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  Abstract

With an ever-increasing portion of the delay in high-
speed CMOS chips attributable to the interconnect, inter-
connect-circuit design automation continues to grow in
importance. By transforming the gate and multilayer wire
sizing problem into a convex programming problem for
the Elmore delay approximation, we demonstrate the effi-
cacy of a sequential quadratic programming (SQP) solu-
tion method. For cases where accuracy greater than that
provided by the Elmore delay approximation is required,
we apply SQP to the gate and wire sizing problem with
more accurate delay models. Since efficient calculation of
sensitivities is of paramount importance during SQP, we
describe an approach for efficient computation of the
accurate delay sensitivities.

1  Introduction

Recognizing that large reductions in interconnect delay
can be achieved by selectively widening the branches of
the interconnect tree (wire sizing), different approaches to
wire sizing have been proposed [1, 2, 3, 4]. The approach
in [1, 2] uses the properties of monotonicity, separability,
and dominance which apply to the Elmore delay [5, 6] to
determine the optimal wire sizing solution. Recognizing
that monotonicity and separability do not apply to the
Elmore delay under certain conditions, a sensitivity-based
wire sizing heuristic is presented in [3]. The approach of
[4] uses an approximate relationship between the moments
of the RC tree and the delay to guide a non-linear least-
squares minimizaton to find the gate and wire sizes that
will yield the target delays at the critical sinks of the inter-
connect tree. However, there is no guarantee of optimality
in the final wire sizing solution since the delay constraints
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at the critical sinks are formulated as equality constraints.
The approach of [4] differs from the other approaches in
that it uses accurate delays computed from RICE [7]
(instead of the Elmore delay approximation) and a gate
delay model which captures the complex interaction
between the CMOS gates and the corresponding RC loads
[8].

In [3], the posynomiality of the Elmore delay in terms
of the widths of the RC interconnect tree (first mentioned
in [9]) was used to convert the wire sizing problem into a
convex program under a simple transformation. However,
the “one-wire-at-a-time” TILOS heuristic of [3] does not
fully exploit the convexity of the transformed wire sizing
problem. In this paper, we demonstrate the efficacy of a
sequential quadratic programming approach [10] to the
gate and wire sizing problem under the Elmore delay
approximation when a simple fixed-resistor gate delay
model is used. For a simple gate delay model, the concur-
rent gate and wire sizing problem applied topaths is also
posynomial under the Elmore delay model [9]. Therefore,
SQP can also be applied to path delay optimization.

However, the error resulting from a fixed-resistor driver
model in conjunction with the Elmore delay can be signif-
icant [11]. Also, during wire sizing the load on the driver
changes significantly and should be reflected in a load-
dependent gate delay model. Moreover, a fixed-resistor
gate delay model when used in conjunction with the
Elmore delay approximation implicitly assumes that the
load on the gate is accurately modeled by the total inter-
connect capacitance, an assumption that is especially
invalid for large RC-interconnect loads [12]. Furthermore,
input transition time effects must be considered for proper
path sensitivities. With this in mind, for situations where
extreme accuracy is required we apply SQP to the gate and
wire sizing problem using a gate delay model [8] which
captures the interaction between the gate and the RC load
with accurate delays computed by RICE. We also demon-
strate the utility of our SQP approach for optimization of
RC meshes.



2  The concurrent gate and wire sizing
problem

Consider a gate with its associated fanout tree as shown
in Figure 1a. Modeling the gate by a resistorRd driven by

a step voltage source and replacing every interconnect
branch with its L-section model – lumping techniques
allow for accurate and efficient analysis of complex multi-
level interconnect structures [13] – we obtain the RC cir-
cuit shown in Figure 1b. The interconnect branches may
lie on different layers and, therefore, exhibit different par-
asitics. Given target delays at certain fanout nodes of inter-
est (critical sinks) in the circuit, the concurrent gate and
wire sizing problem involves determining the optimal gate
size and wire widths for the branches of the interconnect
tree which will yield the target delays. The objective func-
tion is usually defined in terms of the area required for the
circuit layout. However, given the current thrust in low-
power design, power dissipation may need to be consid-
ered too. Furthermore, since certain branches of the inter-
connect tree may pass through congested areas of the chip
the routability of these branches should be factored into
the objective function of the optimization. Lastly, for a
feasible routing solution the wires are subject to upper
bounds on their allowable widths.

