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Abstract

The traditional algorithm of Stockmeyer for area

minimization of slicing oorplans has time (and space)

complexity O(n2) in the worst case, or O(n logn) for

balanced slicing. For more than a decade, it is consid-

ered the best possible.

In this paper, we present a new algorithm of worst-

case time (and space) complexity O(n logn), where

n is the total number of realizations for the basic

blocks, regardless whether the slicing is balanced or

not. We also prove 
(n logn) is the lower bound on

the time complexity of any area minimization algo-

rithm. Therefore, the new algorithm not only �nds

the optimal realization, but also has an optimal run-

ning time.

1 Introduction

1.1 Problem Description

A oorplan F is a dissection of a rectangle into
a set of non-intersecting basic blocks B1; B2; : : : ; Bm,

see Figure 1. A oorplan also associates each basic
block Bi with a set of cells Ci � R

+ � R+, where
R

+ is the set of positive real numbers. Ci speci�es
the widths and heights of rectangle cells that must
�t in Bi. If we select a cell cji 2 Ci for each block
Bi, i = 1; 2; : : : ;m, and arrange them according to
the oorplan F , then we obtain a realization � of F .
Following this de�nition, cells in Ci are also called re-
alizations of the basic block Bi. Given a oorplan F

and a realization �, there are real numbers h(F; �) and
w(F; �) giving the minimumheight and width, respec-
tively, of a oorplan that is equivalent to F for which
each cell cji of � �ts in Bi. The area minimization

(area optimization) problem is to �nd a realization �
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of F such that the area, h(F; �)�w(F; �), is minimum
among all realizations.
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Figure 1: A slicing oorplan (a) and a non-slicing
oorplan (b).

Floorplans are classi�ed as slicing or non-slicing. A
oorplan is slicing if either it is a basic block, or there
is a line segment that divides the enclosing rectangle
into two sub-oorplans such that each sub-oorplan is
slicing, see Figure 1(a). A oorplan is non-slicing if it
is not a slicing oorplan. Figure 1(b) is an example
non-slicing oorplan called a wheel. A slicing oorplan
is represented by a rooted binary tree called a slicing

tree, see Figure 2. Each non-leaf node in the tree is
labeled either h or v, specifying whether it is a hor-

izontal or vertical slice. Each leaf node corresponds
to a basic block. For every internal node in the slic-
ing tree, the sub-tree with that node being the root
de�nes a sub-oorplan.

Floorplans are also classi�ed as hierarchical or non-
hierarchical. A hierarchical oorplan is one that can
be constructed recursively by a pattern of �xed size,
such as a vertical slice, a horizontal slice, or a wheel.
Otherwise, the oorplan is non-hierarchical.

1.2 Review of Previous Work

Many researchers have studied various aspects of
area minimization of oorplans. For slicing oorplans,
Otten [6] �rst showed the minimization problem can
be solved e�ciently. Stockmeyer [10] in 1983 presented
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Figure 2: The slicing tree for the slicing oorplan of
Figure 1(a).

the now widely used algorithm of time complexity
O(nd), where n is the number of basic blocks, d is the
depth of the slicing tree, and each basic block has two
realizations. Thus, the time is O(n2) in the worst case,
or O(n logn) for balanced slicing with d = O(logn).
The worst-case time complexity is indeed �(n2) when
the depth of the slicing tree is �(n). The space com-
plexity is the same as the time complexity. Although
one can minimize the depth of some part of the slicing
tree if that part contains only vertical slices or only
horizontal slices, many trees cannot be balanced.

For hierarchical non-slicing oorplans, Pan, Shi and
Liu [8] recently proved the problem is weakly NP-
complete. For the non-slicing oorplan of Figure 1(b),
where each of the �ve basic blocks has k realizations,
Wang and Wong [13] proposed an O(k3 logk) time al-
gorithm, which was improved by Chen and Tollis [2],
as well as Pan, Shi and Liu [8] to O(k2 log k). For hier-
archical non-slicing oorplans, algorithms were devel-
oped by Wang and Wong [13], Chen and Tollis [2], and
pseudo-polynomial time algorithms were developed by
Pan, Shi and Liu [8].

For non-hierarchical oorplans, Stockmeyer [10]
proved the problem is strongly NP-complete. Wimer,
Koren and Cedernaumn [14], as well as Chong and
Sahni [3] proposed branch-and-bound algorithms. Pan
and Liu [7] developed algorithms for general oorplans
that are \approximately" slicing.

