesis that performs scheduling, clock
selection, module selection, and resource allocation and assignment
with an objective of minimizing power consumption. A key feature
of our algorithm is that it performs these tasks simultaneously,
making it possible to explore the tradeoffs that result from the
interdependence of these tasks.
2. BACKGROUND

We consider behavioral descriptions that have been compiled
into a control-data flow graph (CDFG), which is a directed graph
whose vertices consist of arithmetic, logical and comparison op-
erations, delay operators, and special branch, merge, loop entry,
and loop exit vertices that represent control flow constructs. The
CDFG contains data (control) flow edges that represent data (con-
trol) dependencies between operations. An example CDFG shown
in Figure 1 represents the computation of the dot product of two
vectors.

In this work, we consider data-dominated behavioral descrip-
tions, as are common in digital signal and image processing appli-
cations. Two important characteristics of such descriptions are: (i)
they consist mainly of arithmetic operations like addition, multi-
plication, and delay operators, etc., and (ii) there is a constraint on
the input sampling period, i.e., the inputs arrive at a fixed rate. It
is necessary to be able to process an input sample before the next
one arrives. However, it does not pay to process input samples any
faster than the required rate [1].

The average switching power, which accounts for the dominant
part of power consumption in CMOS technology, of a gate is given
by 1

2CLVdd
2 N
T

, where CL is the gate output capacitance, Vdd is
the supply voltage, and N is the number of transitions at the gate
output during the period of operation T . The equation for power
consumption implies that the supply voltage, Vdd, has a strong
effect on power consumption due to its quadratic contribution. An
unfortunate side-effect of decreasingVdd , however, is that the delay
of the circuit increases. The delay of a CMOS gate can be shown to
be k CLVdd

(Vdd�Vth)2 , where Vth is the device threshold voltage, andk is
a constant that dependson the technology and the size of transistors



in the gate [7]. Hence, Vdd scaling is only performed when the
delay degradation does not cause the delay to exceed the specified
constraint, or when other means are used to combat the delay
degradation. The product of the physical capacitance, CL, and
the transition activity, N , is called the switched capacitance. The
effect of the switched capacitance term, though not as drastic as the
supply voltage term, can also be used to reduce power consumption.
2.1 Scheduling

The process of scheduling determines the cycle-by-cycle behav-
ior of the CDFG, i.e., it assigns each operation in the CDFG to
one or more cycles or control steps. Figure 1 shows the schedule
information for the example CDFG. The horizontal dotted lines
labeled with numbers indicate the clock edges, i.e., the boundaries
between control steps. Note that +4 is scheduled to be executed in
the same control step as+1 and+2 because the clock period, which
is 55ns, is large enough to permit us to do so. This technique is
called chaining. The term multicycling refers to the complementary
situation where a single operation requires multiple control steps
to execute. Structural pipelining refers to the use of pipelined ex-
ecution units in the data path. Clearly, the choice of clock period
affects the assignment of control steps to operations, as does the
delay of each operation in the CDFG. These values are determined
by the clock selection and module selection tasks, respectively, cre-
ating an interdependenceamong scheduling, module selection, and
clock selection. Operations (variables) that are active in the same
control step must be assigned to different functional units (regis-
ters). For example, operations �1 through �6 must all be performed
by separate functional units. Since scheduling affects the rate at
which input samples are processed, it also affects the possibilities
for reducing Vdd . On the other hand, scheduling affects switched
capacitance because it imposes constraints on the possibilities of
resource sharing. The slack, if any, between the sample period
constraint and the time taken by an implementation for process-
ing input samples has been commonly exploited to reduce power
consumption using Vdd scaling as illustrated below.

Example 1: Suppose the given sample period constraint for the
example CDFG shown in Figure 1 is 200ns. The clock period for
the schedule shown in Figure 1 is 55ns. Since the schedule has
three control steps, processing each input sample requires 165ns.
Suppose the clock period was chosen based on delay numbers for
Vdd = 5V . All multiplications in the CDFG of Figure 1 are
assumed to be performed by functional unit instances of the tem-
plate, array multiplier, whereas all additions are assumedto be per-
formed by functional unit instances of the type ripple carry adder.
Dotted lines have been used to group operations that are performed
by the same functional unit. Since the given schedule processes
input samples faster than required, this surplus performance is ex-
ploited to reduce Vdd until the time required for one iteration of
the CDFG becomes 200ns, i.e., the sample period constraint is just
met. This is determined using a curve or equation that models the
Vdd-delay relationship [2, 7]. In this case, it is possible to reduce
Vdd to 4:0V and still meet the 200ns constraint.

