
PARAS: System-Level Concurrent Partitioning and Scheduling

Wing Hang Wong and Rajiv Jain
Department of Electrical and Computer Engineering

University of Wisconsin

Madison, WI 53706

http://polya.ece.wisc.edu/~rajiv/home.html

Abstract
Partitioning for the ASIC designs is examined and the in-
teraction between high-level synthesis and partitioning is
studied and incorporated in the solution. Four algorithms
(called PARAS) which can exploit this interaction by solv-
ing the scheduling and partitioning problems concurrently
are presented. PARAS maximizes the overall performance
of the �nal design and considers di�erent chip con�gurations
and communication structures. Experiments, conducted
with speci�cations ranging in size from few to hundreds of
operations, demonstrate the success of this approach.

1 Introduction

One choice that has gained considerable popularity with
the advances in technology for design implementation is
the medium of ASICs which o�ers a low-cost and relatively
high-performance solution. Considerable number of ASIC
designs start with a hand-crafted register-transfer level de-
sign and go all the way down to layout and fabrication.
As the design abstraction has increased from schematic to
language-based and is migrating towards behavioral spec-
i�cations, the level at which the ASIC design starts must
also be elevated. Gates and ip ops are already being
replaced by larger functional blocks such as adders and reg-
isters. Larger amounts of functionalities can be placed on
an ASIC and this automatically leads towards system-level
design from behavioral speci�cation using ASICs.
As the size of the chips and the operating frequencies of

the circuits increase, the ASIC designs will have to con-
tend with wiring delays. While the industry is already ex-
perimenting with 300MHz processors, the academicians are
developing 1GHz processor designs [8]. This coupled with
the increase in chip size is making wiring delays more pro-
nounced and comparable to the gate delays. Future ASIC
designs must deal with large wiring delays where a signal
may need one or more clock cycles for reaching its destina-
tion. The large delay problems which occur in multi-chip
ASIC designs will manifest themselves in a single-chip ASIC
design. In a single-chip ASIC design, the chip may be di-
vided into several regions, each region containing several
functional resources and the regions are connected by some
communication structures with wiring delays. System-level
ASIC design requires partitioning which will map a behav-
ioral speci�cation onto the regions with an objective of min-
imizing the total execution time of the �nal design. In this
paper, we identify each region as a separate ASIC. The par-
titioning process is followed by synthesis to get a register-
transfer level design [1, 2, 3, 7, 12, 15].
System-level partitioning has a �rst-order impact on the

cost-performance characteristics of the �nal design making
it imperative for partitioning tools to understand the in-
teraction between lower-level design abstractions and parti-

0Research supported by NSF (MIPS 9307830).

tioning and to incorporate it in the partitioning algorithms
in order to produce good solutions. In this paper, the ASIC
partitioning problem and its relationship to high-level syn-
thesis is examined. PARAS can handle the interactions
across abstraction levels by solving the scheduling and par-
titioning problem concurrently are developed. It maximizes
the overall performance of the �nal design and considers
di�erent resource con�gurations and communication struc-
tures. Experiments, conducted with speci�cations ranging
in size from few to hundreds of operations, support the va-
lidity of this approach.
Partitioning must be based on the functionality of each

ASIC and the resources available in the ASICs. Partitions
which maximize performance for ASICs with di�erent types
of resources may be di�erent. This fact is borne out by the
experiments (compare Figures 6b and 7). A partitioning al-
gorithm must consider the functionality of the ASIC and, if
necessary, generate di�erent partitions for di�erent ASICs.
The issue of communication is very important in parti-

