
Abstract
In this paper, we address the problem of functional test-

ing of mixed-signal circuits using pseudo-random patterns.
By embedding the linear, time-invariant (LTI) analog circuit
between a digital-to-analog converter (DAC) and an analog-
to-digital converter (ADC), we can model the analog and
converter circuitry as a digital LTI system and test it using the
pseudo-random vectors. We give mathematical analysis and
formulate the pseudo-random testing process as the linear
transformation of a random process by the analog LTI device
under test (DUT). We choose the first and the second mo-
ments of the transformed random process, which are closely
related to the functionality of the DUT, as the signatures for
fault detection. We show that such signatures can be estimat-
ed by proper arithmetic operations on the output responses of
the DUT to the vectors generated by LFSRs. We illustrate and
compare the effectiveness of several possible choices of sig-
natures, through analysis and experimental results of several
circuits, in terms of their fault detection capabilities and the
testing hardware requirements.

I. Introduction
Mixed-signal circuits are gaining popularity in the appli-

cations such as telecommunications, multimedia, etc. A
mixed-signal circuit typically includes some analog circuitry
(amplifiers, filters, etc.), some digital circuitry (the DSP unit,
control logic, etc.) and the converters (the ADC and the
DAC). Due to the different types of circuitry involved, it usu-
ally requires several completely different testing schemes to
test a mixed-signal chip. In general, testing methods for ana-
log circuitry and converters have not achieved comparable
maturity as those for digital circuitry. Recently several tech-
niques for testing the analog circuitry [1-4] and the converters
[5-7] have been reported. Most techniques do not use any
fault model and essentially perform functional testing, which
checks a set of parameters of the DUT to see if they fall within
the tolerance range. There are two major issues for functional
testing: (1) the design of input stimuli (test generation) and (2)
the manipulation of the output response (signature analysis).
The input stimuli could be sinewaves, square waves, DC sig-
nals, etc. and the output response could be interpreted in the
time or frequency domain. For example, to check the band-
width of a filter, we may apply a multitone signal, which is the
summation of sinewaves with different frequencies, and per-
form the Fourier Transform on the output response to con-
struct the signature. Here, how to choose the frequencies of
the multitone signal is a ‘test generation’ problem and the
Fourier Transform is used to perform the ‘signature analysis’.
In [8], a signature analyzer for analog and mixed-signal cir-
cuits, considering the imprecise nature of analog signals, is
proposed.

A Built-In Self-Test (BIST) structure for mixed-signal

circuits is proposed in [9]. The digital portion of the DUT is
tested by using known methods (e.g., the pseudo-random tech-
nique). Also, by embedding the analog portion between a
DAC and an ADC, the analog portion can be tested using dig-
ital signals. Based on a similar testing configuration, we pro-
pose and thoroughly analyze the pseudo-random testing tech-
nique for mixed-signal circuits. We model the analog LTI cir-
cuit, when embedded between the converters, as a digital LTI
system. By applying pseudo-random patterns generated from
the LFSRs and providing proper manipulation on the output
response (both are done digitally), we can perform functional
testing on the embedded analog DUT. Because the flat spec-
trum of the pseudo-random signal essentially contains infinite
number of tones, we can use it as a universal stimulus for any
LTI circuit. Therefore, as opposed to other functional testing
methods (e.g., the multitone method), we have alleviated the
test generation problem.

In testing analog LTI circuits using the pseudo-random
technique, the input stimulus can be viewed as a random se-
quence generated by a random process. The output sequence
of the DUT is also a random sequence generated by another
random process. The output random process can be viewed as
a linear transformation, performed by the DUT, from the input
random process [10,11]. Because there exists a mathematical
relationship between the moments of the input/output random
processes and the functionality of the DUT, we can fully char-
acterize the DUT if the moments of the random processes can
be obtained. As will be shown in Sec.III, we use the first and
second moments, i.e., the mean, the auto-correlation and the
cross-correlation, to characterize the DUT and these quantities
can be estimated from the input/output random sequences us-
ing common arithmetic operations. For example, we can con-
struct the impulse responses at selected time instances of the
LTI system by obtaining the ’cross-correlation’ between the
input and output sequences. Because the impulse response ful-
ly characterizes a LTI system, we can use the constructed im-
pulse response as the signature to determine the correctetness
of the DUT. Note we may construct different signatures by
different ways of manipulation on the output response. These
signatures may have different fault detection capability, hard-
ware requirements and testing time. We will compare these
differences in Sec.IV and Sec.V.