The extent of the slack that is available depends on the con-
straints imposed by the environment, as illustrated by the next
example.

Example 2: Let us consider an image that has 288 � 360 pixels
as per the CIF standard [8]. Consider the task of performing a
discrete cosine transform (DCT) on the luminance information of
each pixel. A commonly used approach is to divide up the image
into blocks, say of 8 � 8 pixels, and perform a DCT on each
block separately. Each 8 � 8 block thus obtained now requires
a two-dimensional DCT, which can be further broken down into
16 one-dimensional 8-point DCT operations. The number of one-
dimensional 8-point DCTs required to process one frame is thus
calculated to be 25920. Thus, in order to process 30 frames=sec,
we would need to perform each DCT in about 1286ns.

We define the term laxity factor of a data path that implements
a given CDFG to be the ratio of the given sample period constraint
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Figure 2: Dot product: Alternate schedule/assignment

to the actual execution time of the data path for one iteration. For
the above example, if we assume that an implementation of an
8-point one-dimensional DCT takes 500ns to process each set of
inputs, then the laxity factor available is 2:57. A higher laxity
factor permits us to perform more Vdd scaling and hence results in
greater power savings.

It is possible to use various methods to speed up the execution
of the CDFG, and make use of the slack thus obtained to scale
Vdd till the sample period constraint is just met. A consequence
of these speedup techniques is that the switched capacitance per
execution of the CDFG typically increases. This may be due to
the use of faster functional units that contribute a higher switched
capacitance per operation, or due to the constraints imposed by
the tighter schedule on the possibilities for resource sharing. Thus,
there exists a Vdd vs switched capacitance tradeoff that is illustrated
by the example below.

Example 3: The CDFG of Figure 1, with a different sched-
ule, clock selection, module selection, and resource assignment
is shown in Figure 2, where multiplications are performed by 2-
stage pipelined multipliers and the schedule is elongated in order
to reduce the number of required multipliers to two. The multi-
plication operations have been shaded differently to indicate the
multiplier that each is assigned to. Two functional units of type
ripple carry adder are used to perform the additions. The clock
period is changed to 30ns in order to match the cycle time of the
pipelined multiplier. Since the schedule has been extended in order
to use fewer functional units, processing each input sample now
requires 180ns. As a result, Vdd can only be scaled to 4:5V . In
terms of Vdd, the architecture implied by Figure 1 is better. In
order to compare the actual power dissipation, however, switched
capacitance for the two architectures was also measured as ex-
plained below. Layouts were first generated for the two candidate
architectures, netlists annotated with resistances and capacitances
were then extracted from the layouts, and a switch-level simulator
was used to simulate the two netlists for the same input sequence
(details of our experimental methodology are given in Section 4).
The switched capacitance per sample period obtained for the im-
plementations of Figures 1 and 2 were 2912:9pf and 2100:6pf ,
respectively. From the switched capacitance and Vdd numbers,
the energy per sample period was calculated to be 23303pJ and
21269pJ , respectively (the power dissipation can be obtained by
dividing these numbers by the sample period of 200ns). There-
fore, the architecture derived from Figure 2 has a lower power
consumption than the one derived from Figure 1.

Thus, it is important to consider the effects of the different behav-
ioral synthesis tasks on both Vdd and switched capacitance in order
to truly minimize power consumption.
2.2 Module Selection

Module selection refers to the process of selecting, for
each operation in the CDFG, the type of functional unit
that will perform it. In order to fully explore the design
space, it is necessary to have a diverse library of functional



unit templates where multiple templates exist that are capa-
ble of performing each operation (e.g. ripple carry adder,
carry lookahead adder, carry select adder for addition, ar-
ray multiplier, wallace tree multiplier, pipelined multiplier for
multiplication, etc.).