tioning since it can have a major impact on the area and
performance of the �nal design. Communication across dif-
ferent sets of a partition will incur delays and partitioning
may in fact deteriorate the performance of a design. If two
sets of a partition need to communicate, and they are oor-
planned far apart on the chip, they may incur large delays
of the order of one or more clock cycles. A partitioning al-
gorithm must consider this delay during the partitioning of
the speci�cation in order to localize communication delays.
Partitions which maximize performance may be di�erent
for di�erent communication delays between the sets of the
partition and a good partitioner must consider these delays
while partitioning the speci�cation. The communication re-
quirements may determine the number of global busses (or
wires) required in the design which directly impacts the area
of the design. Some existing system-level partitioners min-
imize the number of edges cut in an input speci�cation [6].
This objective was developed for partitioning a design at
the physical level where each edge corresponds to a physical
wire [5]. At the system-level, however, the number of wires
required between decomposed parts generally less than the
number of edges cut. The number of wires required is equal
to the maximum number of bits transferred in any one clock
cycle. Even if a large number of edges in the input descrip-
tion are cut, so long as these cut-edges lie in di�erent clock
cycles and can share wires for data transfer, the number of
wires required for transmission will be small. Further, shar-
ing of wires for handling di�erent data can only be done dur-
ing scheduling and hence partitioning and scheduling must
be performed concurrently.
The objective used for partitioning in [12] is to minimize

the number of di�erent types of chips needed for synthe-
sizing the design by regularity extraction. The partitioning
algorithm in [7] groups similar operations in one set of the

Concurrent
schedule/partition
 Concurrent
schedule/partition

Partitioned/scheduled design

Communication minimization

Behavioral specification

Partition

Schedule

Behavioral specification

Partitioned/scheduled design

(a) Existing approaches (b) PARAS approach

Figure 1: Two solution approaches

partition since these operations can potentially share re-
sources. Resource sharing can only be done if operations
are scheduled over di�erent clock cycles. Forcing like oper-
ations to share resources by putting them in di�erent clock
cycles may result in a loss in performance due to increased
resource contention. Further, resource sharing information
is not available to the partitioner until scheduling is done.
The inputs to the system by Hung and Parker [3] are a par-
titioned speci�cation and pin constraints of the chips, and
the output is a schedule which considers hardware resources
and pins as constraints. Pin constraints are important for
multi-chip partitioning. However, as increasing functional-
ity can be added to a chip multi-chip partitioning would
have a lesser impact in the future.
The true system-level design objective is to maximize per-

formance while executing a given behavioral speci�cation on
a set of cooperating ASICs while the other objectives are an
approximation. In this paper, an approach for system-level
ASIC design with the objective of maximizing performance
is presented.

2 The PARAS Algorithm

In order to use existing partitioners for the system-level
ASIC design, the speci�cation has to be �rst partitioned
and then scheduled (Figure 1a). In the proposed ap-
proach (Figure 1b), the behavioral speci�cation is parti-
tioned and scheduled simultaneously, after which, commu-
nication bandwidth is minimized in an e�ort to improve the
design's performance. In this section, the concurrent parti-
tioner/scheduler and then three algorithms which can min-
imize communication bandwidth are presented. The com-
plete system is called PARAS (PARtitioner And Scheduler).

2.1 Concurrent Partitioner/Scheduler

PARAS schedules the input speci�cation onto several ASICs
each containing several functional units. For example, each
ASIC may contain two adders and one multiplier and con-
nected by a one-clock cycle delay one-word communication
channel (or bus). Conventional scheduling algorithms do
not have the notion of how closely two operations in a spec-
i�cation are connected, which is important when scheduling
on several ASICs. For example, in Figure 2 operations m1
and m2 are more closely connected as compared to oper-
ations m1 and m3. A conventional scheduling algorithm
may generate a schedule where m1 and m3 are mapped
onto one ASIC and m2 and m4 onto a di�erent ASIC, thus
increasing the communication costs. The notion of close-
connection has been de�ned in several ways, the most com-