 This paper is organized as follows. Sec.II describes how
the analog LTI circuit is modeled as a digital LTI system when
embedded between the converters. Sec.III shows the mathe-
matical relationship between the first and second moments
and the impulse response of the DUT. Sec.IV shows the hard-
ware realization of the pseudo-random scheme. In Sec.V, we
use the analog filters and a converter to demonstrate the pseu-
do-random technique for various signatures. In Sec.VI, we
give some detailed discussion on the fault detection capability
of the signatures.
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II. Modeling of an Analog LTI Circuit as a Digital LTI
System

Fig.1 shows how we can model an analog LTI circuit as
a digital LTI system. The analog circuit with impulse re-
sponseh(t) is embedded between a DAC and an ADC. The
DAC converts the digital inputx[n] into an analog signalx(t)
(we assume the inputx[n] is not interpolated and thereforex(t)
are successive analog rectangular pulses). The the response
y(t) is sampled by the ADC and converted into digital signal
y[n]. The digital signalsx[n] are applied at a rate ofFs (= 1/
Ts), which is equal to the sampling rate of the ADC. Note that
the input sequencex[n] and the output sequencey[n] are de-
fined at time instancest=nTs, wheren=0,1,2,...,∞. If the sig-
nal y(t) varies slowly during each sampling interval [nTs ,
(n+1)Ts], it can be shown [10] that the impulse responseh[n]
of the modeled digital LTI system is equal toTs•h(nTs). If the
DAC and the ADC is of sizeB-bit, the ratio between the mean
square values of the quantization errore[n]=y[n]-y(nTs) and
the input signaly(nTs) (assumingy(nTs) is random, uniformly

distributed over the full-scaleVs of the ADC) is roughly 1/2B.
For example, if we use 10-bit converters, the quantization er-
ror, in the mean square sense, is roughly 0.1% of the input sig-
nal.

We can describe the functionality of a digital LTI system
in either thez-domain (with the transfer functionH(z)) or the
discrete-time domain (with the impulse response h[n]). In the
discrete-time domain, the outputy[n] of a causal LTI system
(h[n]=0 for n<0) with impulse responseh[n], given the input
x[n] (deterministic or random), is

Here we assume the LTI system is causal, which is the
property for any system to be physically realizable. We also
assume that the LTI system is stable (the outputy[n] cannot
grow to infinity as long as the inputx[n] is finite). The stabil-
ity of the system guarantees that the signatures to be discussed
in the subsequent sections are always finite.

III. Mathematical Analysis
A random processX (discrete-time) can be viewed as a

process which generates the random sequencex[n] (we as-
sumen>0) with certain probability distribution. The random
sequencex[n] may be mutually independent (i.e., white noise)
or have some correlation between one another. A stationary
random process implies that the probability densityfx[n] for
each random variablex[n] is identical. In other words, the
characteristics of the random process which generates the ran-
dom sequencex[n] do not change with time. For example, the
random sequencex[n] generated by the LFSR is stationary
and possesses the white noise property (if the period of the
random sequence is long enough). When a stationary, white
noise sequencex[n] passes a LTI system, the resulting output
random sequencey[n] is also stationary but not necessarily
possesses the white noise property.

In pseudo-random testing for an analog LTI circuit, the
input stimulusx[n] is a random sequence generated by a spe-
cific random processX. When the random sequencex[n]

Eq.(1)Σ
k=0

y[n] = x[n-k]•h[k]

passes a LTI system, a new random processY, which generates
the random sequencey[n], is formed at the output. Because
Eq.(1) is valid for either deterministic or random signals, we
can determine the output sequencey[n] if x[n] is given. Note
that any functional fault which changes the impulse response
h[n] will change the output sequencey[n].