It is possible to perform area, delay, and power tradeoffs using
module selection. The faster modules that perform an operation
are typically more expensive in terms of area and switched ca-
pacitance. However, using faster modules can result in a faster
execution time for the CDFG, thus enabling Vdd scaling [4]. Mod-
ule selection interacts with clock selection, scheduling, and re-
source sharing. In the example of Figure 1, a clock period of 55ns
was chosen based on the delay of the multiplication operations,
that were assigned to library template, array multiplier. In Fig-
ure 2, since the module selection was changed, the clock period
was also changed to 30ns, based on the cycle time of the tem-
plate, two stage pipelined multiplier. Operations that have been
assigned to different functional unit templates during module se-
lection cannot share the same resource. This situation is referred
to as a type conflict. Our algorithm considers the effect of these
interactions while synthesizing the data path.
2.3 Clock Selection

Clock selection refers to the process of choosing a suitable clock
period for the controller/data path circuit. Given the clock period,
Tclk , we can divide the execution time of the CDFG, which is equal
to the input sample period, Tsample, into a number of control steps

equal to
j
Tsample

Tclk

k
, where bxc denotes the largest integer smaller

than or equal to x. The choice of the clock period is known to have
a significant effect on both area and performance [9]. However, its
impact on power consumption was pointed out only recently in [3].
Once a clock period is chosen, we can calculate the delay of each
functional unit template in the library in terms of control steps.
Since this calculation involves the upward rounding of a fraction,
a slack is introduced between the time at which a functional unit
finishes executing and the clock edge at which its output is actually
used. For example, for the CDFG of Figure 2, the clock period is
30ns. Assuming each addition operation requires 25ns, including
estimates for register, multiplexer and interconnect delays, a slack
of 5ns is introduced at every addition operation.

The slack introduced due to the clock granularity can result in
less-than-complete utilization of the functional units, and could
also result in an increase in the time required for the execution of
the CDFG. In the context of minimizing power dissipation, slacks
can cause two undesirable effects. First, it may not be possible to
meet the sample period constraint for the CDFG for some values of
Vdd. Second, slacks can result in a data path with a higher switched
capacitance (this can happen either because faster functional units
were used in order to meet the sample period, or because resource
sharing was inhibited due to the increased life times of operations in
the CDFG). Thus, reducing slacks is beneficialeven from the power
consumption point of view. It might at first appear that since slacks
are caused by a granularity in the clock period, having a very small
clock period would minimize the slack and is hence advantageous.
However, having a very small clock period tends to significantly
increase the switched capacitance in the data path registers (since
they are clocked a greater number of times per execution period),
the clock distribution network (since it needs to be switched a
greater number of times), and the controller (since the number of
states in the controller increases with the number of control steps).
Due to these complicating factors, methods that solely target slack
minimization are not directly applicable when minimizing power
consumption is the objective. For reducing power consumption,
slacks need to be minimized without choosing too small a clock
period.
2.4 Resource Sharing

Resource sharing refers to the use of the same hardware re-
source (functional unit or register) to perform different operations
or store more than one variable. The behavioral synthesis tasks

that perform resource sharing are hardware allocation and assign-
ment. These processes decide how many resources of each type
to use and which operations or variables to assign to each unit, re-
spectively. Resource sharing significantly affects both the physical
capacitance and switching activity in the data path. Heavy resource
sharing tends to reduce the physical capacitance, but increase the
average switching activity in the data path. Sparsely shared archi-
tectures have lower average switching activity, but higher physical
capacitance. A detailed analysis of the effect of resource sharing
on switched capacitance taking signal statistics into account was
described in [6]. We use a similar model here, which we briefly
describe below for the sake of completeness.