m3 m4
m1 m2

a1

a2

m5 m6

a3

a4

m7 m8

m9 m10 a5 a6

a7

m11 m12

a8
m13

m14

a9

m15 m16

a10

a11

a12

Figure 2: AR Filter data ow graph

mon of them being a function of type-overlap and communi-
cation requirements [6, 7]. De�ne close(oi; oj) as the delay
along the shortest path between operations oi and oj (ignor-
ing the direction of the edges). For the AR �lter example,
close(m1;m2) = 1 adder delay and close(m1;m3) = 5 adder
delays + 2 multiplier delays. The function close captures
the idea of how soon the values generated by the two op-
erations are required by another operation or how soon a
common value is used by these two operations. A small
value of close implies that the operations are close to each
other. Operations m1 and m2 are closer than operations m1
and m3. The close function can be generated o�-line before
scheduling. In general, closely connected operations must
be placed in the same set of the partition or two sets with
small (or zero) communication delay. The close function is
required for \seed"-ing the schedule and the remaining oper-
ations are scheduled in the earliest-start-time fashion. The
earliest start-time of an operation on an ASIC is computed
by considering the resource contention, precedence relation-
ships and communication bottlenecks, if any. In case of a
tie, an ASIC which requires smallest communication cost is
selected.
The input speci�cations usually have a \V" structure,

implying that the speci�cation has a large number of
operations near the input and relatively smaller number
of operations near the outputs. Given that among sev-
eral list-scheduling algorithms, backward and forward list-
scheduling algorithms are popular [10], seeding can be either
done at the top or the bottom of the speci�cation. Here, we
have chosen to do the seeding at the top. The algorithm is
presented for two ASICs.

Compute ASAP and ALAP values of all operations assum-
ing zero communication delay.
Compute close for every pair of operations.
For k = 1; : : : ; number of resource types in an ASIC f

1. Backward list schedule using the ALAP values (if
identical, then use decreasing ASAP value) with the re-
source constraint corresponding to type k. For other op-

eration types, assume unlimited resources.
2. Let the PALAP [14] of an operation be the clock

cycle assignment of that operation.
3. Find all operations with minimum ALAP value. Let

the set seeds contain all these operations.
4. Partition and schedule the seeds �rst.
a. Randomly choose an operation from seeds to be

the primary seed, and remove it from seeds.
b. Put the primary seed at the head of ordered seeds.
c. While (seeds not empty)
Add seed i to ordered seeds in increasing value of

close(primary seed, seed i). (The �rst half of the operations
in ordered seeds will be scheduled in one ASIC, and the
remaining in the other ASIC.)

5. Partition (but not schedule yet) the non-seed roots.
a. Put all operations which have no predecessor (i.e.

ASAP = 1) and which are not in ordered seeds in the set
non-seed roots.

b. Randomly choose an element from non-seed roots
to be the primary non-seed root. Remove it from non-seed
roots and add it to the set ordered non-seed roots.

c. While (non-seed roots not empty)
Add non-seed i to ordered non-seed roots in increas-

ing value of close(primary non-seed root, non-seed root i).
(The �rst half of the operations in ordered non-seed roots
will be scheduled in one ASIC, and the remaining in the
other ASIC. Thus, after one operation from ordered non
seed roots is scheduled, then if it is in the �rst half of the
list, then all the other operations in the same half will also
be scheduled in the same ASIC, and the remaining opera-
tions will be scheduled in the other ASIC.)

6. For operation k, let ISVk =
P

i;j
close(i; j)=

(no: of immediate successors of k), where i stands for ev-
ery immediate successor of operation k, and j represents
every predecessor 1 of k. ISV is used to resolve the priority
during list scheduling in event of a tie. The ISV allows an
operation whose average immediate successor is closer to
its predecessors to have a higher chance of being scheduled
in the ASIC in which most of its predecessors are already
scheduled in.

7. The forward list-scheduling uses the PALAP as a pri-
ority function (in case of a tie, use increasing ALAP { ASAP
value; in case of another tie use increasing ISV for selecting
operations). The complete designer-imposed resource con-
straints are used during this step. Observe that concurrent
partitioning and scheduling of all operations not in ordered
seeds is done during this step. First, try to schedule an op-
eration in the earliest clock cycle it can start subject to re-
source, precedence, and communication constraints. In case
of a tie between ASICs, it is scheduled in the ASIC contain-
ing more immediate predecessors which complete execution
in the previous clock cycle. In case of a tie, it is sched-
uled in the ASIC containing larger number of its immediate
predecessors.