Let W = {w1, w2,..., wN, wN+1} be the vector of the
widths of theN branches of the interconnect tree and the
gate size,wg(= wN+1), and a(W) the circuit area corre-
sponding toW. If the delay at a critical sinkj is denoted by

 and the delay constraint atj by  the concurrent
driver and wire sizing problem can be stated as:

(1)

In (1), it is assumed thatg1wg + g0 is the area occupied by
the driver – a reasonable assumption for CMOS gates.γi
( ) denotes thecongestion coefficient for interconnect
branch i which is determined by its routability. and
correspond to the lower and upper bounds on the width of

Rd

(a) (b)

Figure 1: a) A driver and its fanout tree b) Equivalent
RC tree model.
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branchi, wi. li denotes the length of branchi while M de-
notes the number of critical sinks.

2.1  The posynomiality of the Elmore delay

The delay at any node in an RC tree can be approxi-
mated by the Elmore delay [5, 6] which is the first moment
of the impulse response and a known upper bound [14] on
the 50% delay. If it is assumed that the output resistance of
the driver is inversely proportional to the driver size, that
is Rd = Rg/wg, then for the RC representation of Figure 1b
the Elmore delay at any noden can be expressed as a func-
tion of the tree branch widths and the driver size as

. (2)

In (2), P(n) denotes the set of branches from noden to the
root of the interconnect tree excluding the gate resistor
branch and D(i) the set of branches downstream of branch
i and branchi itself. ri, ci, andfi represent the sheet resis-
tance, capacitance per unit area, and the fringe capacitance
per unit perimeter of branchi respectively.

Functions of the type

(3)

are calledposynomial (positive polynomial) functions.
From an optimization point of view, posynomial functions
exhibit the attractive property of convexity under the trans-
formation  [15]. Several transistor-sizing tools [9,
16] exploit the posynomiality of the transistor-sizing prob-
lem for CMOS circuit delay optimization. Since the con-
stantsRg, ri, ci, fi, andli in (2) are positive, in [9] it was
shown that the Elmore delay at any node in an RC intercon-
nect tree is a posynomial function of the tree branch widths.
Also, since usually , the objective function in (1)
is posynomial in the branch widths and the driver size.

Therefore, under the transformation , for the
Elmore delay approximation the transformed problem

(4)

where

(5)

is a convex program.  is used to denote the Elmore
delay at nodej as a function of the vector of the transforma-
tion variables,X = {x1, x2, ..., xN, xN+1}.
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The monotonicity of the transformationw = ex also
implies any local minimum of the untransformed concur-
rent driver and wire sizing problem described in (1) under
the Elmore delay model is also a global minimum. Based
on this, an iterative “one-wire-at-a-time” sensitivity-based
heuristic is proposed in [3] in which a single wire is sized
at each iteration of the optimization. However, more effec-
tive techniques which size several wires at a time can be
used to find an optimal solution to the transformed convex
form of the concurrent driver and wire sizing problem.

2.2  Posynomiality of the path delay

Consider a typical path in a CMOS circuit composed of
a sequence of stages each of which consists of a driver and
its associated RC interconnect tree. If a critical sinkn of
the RC interconnect tree of a stagek connects to the driver
of next stagek + 1 along the path, then the delay of stagek
is given by

(6)

where  refers to the input capacitance of the driver of
stagek + 1. If the input capacitance of the driver of each
stage is precharacterized as a function of the driver size by

(7)

and the coefficientsci of the fit are positive – a reasonable
assumption for CMOS gates – the Elmore delay of stagek
is posynomial in the widths of the branches of the RC
fanout tree, and the sizes of the drivers of stagek and stage
k + 1 respectively. Therefore, in [9] it was shown that for
the Elmore delay approximation, the path delay which is
the sum of the stage delays is posynomial too. Hence, path
delay optimization can be converted into a convex program
too.