The functional units in the library are assumed to have some
model for switched capacitance, so that, given a pair of input vec-
tors, the capacitance switched in the functional unit on the applica-
tion of the given input vector pair can be calculated. This model is
abstracted into a procedure, SW CAP(), which can be implemented
using either a stochastic power analysis model [10], or instead,
could invoke a gate- or switch-level simulator on an appropriate
netlist if one is available for the given module, to return the exact
capacitance switched. A functional simulation of the CDFG is per-
formed, with an input sequence that is either provided by the user or
generated based on known input characteristics. As the functional
simulation is performed, a data structure called the switched capac-
itance matrix is updated using the values taken by variables in the
CDFG and procedure SW CAP(). Switched capacitance matrices
associate a switched capacitance cost to each pair of operations that
could be mapped to the same resource. A separate switched capac-
itance matrix is created for each functional unit template that exists
in the library. For example, consider the functional unit template,
ripple carry adder, and addition operations,+i and+j . If +i and
+j share the same ripple carry adder in such a way that the adder
performs +i immediately followed by+j , the operands to +i and
+j effectively form an input vector pair to the adder. This input
vector pair is used to update the switched capacitance matrix entry.

At the end of this data collection process, we have a switched
capacitance matrix for each functional unit template t, having en-
tries that indicate, for each pair of operations, the cost in terms
of switched capacitance if the operations are both mapped to the
same instance of template t. Similarly, switched capacitance ma-
trices are also used to estimate switched capacitance in registers
and interconnection units. Different candidate architectures can be
evaluated with respect to their switched capacitance [6] by using
the entries in the switched capacitance matrices.
3. ALGORITHM

As the discussions in the previous sections have shown, schedul-
ing, clock selection, module selection, and resource sharing inter-
act in a complex way to determine the power consumption of the
data path. Since the computational complexity of the power min-
imization problem forbids an exact or optimal solution, we have
developed an efficient heuristic method for performing the above
tasks for minimizing power consumption. Our method targets both
Vdd scaling and switched capacitance reduction.

The pseudo-code in Figure 3 gives an overview of our method,
called SCALP. First, the procedure ESTIMATE MIN VOLTAGE() is
called to estimate the minimum voltage, Vmin , at which the given
CDFG can be implemented. The voltage interval between Vmin

and Vmax (5V) is discretized in steps of a suitable increment, ∆V ,
that could be specified by the user as a parameter. The techniques
explained in Section 3.1 are used to prune the Vdd space signifi-
cantly. For supply voltages that cannot be pruned, we move on to
examine various values for the number of control steps, csteps (or
equivalently, various values for the system clock period). Again, it
turns out that several candidate clock periods can be easily pruned,
using the method explained in Section 3.2. For those combinations
of Vdd and csteps that cannot be pruned, an initial implementa-
tion is generated that satisfies the sample period constraint, which
is then improved by calling procedure ITERATIVE IMPROVEMENT.
Since we are now attempting data path synthesis for a fixed value
of Vdd and csteps, the objective is to synthesize a data path that



SCALP (CDFG G, Sample Period Ts, Library L) f
Vmin  ESTIMATE MIN VOLTAGE(G, Ts, L);
Vmax  5V olts;
Best DP  Φ;
Cur DP  Φ;
for (Vdd  Vmin; Vdd � Vmax; Vdd  Vdd + ∆V ) f

if (VDD PRUNE(G, Cur DP , Vdd) ) f
continue; (*move on to next Vdd*)

g
for (csteps MAX CSTEPS;

csteps�MIN CSTEPS; csteps csteps� 1) f
if (CLK PRUNE(G, L, csteps)) f

continue; (*move on to next clock*)
g
(*minimum switched capacitance data path*)
(*for the current Vdd and csteps*)
Cur DP  INITIAL SOLUTION(G, L, Vdd , csteps);
ITERATIVE IMPROVEMENT(G, L, Cur DP );
if (POWER EST(Cur DP ) < POWER EST(Best DP )) f
Best DP  Cur DP ;
g

g
g
g

Figure 3: Overview of our low power synthesis method

satisfies the sample period constraint at the current Vdd and clock
period, and has minimal switched capacitance. At any time, the
best solution (Best DP ) seen thus far is stored. After all the can-
didate supply voltages and clock periods have been either pruned
or explored, Best DP contains the final solution.
3.1 Supply Voltage Pruning