Finally, we review other related research. Sar-
rafzadeh [9] investigated how to transform an arbi-
trary oorplan into a slicing one, by slightly increasing
the area. His result makes algorithms for slicing oor-
plans also applicable to non-slicing oorplans. Dai and
Kuh [4], Zimmermann [15], etc, studied how to com-
bine oorplanning and wiring to achieve good overall
performance. For more information, see Lengauer [5].

2 New Algorithm

For any two realizations �1 and �2 of oorplan F ,
�1 is said to dominate �2 if w(F; �1) � w(F; �2) and
h(F; �1) � h(F; �2). Intuitively, �1 dominates �2 if �1
is smaller than �2 in both height and width. Since our
objective is to minimize the area, it is obvious that
we do not need �2. This is true when F is either the
oorplan, or a sub-oorplan, or a basic block. For
any oorplan F , the set of nonredundant realizations

of F , R(F ), is a set of realizations of F such that
1) no realization in R(F ) is dominated by any other
realization of F , and 2) every realization of F must be
dominated by a realization in R(F ). It is obvious that
for any oorplan F , we only need to keep R(F ).

The new algorithm works as follows. Suppose we
are given a oorplan F which consists of two sub-
oorplans F1 and F2 sliced vertically or horizontally.
We �rst recursively compute the two sets of nonredun-
dant realizations R(F1) and R(F2), and store R(F1)
and R(F2) in a data structure called realization trees
(Section 2.1). Then we use a new merging algorithm
(Section 2.2) to combineR(F1) and R(F2) to get R(F )
and store R(F ) in a realization tree.

2.1 Data Structure

We assume the readers have some familiarity with
the properties and uses of balanced search trees such
as AVL trees [11]. In general, a balanced binary search
tree allows time O(logn) for search, insertion, and
deletion of any key, where n is the number of ver-
tices in the tree. In this paper, we need an additional
requirement that the search, insertion, and deletion of
any key must be performed in time O(log k), where k
is the number of vertices between the position we start
to search and the position we �nd the key. This addi-
tional property, known as �nger search, is satis�ed by
AVL trees [12].

It is not hard to prove if
Pn2

i=1 ki � n1, then

n2X
i=1

O(log ki) = O

�
n2 log

�
1 +

n1

n2

��
: (1)

This formula implies that given a balanced binary
search tree of n1 vertices satisfying the �nger search
requirement, then the search, insertion and deletion of
n2 keys in sorted order can be performed in total time
O(n2 log(1 +

n1
n2
)).

For any oorplan F , which may be the whole oor-
plan, or a sub-oorplan, or a basic block, we use a
realization tree T (F ) to store R(F ), the set of nonre-
dundant realizations of F . T (F ) is organized as an



AVL tree. For every realization � 2 R(F ), there is a
unique vertex v(�) 2 T (F ). Every vertex v 2 T (F ) is
associated with the following �elds related to the key:

h(v) : to be used to compute height;
w(v) : to be used to compute width;
h+(v) : to be added to heights of all descendents;
w+(v) : to be added to widths of all descendents.

In fact, T (F ) has two keys, the height and the width of
the realizations. T (F ) is organized in increasing height
order, and also in decreasing width order. This is pos-
sible only because the realizations are nonredundant.
The search, insertion and deletion can be performed
under either key. However, the height and width of
a realization � are not stored explicitly in the cor-
responding vertex v(�). Instead, the information is
stored along the path from the root of T (F ) to v(�).
Let P (�) be the path from the root to v(�), including
the root and v(�), then

h(F; �) = h(v(�)) +
X

u2P (�)

h+(u);

w(F; �) = w(v(�)) +
X

u2P (�)

w+(u):

To remember the composition of realization �, the ver-
tex v(�) also has two �elds p(v) and p+(v). In addi-
tion, each vertex v(�) 2 T (F ) has the standard �elds
such as left(v), right(v) and balance(v). Field left(v)
points to a sub-tree containing realizations of heights
less than (and widths greater than) the height (width)
of �. Field right(v) points to a sub-tree containing
realizations of heights greater than (and widths less
than) the height (width) of �. Field balance(v) con-
tains information for re-balancing the tree which we
will not discuss in this paper. Figure 3 is an example
realization tree of �ve realizations.