3  Concurrent gate and wire sizing via SQP

One of the most common approaches to nonlinear opti-
mization is sequential quadratic programming (SQP) [10]
which reduces the nonlinear optimization to a sequence of
quadratic programming (QP) subproblems. At each itera-
tion, a QP subproblem is constructed from a quadratic
approximation of the non-linear objective function and the
linearization of the constraints about the solution from the
previous iteration. The solution of the QP subproblem
which is detemined by any general-purpose QP-solver is
then used as the initial solution for the next iteration. The
optimization terminates when some convergence criterion
is met. Under certain conditions the SQP approach is guar-
anteed to converge to a solution for any convex program-
ming problem [17].
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3.1  Sequential quadratic programming

The strictly convex quadratic program can be generally
expressed as

(8)

Here, the matrixQ is symmetric and positive definite, and
I is the index set for the inequality constraints.

Consider the following optimization problem

(9)

whereF(X) andhi(X) are nonlinear functions ofX. Letg(X)
be the gradient vector defined by . Vari-
able metric methods for constrained optimization [10]
solve (9) by solving a sequence of the following QP sub-
problems

(10)
where  is the solution of the previous QP iteration. Here
B( ) is calculated from the Hessian of the objective func-
tion F(X) as well as the Hessian of the Lagrangian function.
Different techniques are used to ensure the positive defi-
niteness of the matrixB at every iteration. In [10] it is men-
tioned that for convergence the second derivative of the
Lagrangian function is far more important than the second
derivative of the objective function in the calculation ofB.
Furthermore, keepingB positive semidefinite at every iter-
ation contributes significantly to convergence.

3.2  SQP applied to the concurrent driver and
wire sizing problem

For the concurrent driver and wire sizing problem under
the Elmore delay model described by (4), our experimen-
tal results indicate that an SQP optimization performed
with only the Hessian of the objective function taken into
consideration provides good overall results. For this prob-
lem it can be shown that the second derivative of the
objective function is positive semidefinite at every itera-
tion thus aiding in the convergence. When applied to (4)
this method compared favorably with the program
NLPQL [18] which does take the Hessian of the
Lagrangian into account.

In our implementation, we useH(X) andC(X) to denote
the Hessian and Jacobian of the circuit area . At each
iteration the Elmore delay constraints are linearized about
an initial point  (the solution of the previous iteration),
and the QP subproblem
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(11)

solved iteratively until some convergence criterion is met.
We can write the objective function in (4) as

(12)

For clarity, in (12),ki = γili for each wirei andkN+1 = g1 for
the driver. The Hessian and the Jacobian of the objective
function of (4) are given by

(13)

Since all diagonal terms of the matrixH are positive and
off-diagonal terms zero,H is always positive definite. The
sensitivity of the Elmore delay with respect to the transfor-
mation variable,xi , is computed by the chain rule as

. (14)

The sensitivity of the Elmore delay at a nodej with respect
to the widths of all wires j of the RC tree, , is com-
puted by the moment sensitivity computation approach de-
scribed in [19]. The sensitivity of the Elmore delays at the
critical sinks with respect to the gate size is given by

(15)

whereCtot is the total capacitance of the interconnect tree.
Since at each QP iteration of the SQP the quadratic

approximation of the objective function as well as the lin-
earization of the constraints are valid only in a certain
neighborhood of , the upper and lower bounds on the
variablesxi are determined based on the validity of this
approximation. (Typically, in our experience the wire
width sensitivities are valid within 15% of the current
wire width.) For the initial iterations the upper and lower
bounds onxi are set to their actual values to obtain an ini-
tial feasible solution.

Using SQP for path delay optimization requires the path
delay sensitivities which are easily computed for the fixed-
resistor gate delay model since it does not account for
transition time effects [20].
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3.3  Results

We have implemented the driver routines for the SQP
algorithm on a SPARCstation 20 in 5000 lines of C code
(this excludes the QP solver). The routinee04nfc from
the NAG C library [21] is used for the QP solver. We
tested our approach on several nets randomly generated on
a 10 mm  10 mm grid. The minimum and maximum
allowable width of each branch is set to 1.0µm and 6.0
µm respectively. The branches of the interconnect tree lie
on different layers with parasitics as shown in Table 1.