III-1 Relationships Between Moments andh[n]
In the following we will derive the mathematical relation-

ship between the first and second moments of a random process
and the impulse response of a LTI system. As will be shown in
this subsection, the first and second moments of a random pro-
cess can be expressed as the impulse response ’compressed’ in
certain manner. We first show the definitions of the first and
second moments of a random process

wherex[n] and y[n] is the random sequence generated by the
random processX and Y. The sequencemx[n] in Eq.(2) is
formed by taking the mean of the random variablex[n] (the first
moment). Eqs.(3)-(4) are called the ’auto-correlation of the ran-
dom processX’and the ’cross-correlation between the random
processesX andY’ respectively (the second moments). If the
random processesX andY are stationary and we assumen2-
n1=m, Eqs.(2)-(4) become

Eqs.(5)-(7) show that for a stationary random process, the first
momentmx (my) is constant and the second momentsRx[m]
(Ry[m]) andRxy[m] depend only on the distancem between the
time instances of the two random variablesx[n1] andx[n2]. It
can also be shown [11] that the auto-correlation function is
even (Rx[m]=Rx[-m], Ry[m]=Ry[-m]).

To see the relationship between the functionality (h[n])
and the first and second moments of the stationary output ran-
dom processY (assuming the input random processX is station-
ary), we take the expectation on both sides of Eq.(1) and use the
stationary property ofx[n] andy[n]

Similarly, the auto-correlation function for the output random
processY is

When the input sequencex[n] possesses the white noise prop-
erty andmx=0, the auto-correlation functionRx[m]=σx

2•δ[m],

mx[n]=E{ x[n]}
Rx[n1,n2]=E{ x[n1]•x[n2]}
Rxy[n1,n2]=E{ x[n1]•y[n2]}

Eq.(2)
Eq.(3)
Eq.(4)

mx[n]=mx
Rx[n1,n2]=Rx[m]
Rxy[n1,n2]=Rxy[m]

Eq.(5)
Eq.(6)
Eq.(7)

Σ
k=0

my=E{ y[n]}= E{ x[n-k]} h[k]= mxΣ
k=0

h[k] Eq.(8)

Ry[m]=E{ y[n]•y[n+m]} x[n-k] h[k] x[n+m-r] h[r]}Σ
k=0

E{ x[n-k] x[n+m-r]}

=E{

= h[r]h[k] Rx[m+k-r]= h[r]h[k]

Eq.(9)

Σ
r=0

Σ
k=0

Σ
r=0 Σ

r=0

• • •

•••



whereσx
2 denotesE{x[n]2}. Therefore, Eq.(9) becomes

Note thatRy[0] is simply the summation of the square of the
impulse response (the energy of the LTI system). Due to the
hardware requirement (will be explained in Sec. IV), we only
useRy[0] as the signature. The cross-correlation between the
random processesX (white noise with zero mean) andY is

The relationship between the functionality of the LTI system
(the impulse response) and moments of the random processes
X andYare established by Eqs.(8), (10) and (11).Therefore,
we can use the meanmy, the auto-correlationRy[m] and
the cross-correlationRxy[m] as the signatures to test a LTI
system by applying the white noisex[n]. As can be shown
in subsequent sections, the three signatures have different
fault detection capabilities and hardware requirements.

III-2 Computation of the Signature
To make the pseudo-random scheme practical, the ex-

pectation operation on the random variables (y[n],
y[n]•y[n+m] andx[n]•y[n+m] in Eq.(8), (10) and (11) respec-
tively) should be replaced by the ’time averaging’ operation.
That is, we use finite number (N) of samples observed during
certain finite time interval to estimate the expectations of the
random variables. Therefore, the signature thus obtained (also
a random variable) is an estimate of the derived signature. The
mean of the estimated signature is equal to the derived signa-
ture and we should make the standard deviation of the esti-
mated signature as small as possible such that a certain confi-
dence level is achieved for fault detection. The ’time averag-
ing’ operation (we denote as < >) used to obtain the estimated
signature can be carried out easily. The fact that the mean of
the ’time averaged’ random variable is equal to the mean of
the random variable itself is shown as follows.

, whereg[n] denotes any random sequence generated by a sta-
tionary random process andmg is the mean ofg[n]. For clari-
ty, we denote the estimate of the derived signaturesmy, Ry[m]
andRxy[m] asmy, Ry[m] andRxy[m] respectively. By replac-
ing g[n] in Eq.(12) withy[n], y[n]•y[n+m] andx[n]•y[n+m],
we can showE{my}=my, E{Ry[m]}= Ry[m] and E{Rxy[m]}
=Rxy[m].