The search of realization trees is similar to the
search of ordinary AVL trees, except the values of
h+(v) and w+(v) are added to h(v) and w(v), and
propagated to the two children of v whenever v is vis-
ited. The reason for the \lazy" propagation is to avoid
repeated unnecessary updates.

2.2 Merge of Floorplans

Suppose we are given a oorplan F which consists of
two sub-oorplans F1 and F2 sliced vertically. Assume
recursively R(F1) and R(F2) have been computed and
stored in realization trees T (F1) and T (F2) respec-
tively. Let the number of nodes in T (F1) and T (F2)
be n1 and n2, and assume without loss of generality
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(h; w) = (6;2)

(h+;w+) = (2;0)
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Figure 3: A realization tree containing �ve realiza-
tions: (5,5), (6,4), (7,3), (8,2) and (9,1).

n1 � n2. We show how to construct R(F ) and store
it in T (F ).

The �rst step of the merging algorithm deals with
nonredundant realizations of F such that the heights
are decided by F2. For each realization �i 2 R(F2),
we want to �nd a realization �j 2 R(F1) such that the
height of �j is less than the height of �i and the width
of �j is the minimumamong all such �j's. Given �i, we
can �nd such �j by searching T (F1). Together, �i and
�j form a realization of F with height being h(F2; �i)
and width being w(F2; �i) + w(F1; �j). The composi-
tion of the realization is represented by P which points
to p(v(�i)) and p(v(�j)).

So we enumerate R(F2) in increasing height order,
and for every �i 2 R(F2), we search T (F1) for the
corresponding �j. Since �i's are in increasing height
order, �j's must be in non-decreasing height order.
Therefore, the total time to enumerate R(F2) is O(n2)
and the total time to search T (F1) is O(n2 log(1 +
n1
n2
)). The newly generated realizations are stored in a

temporary list in increasing height order for later use.
The size of this list is at most n2.

The second step of the merging algorithm deals
with nonredundant realizations of F such that the
heights are decided by F1. We also include cases where
the heights are decided by both F1 and F2 simultane-
ously. For each realization �i 2 R(F2), we want to
�nd realizations �j; �j+1; : : : ; �l in R(F1) such that

j = min
1�k�n1

fk j �k 2 R(F1); h(F1; �k) � h(F2; �i)g;

l = max
1�k�n1

fk j �k 2 R(F1); h(F1; �k) < h(F2; �i+1)g:

This can be done through two searches of T (F1)
using the heights of �i and �i+1. If no such j and
l are found, then we repeat the above for the next
realization �i+1 2 R(F2). Otherwise, we can form the



following l � j + 1 realizations of F :

�i and �j : (h(F1; �j); w(F1; �j) +w(F2; �i));

�i and �j+1 : (h(F1; �j+1); w(F1; �j+1) +w(F2; �i));

� � �

�i and �l : (h(F1; �l); w(F1; �l) + w(F2; �i)):

To record the newly generated realizations, we change
the keys of vertices v(�j); : : : ; v(�l) in T (F1). This
way, step by step, T (F1) is changed into a tree con-
taining realizations of F . However, we cannot a�ord
spending O(l � j) time to change the vertices one by
one since otherwise we will have the same time com-
plexity as Stockmeyer's. Instead, we use the �elds h+

and w+. Figure 4 illustrates the general situation of
the vertices v(�j), v(�j+1), : : :, v(�l).
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Figure 4: Vertices v(�j); v(�j+1); : : : ; v(�l) form an in-
terval in the realization tree.

Let lca(�j; �l) be the least common ancestor of

v(�j) and v(�l), see Figure 4. Let the left boundary

be the set of vertices u such that u is on the path
from v(�j) to lca(�j; �l) and the height (width) of u
is greater (less) than or equal to the height (width) of
�j. For every left boundary vertex u, including v(�j)
but not lca(�j; �l), we make the following changes to
its �elds:

w(u)  w(u) + w(F2; �i);

w+(right(u))  w+(right(u)) + w(F2; �i):

Similarly, we can de�ne right boundary and make
changes to the �elds accordingly. For vertex
lca(�j; �l), we make the following change:

w(lca(�j; �l))  w(lca(�j ; �l)) + w(F2; �i):

It can be shown that the number of vertices in the left
and right boundaries is O(log(l � j)). From (1), this
step can be done in total time O(n2 log(1 +

n1
n2
)).