After a feasible solution has been found, the allowable
change in the wire widths during each iteration is limited
to a certain predetermined percentage of the initial widths.
This is because the quadratic approximation of the objec-
tive function as well as the linearization of the constraints
is valid only in a certain region around the previous solu-
tion. Experimental results indicate that fastest conver-
gence is obtained if the allowable relative width variation
is between 10 and 15%. A lower allowable variation
results in slower convergence while a higher value may
result in the “bouncing” of successive QP solutions. That
is, at a particular iteration if the solution from the QP
solver is far away from the initial solution, then this opti-
mal QP solution is not necessarily a better solution for the
original problem since neither the quadratic approxima-
tion to the objective function nor the linearization of the
constraints is valid at this point. The next QP iteration
around this new point may lead to a new optimal value
near the original initial point without significant progress
to the true optimum. The allowable width variation is
dynamically varied between successive iterations: It is ini-
tially set to a high value and then progressively decreased
as the QP solutions converge. We terminate our algorithm
when the relative objective function decrease between two
successive iterations is less than 10-4 and the delays are
either less than or within a 10-3 relative factor of the target
delays. We note that the optimization usually reaches the
vicinity of its final solution within 10 iterations. The
improvement in the objective function value after these
first few iterations is exceedingly small.

The results for single-stage concurrent gate and wire
sizing are presented in Table 2. Here the gate size refers to
the width of then-channel transistor of the inverter driver.
We set the target delays at the critical sinks equal to 50%

Layer c (fF/µm2) f (fF/µm) r (Ω/ )

M1 0.08 0.03 0.14

M2 0.05 0.05 0.07

M3 0.05 0.06 0.08

M4 0.03 0.08 0.02

Table 1. Parasitics for different layers.

×



of their delays when the branches of the tree are at mini-
mum width and the gate size is 15µm. For a 0.5µm
CMOS technology, we calculate the resistance of a 1µm
inverter to be 5000Ω, that is,Rg = 5 kΩµm. The results of
the concurrent gate and wire sizing are shown for gate
weights ofg1 = 500 andg1 = 1000. As expected, we see
that the relative gate and interconnect area requirements
vary with g1.The runtime grows quadratically in the num-
ber of branches. For all examples, optimization using the
program NLQPL [18] yielded the same cost as our SQP
approach. Both NLQPL and our SQP approach are satis-
factory for this optimization.

4  Concurrent gate and wire sizing with
accurate delays

Accurate delays to the critical sinks of the RC tree in
Figure 1b can be efficiently computed using simulators
like RICE [7] that are based on asymptotic waveform
evaluation (AWE) [22]. Optimizing for the accurate
delays, however, also requires exact delay sensitivity com-
putation.

4.1  Delay sensitivity computation in RC trees

Consider a saturated-ramp signal with transition time,
tr, applied at the input of a system with transfer function

(16)

where thepi’s andki’s are the poles and residues of the
transfer function. The time,ty, at which the output signal
will attain the valuey for an input saturated ramp of mag-
nitude 1 with transition time,tr, is given by the solution of
the equation

Net No. of
bran-
ches

Initial
int.
area
(104

µm2)

g1 = 500 g1 = 1000 CPU
time

for 25
iter.
(s)

Int.
area
(104

µm2)

Gate
size
dg

(µm)

Int.
area
(104

µm2)

Gate
size
(µm)

ex1 14 3.457 3.795 41.54 4.035 38.05 1.42

ex2 30 4.973 5.292 45.99 5.534 39.84 4.28

ex3 48 6.796 7.095 40.29 7.335 36.03 8.49

ex4 62 8.307 8.620 44.25 8.825 39.97 13.23

ex5 100 10.831 11.058 46.60 11.188 41.78 32.64

ex6 298 20.524 20.635 48.22 20.714 43.77 254.2

Table 2. Concurrent gate and wire sizing.
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The sensitivity of they time-point, ty, with respect to
any variablew, ∂ty/∂w, can be calculated from (17) if the
sensitivities of the poles and residues,∂pi/∂w and∂ki/∂w,
are known. That is, by differentiating (17) with respect to
w and rearranging the terms of the resultant expresssion
yields:

(18)
They-delay of the system,tdy, which is defined as the time
difference between they time-point of the output response
and they time-point of the input signal for a fixed input
ramp istdy= ty – ytr. Therefore, they-delay sensitivity is

, and the delay sensitivities are easily
computed from the pole and residue sensitivities. The out-
put transition time sensitivity is similarly computed.