8. Save the current best schedule.
g /* end for */

2.2 Minimizing communication

An important aspect of the system-level ASIC partition-
ing problem is that a good partition may not satisfy the
traditional de�nition of a partition [5]. Partitioning is tra-
ditionally de�ned as breaking a set into mutually exclusive

1Predecessor implies all predecessors, immediate and others.

1 2 3 4 65 7

+

+

X

+1 +2 +3

+4

+5

X1

(b)

1 2 3 4 65

+1 +2 +3

+4

+5

X1

(c)

+2

+3 +4

+5

X1 X2

(a)

+1

+5comm.
link

+

+

X X2

+4

+1 +2 +3 +5

X2

ASIC1

ASIC2

Figure 3: Traditional partitioning may produce inferior
designs

and collectively exhaustive subsets. While the collectively
exhaustive requirement must be satis�ed for functional cor-
rectness, the mutually exclusive requirement may produce
inferior designs. Consider a small fragment of the elliptic
wave �lter benchmark shown in Figure 3. Suppose we have
two ASICs connected by a one clock cycle delay intercon-
nect and each ASIC contains two adders and one multiplier.
Then the best possible design produced by a traditional par-
titioning tool will require seven clock cycles (Figure 3b).
If, however, the mutually exclusive requirement is relaxed
and the two subsets may overlap, a design which requires
six clock cycles can be obtained (Figure 3c). The overlap
trades-o� inter-chip communication delay with computation
and is not considered by any existing system-level parti-
tioner. We have developed two procedures called move and
swap which try to reduce the communication bandwidth. A
third procedure duplicate trades-o� computation with com-
munication bandwidth. These procedures start from the
�rst clock cycle of the schedule to the last and try to elim-
inate transfer of a datum from one ASIC to another by
moving, swapping or duplicating operations from one ASIC
to another. All original inputs are assumed to be available
to all the ASICs initially.
Move: The idea behind the move procedure is to �nd a da-
tum that is being transferred via the communication channel
from the sending ASIC to the receiving ASIC. If this datum
is not used in the sending ASIC, then it may be preferable
to generate the datum in the receiving ASIC itself, thus re-
ducing the communication channel usage. To ensure that as
a result of eliminating this datum no other datum is added
to the communication channel, move requires that not only
operation i should not have any successors in the sending
ASIC, but also that the predecessors of operation i have
no successors in the sending ASIC, unless that successor is
operation i or a predecessor of operation i. The move proce-
dure also ensures that the receiving ASIC has su�cient free
resources so that all operations which need to be moved
can be executed in the receiving ASIC without sacri�cing
performance.
Swap: The basic idea of swap is to �nd an operation i which
is executed in clock cycle j in ASIC1 and is not executed
in ASIC2 and which generates a datum that is required to
be transmitted from ASIC1 to ASIC2. Then, an operation
k, which is also executed in clock cycle j, in ASIC2, and
which has the same resource type as operation i, and which
generates a datum that is required to be transferred from
ASIC2 to ASIC1, needs to be found. At the same time, if the
predecessor requirements (as described for move operation)
are satis�ed, then the two operations and its predecessors
can be swapped (some predecessor operations may be moved
and others swapped).