In the third and also the �nal step, we insert the
temporary list of size n2 generated in the �rst step,
into the realization tree of size n1 obtained in the sec-
ond step. We also delete redundant realizations during
the merge. Again from the �nger search property, this
step can be done in total timeO(n2 log(1+

n1
n2
)). When

we �nish, the tree becomes T (F ), the realization tree
for R(F ).

If the oorplan consists of two sub-oorplans sliced
horizontally, then exchange the words \height" with
\width", \h" with \w", etc, to the above three steps
and everything should follow.

As the basis of the recursion, if the oorplan F

is a basic block Bi, then we create a realization tree
T (Bi), where every vertex of T (Bi) represents one
non-redundant realization in Ci. In other words,
if there is a cell cj 2 Ci, then we have a vertex
vj 2 T (Bi), such that w(vj) = w(cj), h(vj) = h(cj),
w+(vj) = h+(vj) = 0. This can be done in time
O(jCij log jCij).

2.3 Time and Space Complexity

Let T (n) be the worst-case time complexity of the
new algorithm for oorplan F that contains n real-
izations for basic blocks. Keep in mind the fact that
for any slicing oorplan F containing n realizations of
basic blocks, there are at most n nonredundant real-
izations of F . Therefore, we have the following recur-
rence relation:

T (n) �

8><
>:

c1n logn F is basic block,
maxfT (n1) + T (n2)+

+c2n2 log
�
1 + n1

n2

�
g otherwise

where c1; c2 are constants, n1; n2 are the number of
realizations of basic blocks of F1 and F2 respectively,
and the maximum is taken over all n1; n2 such that
n1 + n2 = n and n > n1 � n2 > 0. Using induction,
we can prove that T (n) = O(n logn).

The space complexity is bounded by the time com-
plexity which is O(n logn). However, if we just com-
pute as output the minimum area instead of the com-
position of the realization, then we can reduce the
space complexity to O(n) by avoiding the �elds p(v)
and p+(v).



3 Lower Bound

Ben-Or [1] proved the following problem requires

(n logn) algebraic operations, where algebraic oper-
ations include +;�; �; =;p ;=; >;�, etc.

Set Disjointness Problem. Given two sets of
positive real numbers X = fx1; : : : ; xng and
Y = fy1; : : : ; yng, determine whether there
are indices i and j such that xi = yj .

We show a reduction from the set disjointness prob-
lem to the area minimization of slicing oorplan prob-
lems. Given an instance of the set disjointness prob-
lem X and Y , construct a oorplan with only two
basic blocks B1 and B2 sliced vertically, and associate
the following cells to B1 and B2:

C1 = f(x1; 1=x1); (x2; 1=x2); : : : ; (xn; 1=xn)g;

C2 = f(y1; 1=y1); (y2; 1=y2); : : : ; (yn; 1=yn)g:

Then it is easy to see the oorplan has minimum area
2 i� there are indices i and j such that xi = yj . Since
the set disjointness problem requires 
(n logn) oper-
ations, the area minimization problem also requires

(n logn) operations.

4 Conclusion and Simulation

We presented a new algorithm of worst-case
time complexity O(n logn) and space complexity
O(n logn), regardless whether the slicing tree is bal-
anced, or the number of realizations for the basic
blocks is balanced. This is an improvement, both in
time an in space, of Stockmeyer's O(n2)-time O(n2)-
space algorithm [10]. We also proved 
(n logn) is the
lower bound on the time complexity of any area min-
imization algorithm even if there are only two basic
blocks.

Both the new algorithm and Stockmeyer's algo-
rithm are implemented in C on a Sequent Symmetry
computer. Preliminary results indicate for balanced
oorplans, the new algorithm is about twice slower for
all values of n due to the data structure overhead. But
for unbalanced oorplans, the new algorithm is much
faster for n > 200, see Table 1. The new algorithm
performs best when the slicing tree is unbalanced, or
when the number of realizations for basic blocks are
unbalanced.

Acknowledgment The author thanks Larry Stock-
meyer for constructive comments on an earlier version
of the paper, Steve Tate for discussions, and Hongfeng
Li for the data in Table 1.

No. of Basic New Stockmeyer's

Blocks (n) Algo. (sec) Algo. (sec)

100 0.150 0.101

200 0.339 0.363

300 0.546 0.786

400 0.760 1.374

500 0.979 2.118

600 1.212 3.022

700 1.448 4.082

800 1.680 5.292

900 1.926 6.680

Table 1: Simulation result for unbalanced oorplans.
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