4.2  Pole and residue sensitivity computation

We know that the response at any node in an RC circuit
can be accurately expressed by the first few dominant
poles and residues that are efficiently calculated by
moment-matching techniques like AWE [22]. If the trans-
fer function at any node of a linear circuit is described in
terms of its moments,mi, by

(19)

then an approximation for the firstq poles and residues can
be obtained by the solution of [22]
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(20)

The pole- and residue-sensitivities can be calculated direct-
ly from (20) if the moment sensitivities are known. Partial-
ly differentiating (20) with respect tow, for q = 2, for
example, results in

. (21)

In general (21) is a linear system of 2q equations with 2q
unknowns, which is readily solved for small values ofq. If
necessary, for large values ofq, frequency scaling [22] can
be used to prevent ill-conditioning of this system due to the
powers of poles in the denominator of the matrix coeffi-
cients. Moment sensitivities for general RC trees as well as
meshes can be computed by the adjoint sensitivity ap-
proaches described in [20, 23].

The pole and residue sensitivity computation technique
described above can also be used to generate the voltage
and current waveform sensitivities [23].

4.3  Near-posynomiality of the accurate delays

Unlike for the Elmore delay model, we cannot prove
that posynomiality of the accurately-computed delays. It
has been shown that for RC trees the Elmore delay repre-
sents an upper bound on the 50% delay [14]. We, there-
fore, rely on the fact that the Elmore delay is a reliable
indicator of the actual delay and hypothesize that the wire
sizing problem is posynomial for the accurate 50% delays.

In Table 3 we show the results of applying SQP for opti-
mization of the transformed wire sizing problem to the
nets of Table 2 using the accurate 50% delays as well as
the Elmore delays. The delays are accurately and effi-
ciently computed using RICE [7]. A fixed driver withRd =
50Ω is assumed. The target delays at the critical sinks are
set to a fraction of the delays when the branches of the tree
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are at minimum width. An input transition time of 0.5 ns is
assumed.

In [24] it was shown that the cost of the optimal trees
routed using the Elmore delay model is very close to the
cost of the optimal trees using the accurate delay thereby
demonstrating thefidelity of the Elmore delay model for
routing trees. The results of Table 3 strongly suggest that
the fidelity of the Elmore delay model holds for wire siz-
ing too – the cost of the solutions obtained for wire sizing
under the Elmore delay model and those obtained using
the accurate RICE-computed delays for a certain percent-
age delay reduction are nearly the same. This also indi-
cates that the wire sizing problem using the actual delays
is near posynomial. (It should be noted that the reduction
in the actual delay for a certain net may be different from
the Elmore delay reduction.)

5  Driver and wire sizing taking the CMOS
gate–RC load interaction into account

Modeling the gate by a constant resistor as we have
done until now can result in errors up to 30% [11]. Fur-
thermore, this gate model when used in conjunction with
the Elmore delay model implicitly assumes that the load
presented by the RC fanout tree is the total capacitance of
the tree. In [12] it was shown that, for large RC loads,
errors up to 100% can be observed by using a total capaci-
tance approximation of the load. The second-order driving
point admittance of the load, which is modeled by aπ-cir-
cuit, was shown to be a better load approximation for on-
chip RC interconnect [12]. If the 50% delay, and the 10-
50% and 10-90% output transition times of the driver are
precharacterized as a function of the load capacitance and
the input transition time, the single-resistor voltage-ramp
gate delay model presented in [8] accurately estimates the
driver delay as well as the driver output waveform. More
importantly, it can also be used to determine the wave-
forms and, therefore, delays at the critical sinks of the RC
fanout tree directly using RICE.

Net Final interconnect area (104 µm2)
for a delay reduction of

15% 30%

Elmore RICE Elmore RICE

ex1 3.723 3.738 — —

ex2 5.224 5.240 5.822 5.898

ex3 7.047 7.052 7.717 7.840

ex4 9.018 8.950 9.403 9.609

ex5 11.331 11.321 12.705 12.615

ex6 20.918 20.916 21.849 21.791

Table 3. Comparison of solutions for the Elmore delay
model and the accurate delay model.



5.1  Single-stage driver and wire sizing

The single-resistor voltage-ramp model of [8] for the
driver shown in Figure 1 yields a circuit model similar to
that used for concurrent driver and wire sizing with the
accurate delays at the critical sinks computed by the tim-
ing analysis technique of [4]. The computation of the sen-

sitivities of the critical sink delays with respect to the
widths of the interconnect branches and the size of the
driver is described in [20].