The purpose of Vdd pruning is to identify candidate supply volt-
ages that will not lead to a data path with the lowest power. Our
Vdd pruning method is based on obtaining a lower bound on the
switched capacitance for the current Vdd . A module selection is
performed by mapping each operation in the CDFG to the func-
tional unit template that has the lowest switched capacitance (this is
determined using switched capacitance matrices [6]). Even though
such an implementation may violate the sample period constraint,
we ignore this fact since we need a pessimistic estimate. A parallel
architecture (no sharing of functional units or registers) is then cho-
sen to implement the data path. A parallel architecture is typically
close to the lowest switched capacitance architecture due to the
high temporal correlations of signals characteristic of the digital
signal and image processing domains [6]. The switched capaci-
tance of this implementation, multiplied by a pessimism factor, �
(0 � � � 1), is used to lower bound the power consumed by a
data path at the current Vdd (for our experiments, � = 0:8 was
used based on our experience in [6]). If the bound thus calculated
is greater than the best solution seen, then the current Vdd can be
pruned.
3.2 Clock Period Pruning

We use the following observation to prune the clock period
space: Given a desired sampling period Ts, it is sufficient to con-
sider those clock periods Tclk that satisfy Tclk � i = Ts for some
integer i (any other clock period would result in some part of Ts
being unused). The practical lower bound on the clock period cou-
pled with this observation itself restricts the set of candidate clock
periods to a very limited set. This set can be further pruned as
follows. Consider two candidate clock periods, Tclk1 and Tclk2,
such that Tclk1 < Tclk2. For each functional unit template t in
the data path library, let rrdelayt represent its register-to-register
transfer delay. If

l
rrdelayt

Tclk1

m
=

l
rrdelayt

Tclk2

m
8 templates t (1)

Procedure ITERATIVE IMPROVEMENT(CDFGG, Library L,
Datapath DP ) f

do f
for (i = 1; i�MAX MOV ES; i = i+ 1) f
Gaini  GENERATE MOVE(G, L, DP );
Append Gaini to Gain List;
g
Find subsequence,Gain1 ... Gaink in Gain List so
that G =

P
k

i=1 Gaini is maximized;
if (G > 0) f

Accept moves 1 . . . k;
g
g until(G � 0);
g

Figure 4: Procedure ITERATIVE IMPROVEMENT()

holds, then it is sufficient to consider only Tclk1 while searching
for the minimum switched capacitance data path at the current Vdd
(because any data path synthesized to operate at Tclk2 will also
operate at Tclk1, whereas Tclk1 could allow us to synthesize data
paths that would not satisfy the sample period constraint at Tclk2).

If operation chaining is employed with a maximum chaining
factor of k (i.e. at most k operations can be chained together in a
clock cycle), the condition of Equation (1) is checked not just for
all functional unit templates in the library, but also for all chained
combinations of upto k functional unit templates (note that the
delay of chained configurations can be significantly less than the
sum of delays of the chained components and should be measured
separately for the various chained configurations possible).
3.3 Iterative Improvement Algorithm

Our iterative improvement procedure is based on a general
search strategy for optimization problems called variable depth
search [11]. Given an initial solution, we attempt to find a se-
quence of incremental moves (rather than a single move, as in the
case of local search) that maximizes the cumulative improvement
in the solution, also called the gain. This process is iterated until no
such sequencecan be found. Since we consider sequencesthat have
a cumulative positive gain even though individual moves may have
a negative gain, this class of algorithms is capable of hill-climbing
to escape from local minima. At any point, the next move we make
is chosen based on the steepest descent heuristic [11]. Figure 4
shows the pseudo-code for procedure ITERATIVE IMPROVEMENT().
The cost function we use is the switched capacitance in the data
path, that is estimated using switched capacitancematrices [6]. We
define moves so as to explore the scheduling, module selection,
allocation, and assignment choices available.
3.4 Moves used in the Iterative Improvement Procedure