Duplicate: The duplicate procedure tries to duplicate an

operation from a sending ASIC to a receiving ASIC. Dupli-
cate tries to ensure that the net usage of the communication
channel is reduced, and that there exists su�cient resources
in the receiving ASIC for executing the duplicated opera-
tions. Note that there is no need to check the predecessor
requirements as above, since the operations are duplicated
and the value is available in both ASICs. Note that as a
result of applying the duplicate procedure, the communica-
tion channel may become available, and hence it may be
possible to move some operations to an earlier clock cycle.
Thus, after the procedure is successfully executed, the sub-
tree rooted at the operation duplicated is re-scheduled. If
an improvement in the performance is obtained then this
re-scheduled solution is accepted as the new solution. The
duplicate concept has been used previously in FPGA map-
ping as well.

of # of clock cycles
DFG resources/ASIC 1 ASIC 2 ASICs

AR �lter 1a, 1m 34 19
(Figure 2) 1a, 2m 18 14

[12] 1a, 3m 16 14
EW �lter 1a, 1m 28 19
(Figure 5) 2a, 1m 21 18

[11] 2a, 2m 18 17
1a, 1m 13 9
1a, 2m 8 7

di�. eqn. 1a, 3m 7 6
[11] 2a, 2m 7 7

2a, 3m 6 6
1a, 4m 6 6
1a, 1m 18 12

FIR �lter 1a, 2m 15 12
[10] 2a, 2m 11 11

2a, 3m 10 11
1a, 1m 84 60

Unfolded 2a, 2m 52 51
EW �lter 3a, 2m 50 49

3a, 3m 49 49
1a, 1m 25 15

Bandpass 1a, 2m 17 13
Filter 2a, 2m 13 11
[9] 2a, 3m 11 11

2a, 4m 10 11
1a, 1m 27 17

Biquad 1a, 2m 19 15
Filter 2a, 2m 17 13
(*) 2a, 3m 14 13
[9] 3a, 3m 13 12

3a, 5m 11 11
1a, 1m 576 288

64-point 2a, 2m 288 144
FFT 5a, 5m 117 60
(*) 5a, 10m 60 44
[4] 10a, 15m 39 42

20a, 20m 30 39

a: adder; m: multipliers
(*) Complex multiplication takes 3 clock cycles.

Table 1: Results

2 3 4 5 6 7 8 9 10 11 12 13 14

m1

m2

m3

m4

m5

m6

m7

m8

m9

m10

m11

m12

m13

m14

m15

m16

a3

a1 a2

a4

a5

a6

a7

a8 a9 a10

a11 a12

a7 a8m7 m6 m13m16

ASIC 1

ASIC 2

time−step

MULT

MULT

MULT

ADD

MULT

ADD

(a) After concurrent partition/schedule

1 2 3 4 5 6 7 8 9 10 11 12 13 14

m1

m2

m3

m4

m5

m6

m7

m8

m9

m10

m11

m12

m13

m14

m15

m16

a3

a1 a2

a4

a5

a6a7

a8

a9 a10

a11 a12

m7 m6 m13m16

(b) After minimizing communication

1

communication
 channel

ASIC 1

ASIC 2

time−step

MULT

MULT

MULT

ADD

MULT

ADD

communication
 channel

Figure 4: A schedule for AR �lter DFG

3 Evaluation of PARAS

For evaluation of the PARAS algorithm several benchmarks
ranging in size from about ten operations to about four hun-
dred operations were used. The results (Table 1) show dif-
ferent speci�cations and the performance of the schedules
obtained for di�erent numbers of ASICs. The multiplier and
adder requires two and one clock cycle for execution respec-
tively, and a one clock-cycle-delay communication channel is
assumed. The �rst result for the AR �lter shows that using
one ASIC containing one adder and one multiplier a design
requiring 34 clock cycles for execution was obtained. Using
two ASICs with one communication channel, PARAS was
able to schedule the same speci�cation in 19 clock cycles.
For the AR �lter example (Figure 2) with two ASICs

each containing two multipliers and one adder connected
by a one clock cycle delay interconnect, PARAS obtained
the schedule shown in Figure 4a after the concurrent parti-
tion/schedule. After minimizing communication, the sched-
ule shown in Figure 4b which requires fewer data values
to be transferred is generated. The operations in the two
subsets de�ne the partition. The optimal solution to the
scheduling problem without communication delay using two
multipliers and one adder is 18 clock cycles (an upper-bound
to the solution) and the optimal solution without commu-
nication delay and using four multipliers and two adders is
11 clock cycles (a lower-bound to the solution).
The advantages of the move and swap procedures can be