Figure 3 illustrates the importance of the voltage-ramp

delay model for an accurate wire sizing solution by com-
paring it with the solution obtained using a simple fixed-
resistor model for the driver. Again SQP is used for opti-
mization in the transformed domain. It is observed that the
fixed-resistor model underestimates the area required for
the solution. The simple fixed-resistor model can be used
during the earlier stages of design, for example during lay-
out when the lengths of the wire segments or the parasitics
are only estimates. For later stages of design when accu-
racy is an issue the voltage-ramp gate delay model must be
used. The results obtained by optimizing the examples of
Table 2 for a delay reduction of 50% are shown in Table 4.
The CPU times shown in the last column seem to grow

Figure 2:  The voltage-ramp delay model of [8].
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Figure 3: Wire sizing solutions using a) the voltage-
ramp delay model b) a fixed-resistor model.

Rd = 70Ω

(a)

2.36 1.87 1.59 1.38

1.0

1.0

(b)

1.95 1.56 1.40 1.13

1.0

1.0

150µ/75µ
driver

0.88 ns

0.88 ns

0.88 ns

0.88 ns

Each segment 
2500µm long

cubically in the number of wires. Dramatic improvements
in runtime can be achieved by recognizing that for large
nets most wires do not influence the optimization [25].
The heuristics of [25] can be used to eliminate the sizes of
these wires as optimization variables.

5.2  Driver and wire sizing for paths

SQP can be applied in the transformed domain for path
delay optimization using the voltage-ramp delay model in
conjunction with the exact delays. The path delays are
computed by the timing analysis technique described in
[4]. Due to transition time effects, however, calculating the
sensitivities of the path delay with respect to the circuit
component sizes is not so trivial as for the Elmore delay
model and is described in [20]. The interconnect-domi-
nated path of Figure 1 was optimized by SQP for a path
delay of 0.75 ns. The resultant driver and wire sizes are
shown.

6  SQP applied to RC meshes

For RC interconnect meshes the Elmore delay is not
posynomial in the widths of the mesh branches and, there-
fore, the convexity of the Elmore delay under an exponen-
tial transformation does not hold for RC meshes.

Net No. of
bran-
ches

Initial
int.
area
(104

µm2)

g1 = 500 g1 = 1000 CPU
time

for 25
iter.
(s)

Int.
area
(104

µm2)

Gate
size
dg

(µm)

Int.
area
(104

µm2)

Gate
size
(µm)

ex1 14 3.457 4.368 41.15 4.452 39.21 8.36

ex2 30 4.973 5.864 38.92 6.438 36.89 22.7

ex3 48 6.796 7.218 36.05 7.632 34.73 55.3

ex4 62 8.307 9.295 41.75 9.392 39.01 89.9

ex5 100 10.831 11.812 36.71 12.024 35.58 269.1

ex6 298 20.524 21.974 42.85 21.862 45.68 5844

Table 4. Concurrent gate and wire sizing results with
the voltage-ramp gate delay model.

Figure 4: Path delay optimization.
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However, even without a convexity proof we apply SQP to
experiment with delay reduction with RC meshes by add-
ing links in the RC tree and determining which links to
eliminate. For example, the delay at sink 1 for the circuit
in Figure 5 is 0.36 ns. The wiring segments of this net can-
not be sized up for further delay reduction because of con-
straints imposed by neighboring segments from other nets.
A link (possibly routed on another layer) is introduced
between the root node and node 1, and SQP optimization
carried out with the lower bounds on the widths set to
zero. To realize a 0.29 ns delay at node 1, the optimization
yields a zero estimate for the width of the 4000µm seg-
ment indicating that it should be eliminated and sizes the
6000µm segment to a 4µm width.

7  Conclusions

We have demonstrated the application of a classical
optimization approach to delay optimization via gate and
wire sizing. The convexity of the optimization under a
simple transformation for the Elmore delay model with a
simple fixed-resistor model for the gate is used to justify
the use of the same transformation for a more complex
gate delay model used with the accurate RICE-computed
delays. The utility of SQP for delay reduction using wire
meshes is also demonstrated.

In addition, a general-purpose delay sensitivity compu-
tation technique for linear circuits which can be applied to
other problems as well is described.
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