The following key observation allows us to restrict the number
of distinct types of moves we need to consider: Moves that affect
the schedule alone (called re-scheduling moves), without causing
any change in the module selection or resource sharing cannot by
themselves affect the switched capacitance in the data path. How-
ever, such moves cannot be completely eliminated since they enable
the application of other moves that change the module selection or
resource sharing. Hence, we integrate the enabling re-scheduling
moves with other moves that they enable. Thus, each composite
move consists of a change in the module selection or resource shar-
ing, preceded by an enabling re-scheduling move, if necessary.
Moves of classA: Module selection with re-scheduling. Moves
of class A transform the data path by replacing a functional unit
fu1 that is an instance of a library template, t1, with another func-
tional unit fu2 that is an instance of a different library template t2
(e.g., an adder that is an instance of carry lookahead adder may
be replaced with an instance of ripple carry adder). Note that a



*1 *2 *3

+1

+
2

*1 *2

*3

+1

+
2

40ns

(a) (b)

Figure 5: A move of classA

re-scheduling might be needed because the delay of fu2 (in terms
of number of control steps) could in general be greater than that of
fu1. The re-scheduling is performed as follows. We process oper-
ations op1, op2, ..., opn that were performed by fu1, in that order,
in the original schedule. For opi, we first increment the death time
of opi to reflect the delay of fu2. A breadth-first traversal of the
CDFG is then performed starting at opi, to update the scheduling
information of the operations that are in the transitive fanout of
opi. After the above process has been performed for opn, if all
operations in the CDFG complete before the sample period, we
are done. Otherwise (if the sample period constraint is violated),
the move is not considered. It is easy to extend this method to
allow the sample period constraint to be violated by intermediate
solutions, provided the final solution of the iterative improvement
phase meets it.

Example 4: Consider the CDFG shown in Figure 5(a). All multi-
plications are performed by instances of the library template wal-
lace tree multiplier, whereas all additions are performed by in-
stances of ripple carry adder. A move of class A can be applied
to result in a modified data path as indicated by Figure 5(b). In the
modified data path, multiplication operation �3 is performed by an
array multiplier, which requires two control steps. Since �3 has a
mobility of one control step, the total number of control steps in
the schedule remains the same.

Moves of classA directly help lower the switched capacitance
when faster functional units that typically cause a large amount of
switched capacitance are replaced by slower functional units that
have a lower switched capacitance. Moves of classA can also help
to indirectly lower switched capacitance when they are used to en-
able other moves, including those that perform resource sharing.
Moves of class B: Resource sharing/splitting with re-
scheduling. The purpose of moves of class B is to explore the
resource sharing choices available. A move of classB can perform
resource sharing by merging two functional units fu1 and fu2 into
a single functional unit fu (fu performs the operations performed
by fu1 as well as fu2). For such a move to be valid, fu1 and
fu2 must be instances of the same library template. Moreover, no
operation performed by fu1 should have an overlapping lifetime
with an operation performed by fu2. If the second condition is not
met, we attempt to find a re-scheduling using a method similar to
the method described for moves of classA.
Example 5: Consider the CDFG shown in Figure 6(a). Each
multiplication operation is performed by a separate multiplier, the
two addition operations are mapped to one functional unit, and
each variable is stored in a separate register. One possible move
of class B can be applied to result in a new data path as indicated
by Figure 6(b). Operation �3 had to be re-scheduled from the first
control step to the second control step in order to enable resource
sharing. It is important to note that this move causes two additional
multiplexers to be added at the inputs of the multiplier that performs
operations �2 and �3 since it now has to select from different sources
in the first and second control steps. Hence, switched capacitance
estimates for these multiplexers must be taken into account while
calculating the gain for this move.
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Figure 6: A move of class B that performs resource sharing

We also provide for moves of class B that perform resource
splitting, i.e., replace a single functional unitfuwith two functional
units, fu1 and fu2. Moves of classB that perform splitting do not
require any re-scheduling transformations. Apart from potentially
reducing switched capacitance, such moves also open up avenues
for applying moves of classA, or other resource sharing moves of
class B that were not previously possible.
4. EXPERIMENTAL RESULTS