highlighted from this result. In the schedule shown in Figure
4, a7 is executed in ASIC1 in clock cycle �ve and its output
is transferred from ASIC1 to ASIC2 in clock cycle six. a8
is executed in ASIC2 in clock cycle �ve and its output is
transferred from ASIC2 to ASIC1 in clock cycle nine. From
the graph we see that a7 does not have any successor in
ASIC1; it has one successor a10 in ASIC2. a8 does not
have any successor in ASIC2; it has one successor a12 in
ASIC2. Moreover, since a7 has two predecessors, m9 and

e2i1

e13

e28 e33 e39

c1 c2

c3 c8

c4

e18

c6

e18 e38

c7

e38

c5

e2 e13 e18 e28 e39 o1e38 e33

a1

a2

a3 a4

a5

a6 a7

a9a8

a10 a11

a12

a14 a15

a13

a16

a17

a18

a22

a19

a23

a20 a21

a24 a25 a26

m3

m5 m6 m7

m8

m4

m2m1

Figure 5: EW Filter data ow graph

m10, which both start execution in clock cycle three, and
since a8 also has two predecessors, m11 and m12, which also
both start execution in clock cycle three, swap is successful.
As a consequence of the swap, there is no need to transfer
either a7 or a8 on the communication channel anymore.
However, in this case, the successful swap did not reduce
the total execution time of the schedule; it only reduced the
communication bandwidth.
For EW �lter (Figure 5) two ASICs each containing two

adders and one multiplier were used. 2 After the concurrent
partition/schedule program, we obtain the schedule shown
in Figure 6a. In this schedule, both m1 and m2 are imme-
diate successors of a5, so if a5 is executed in only one ASIC,
as in the original schedule, then either m1 or m2 should be
executed after the other one. Since a5 has four predeces-
sors, a1, a2, a3, and a4, and according to Figure 6a, ASIC2
has enough resources to accommodate all these �ve opera-
tions, these �ve operations are duplicated to obtain the �nal
schedule shown in Figure 6b. As a result of this, m2 can
now start execution in clock cycle �ve instead of clock cycle
six, which in turn reduces the total execution time of the
speci�cation from 19 clock cycles to 18 clock cycles.
Comparison of results to others is hard to make since the

PARAS's objective is to maximize performance for a �xed
ASIC con�guration and input speci�cation. The objective

2Determination of what ASICs should contain can be done
using estimation techniques [13].

ASIC 1

ASIC 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

m1

m2

m3

m4

a3a1 a2

a4

a5 a6

a7

a8

a9

a10 a12

m6

communication
 channel

time−step

MULT

ADD

MULT

ADD

15 16 17 18 19

ADD

ADD

a4 a5

a24

a14

a11

a15

m5

a16a13

a17

m8

a26 a21 a25

a18 a22 a19 a23

m7

a20

a6

(a) After concurrent partition/schedule

(b) After minimizing communication

ASIC 1

ASIC 2

communication
 channel

time−step

MULT

ADD

MULT

ADD

ADD

ADD

1 2 3 4 5 6 7 8 9 10 11 12 13 14

m1 m3

a6 a8 a10 a12

m6

15 16 17 18

a24

a14

a15

m5

a21 a25

a18 a22 a19 a23a3a1 a2 a5

a4 a7 a9

a20

a26a11 a16a13

a17

m2 m8 m7m4

a3a1 a2 a5

a4

a6

Figure 6: A schedule for EW �lter DFG

in the other approaches are di�erent such as minimizing
the number of edges cut, minimizing the number of di�er-
ent types of patterns, or clustering similar operation types.
Nevertheless, comparison with the result in [6] for the EW
�lter example is made. In [6], zero communication delay is
assumed and the schedule using two ASICs, each containing
one adder and one multiplier, requires 19 clock cycles. If,
PARAS assumes zero interconnection delay, then a schedule
with same performance and equal number of data transfers
is generated. If the interconnect has a delay of one clock
cycle, then the partition in [6] requires 21 clock cycles while
the PARAS solution still requires 19 clock cycles.
The need for using ISV can be explained using the elliptic

wave �lter. After a1; a2; a3 and a5 have been scheduled in
ASIC1,m1 must be scheduled beforem2. By scheduling m1
before m2, the scheduler will place m1 in ASIC1 also, which
in-turn will allow the successors ofm1 to be scheduled in the
same ASIC, thus reducing the communication requirements.
The PALAP priority alone cannot handle this, since m1 and
m2 have identical priority and the scheduler may arbitrarily
select any one to be scheduled before the other. The ISV
will ensure that m1 is selected for scheduling before m2.
A solution to the AR �lter example using two ASICs, each

ASIC containing two adders and four multipliers requires
14 clock cycles for execution; a design using one ASIC re-
quires only 11 clock cycles. This illustrates that an input
speci�cation must only be partitioned if it will result in a
better design. For example, partitioning an input speci�ca-
tion into two smaller graphs will result in a bad design if
enough resources are available on one chip to execute the
entire speci�cation e�ciently. This observation is further
supported by the results for the 64-pt FFT example (Table
1). With (10a, 15m) resources per ASIC, the design with
two ASICs is slower than the design with one ASIC. In-
creasing the number of resources per ASIC beyond a certain
threshold can slow down a partitioned design with commu-
nication cost. This fact has not been considered by existing
partitioning systems which partition the input speci�cation
whether partitioning is desirable or not. The breakpoint
depends upon the speci�cation and the number of resources
per ASIC. A partitioner must partition only when it will

ASIC 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

communication
 channel

time−step

ADD

MULT

15 16 17

ADD a3a1 a2 a5 a8a6 a10a20

a12

a14 a23a22a18a15

a19

m1 m3

m5

m6

ASIC 2

MULT

ADD

ADD

a21

a4

a9

a24

a11

a13 a17 a25

a26a16

m8m2

m7

m4

a3a1 a2 a5

a4

MULT

MULT

m1

a7

a6 a8

m3

a10

Figure 7: A partition with zero communication

help improve the design, and not otherwise. The PARAS
algorithm assumes that partitioning is to be performed and
proceeds to seed the ASICs with operations which are not
close to each other. Seeding is in direct contrast to the
functions of a traditional scheduler where all operations are
mapped onto one ASIC. Since the solution techniques of the
PARAS and traditional scheduling algorithms conict, we
use an alternate strategy for determining if partitioning is
really better than just ordinary scheduling. After an initial
schedule/partition is obtained, a check is made to deter-
mine if one ASIC is su�cient or not. If an additional ASIC
cannot reduce the execution time then an extra ASIC is
redundant and must not be used. The �rst check simply
counts the resource utilization for each clock cycle and re-
source type. If the number of resources used in both ASICs
in a clock cycle is less than or equal to the number of re-
sources available in a speci�ed ASIC, then we can collapse
the two ASICs into one for that clock cycle. If we can do
this for all clock cycles and all resource types, then we can
eliminate one ASIC. The second technique for elimination,
is to simply schedule the speci�cation using one ASIC and
if there is no performance loss then we can dispense with
partitioning the speci�cation.
A schedule for the EW �lter with each ASIC containing

two adders and two multipliers is shown in Figure 7. The
schedule, as a result of duplication, has zero communica-
tion across the two partitions. This shows that overlapping
subsets of the partition may help eliminate communication
completely. A traditional partitioner cannot obtain a solu-
tion of this type, since some edges will show-up as being cut.
Comparing the two schedules for the EW �lter in Figures 6
and 7 highlight that the two partitions are di�erent. This
implies that depending upon the resource con�guration of
the ASICs, di�erent partitions may be required for good de-
signs, an idea which does not exist in current partitioning
systems.
The PARAS algorithm required about 7,000 lines of C++

code. The run-time for the EW �lter example was under
1 second on a SUN SPARCstation 5/70 with 32Mb main
memory.