The methods described in this paper were implemented in the
C++ programming language in a program called SCALP. SCALP
was evaluated by using it to synthesize several benchmarks from the
digital signal and image processing domains. The input to SCALP
is a CDFG and a desired sample period. The output of SCALP
is a data path and controller that together implement the behavior
specified by the CDFG. A logic-level netlist is then obtained for the
combined controller/data path, and mapped to the MSU standard
cell library using the logic synthesis tool, SIS. Following this, stan-
dard cell layout and routing tools from the Octtools suite are used
to obtain the layout of the combined controller/data path. A switch-
level simulator, IRSIM-CAP, that records the switched capacitance
during a simulation run is then used to perform a simulation on a
switch-level netlist that is extracted from the layout and annotated
with resistances and capacitances using MAGIC. Since we obtain
a complete layout, several factors that are difficult to estimate at
higher levels, like interconnect power, clock network power, con-
troller power, glitching power, etc. are taken into account in our
power measurements. Input sequences used for measuring power
consumption using IRSIM-CAP are generated by first creating a
sequence corresponding to a zero-mean, unit-variance Gaussian
distribution and passing it through an autoregressive filter to intro-
duce a temporal correlation [6]. The autocorrelation factor used
for our experiments is 0:2.

We synthesized each benchmark corresponding to various pos-
sible values for the laxity factor ranging from 1:0 (which corre-
sponds to a scenario where there is no laxity at all, i.e., the sample
period constraint is just satisfied by the fastest design at 5V ) to
3:5. For each benchmark and laxity factor we synthesized (i)
power-optimized architectures generated by SCALP, and (ii) area-
optimized architectures with Vdd scaling. Area optimization was
performed by using a method similar to SCALP, but with area used
as the cost function and the metric for evaluating moves. The
supply voltage of each area-optimized architecture was then scaled
as much as possible subject to the sample period constraint. Fig-
ures 7(a) through 7(h) provide plots of (i) the power consumed by
the controller/data path circuits produced by SCALP (see curves
marked S-POWER) and the area-optimized architectures after Vdd
scaling (see curve marked A-POWER), and (ii) the area (obtained
after layout) of the controller/data path circuits synthesized by
SCALP (see curves marked S-AREA). All numbers were normal-
ized with respect to an area-optimized architecture at a supply
voltage of 5V (we refer to these numbers as the base case). The
variable on the x-axis is the laxity factor.

The Dct examples perform the Discrete Cosine Transform using
different algorithms and are named after their inventors. Wdf is
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Figure 7: Experimental results: power and area ratios (normalized to area-optimized base) for various laxity factors

an FIR wave digital filter. Elliptic is the fifth order elliptic wave
filter. Dist, Chemical and IIRfilter are different IIR filters used
in the industry. The CDFG of Paulin has been borrowed from
the literature. The area curves are plotted in dotted lines, while
the power curves are plotted in solid lines. The curves show
that (i) circuits synthesized by SCALP require upto 7 times less
power than corresponding area-optimized circuits that operate at
5V , (ii) SCALP circuits consume upto 2:3 times less power than
area-optimized circuits that use Vdd scaling after synthesis, and
(iii) the area overhead for SCALP synthesized circuits was less
than 41% in all the cases. Note that the comparisons are between
circuits that were synthesized to meet the same sample period
constraints. On the average, SCALP circuits required 1:14, 1:99,
2:95, 3:80, 4:75, and 5:87 times lower power than the base case
for laxity factors of 1:0, 1:5, 2:0, 2:5, 3:0, and 3:5 respectively,
requiring corresponding area overheads of 16%, 24%, 27%, 24%,
27%, and 27% respectively. The CPU times taken by SCALP were
less than 20 minutes in all the cases on a SPARCstation 20 with
128MB of memory. Further power reduction can be achieved by
incorporating a suite of architectural transformations [2] and data
path duplication [1] into our iterative improvement framework as
well.
5. CONCLUSIONS

We presented an efficient iterative-improvement based algorithm
to perform scheduling, module selection, clock selection, and hard-
ware allocation and assignment for data-dominated behavioral de-
scriptions in order to minimize power consumption. Unlike most
previous work, we also consider the interaction among these tasks
in order to better explore the design space. We have implemented

the algorithm, and presented experimental results to demonstrate
its effectiveness. Since it is possible to easily incorporate other
techniques like transformations and data path replication into our
framework, current and future work includes incorporating them
into a complete data path synthesis tool for low power applications.
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