4 Conclusion

To summarize, we have presented a new approach to the
partitioning problem which occurs in system-level design.
Our solution technique is simple and e�cient, allows sev-
eral tradeo�s to be explored, and has tremendous potential
for furthering research in the area of board and system level
design. We are currently extending the algorithm to han-
dle conditional branches and loops. Open problems include
the development of better and more accurate models of the

ASICs and fast and accurate estimation techniques which
will help the design tools to explore design space e�ciently.

References

[1] R. Gupta, C. N. Coelho Jr., and G. De Micheli. Synthe-
sis and Simulation of Digital Systems Containing Inter-
acting Hardware and Software Components. In Pro-
ceedings of the ACM/IEEE Design Automation Con-
ference, 1992.

[2] J. Henkel, U. Holtmann, and T. Benner. Adapta-
tion of Partitioning and High-Level Synthesis in Hard-
ware/Software Co-Synthesis. In Proceedings of the
ACM/IEEE International Conference on Computer-
Aided-Design, 1994.

[3] Y.-H. Hung and A. C. Parker. High-Level Synthe-
sis with Pin Constraints for Multiple-Chip Designs.
In Proceedings of the ACM/IEEE Design Automation
Conference, 1992.

[4] K. Hwang and F. A. Briggs. Computer Architecture
and Parallel Processing. McGraw-Hill Publishing Com-
pany, 1984.

[5] B. W. Kernighan and S. Lin. An E�cient Heuristic
Procedure for Partitioning Graphs. The Bell System
Technical Journal, 49, February 1970.

[6] E. D. Lagnese and D. E. Thomas. Architectural Parti-
tioning for System Level Design. In Proceedings of the
ACM/IEEE Design Automation Conference, 1989.

[7] M. C. McFarland and T. J. Kowalski. Incorpo-
rating Bottom-Up Design into Hardware Synthesis.
IEEE Transactions on Computer-Aided-Design, 9(9),
September 1990.

[8] T. Mudge. Designing High Performance Microproces-
sors. From a talk given at the Department of Electrical
and Computer Engineering, University of Wisconsin,
April 1995.

[9] C. A. Papachristou and H. Konuk. A High-Level Syn-
thesis Technique Based on Linear Programming. Tech-
nical report, Computer Engineering and Science De-
partment, Case Western Reserve University, November
1989.

[10] N. Park and A. C. Parker. Sehwa: A Software Package
for Synthesis of Pipelines from Behavioral Speci�ca-
tions. IEEE Transactions on Computer-Aided-Design,
7(3), March 1988.

[11] P. G. Paulin and J. P. Knight. Force-Directed Schedul-
ing for the Behavioral Synthesis of ASIC's. IEEE
Transactions on Computer-Aided-Design, 8(6), June
1989.

[12] D. S. Rao and F. Kurdahi. Partitioning by Regularity
Extraction. In Proceedings of the ACM/IEEE Design
Automation Conference, 1992.

[13] M. Rim and R. Jain. Lower-Bound Performance Esti-
mation for The High-Level Synthesis Scheduling Prob-
lem. IEEE Transactions on Computer-Aided-Design,
13(4), April 1994.

[14] M. Rim and R. Jain. RECALS II: A New List Schedul-
ing Algorithm. In Proceedings of the IEEE Interna-
tional Conference on Acoustic, Speech and Signal Pro-
cessing, 1994.

[15] F. Vahid and D. D. Gajski. Speci�cation Partitioning
for System Design. In Proceedings of the ACM/IEEE
Design Automation Conference, 1992.

	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index