III-3 Fault Detection Using the Signatures
Because the estimated signaturesmy, Ry[m] andRxy[m]

are random variables, in addition to knowing the expecta-
tions, we need know the standard deviations such that the
fault-free ranges can be defined. However, an analytical form

Ry[m] = h[k] h[k+m] Eq.(10)Σ
r=0

•

Rxy[m] =E{ x[n]•y[n+m]} = E(x[n] x[n+m-k] h[n+m])

= h[k] E(x[n] x[n+m-k]) = h[m] σx
2

Eq.(11)

Σ
k=0

Σ
k=0

•

•

E{<g[n]>}= E{ g[i]}=1
N
__Σ

i =0

N-1
E{ g[i]}= mg

Eq.(12)

1
N
__Σ

i =0

N-1

for the relationship between the standard deviations of the es-
timated signaturesmy, Ry[m] andRxy[m] and the number of
random patterns (N) is extremely difficult to derive. From the
simulation results we know (1) the probability distributions of
the output sequencesy[n], y[n]•y[n+m] andx[n]•y[n+m] are
close to the Gaussian distribution and (2) the standard devia-
tions of the estimated signatures are approximately proportion-
al to the inverse square root ofN. Therefore, we can reduce the
difference between the derived and estimated signatures (en-
hancing the fault detection capabilities of the signatures) by
applying more random patterns, which is subject to the testing
budget. Also, we choose the 3σg range [mg-3σg , mg+3σg] as
the fault-free range (this range corresponds to a 99.5% confi-
dence level if the random variableg[n] (= y[n], y[n]•y[n+m] or
x[n]•y[n+m]) approaches the Gaussian distribution). Note that
for a practical purpose, instead of obtaining the signature range
of the DUT [mg,DUT-3σg,DUT ,mg,DUT+ 3σg,DUT] to see if the
derived fault-free signaturemg falls within this range (claimed
as fault-free), we simply obtain the estimated signaturemg,DUT
of the DUT to see if it falls within the range [mg-3σg ,
mg+3σg]. The fault-free range [mg-3σg , mg+3σg] correspond-
ing to specific number of random patternsN needs to be pre-
calculated and the estimated signaturemg,DUT is obtained by
processing the output responses of the DUT to theN random
patterns.

IV. Hardware Realization for the Pseudo-Random Testing
Technique
Fig.2(a)-(c) show the possible hardware realizations of

the pseudo-random testing technique using the signaturesmy,
Ry[0] andRxy[m] respectively. The analog LTI circuit is mod-
eled as a digital LTI system by embedding it within the DAC
and the ADC. The random pattern generator LFSR1 generates
the input stimulusx[n] and the output sequencey[n] is pro-
cessed by the arithmetic unit. Without including the DAC and
the ADC, the hardware requirements for constructing the sig-
naturesmy, Ry[0] andRxy[m] are as follows.

. my - a LFSR (LFSR1) and an adder (without scaling the
final sum byN)

. Ry[0] - a LFSR (LFSR1), an adder and a multiplier

. Rxy[m]- two LFSRs (LFSR1 and LFSR2), an adder and a
multiplier

In Fig.2(a), the signaturemy is constructed by summing
upN output datay[n]. In Fig.2(b), the output datay[n] are first
squared and then summed up to obtain the signatureRy[0]. The
signatureRxy[m], as shown in Fig.2(c), is constructed by mul-
tiplying y[n] with the delayed version of the input sequence
x[n-m] and summing up the productsy[n]•x[n-m]. Note that for
every distinct delaym, we can construct the signatureRxy[m]
by programming the LFSR2 without adding any delay ele-
ments. However, to construct the signatureRy[m] for different
m’s, multiple delay elements are required and this turns out to
be impractical whenm becomes large (if we need more signa-
tures for fault-detection). Therefore, only the auto-correlation
of zero delayRy[0] is used for fault detection.

Because the DAC, the ADC and the DSP unit are com-
mon elements in a mixed-signal chip, limited amount of extra



hardware is required for the BIST realization. The first and
second moments of a random process, which we choose as
the signatures, can be easily computed by properly program-
ming the DSP unit.

V. Simulation Results
In this section we show results to compare the effective-

ness (that is, fault detection capability) of the three signatures:
the meanmy, the auto-correlationRy[0] and the cross-correla-
tionRxy[m]. The analog LTI circuits used for experiments are
shown in Fig.3(a)-(d). Circuit X1 and X2 are low-pass filters
with 3 poles (bandwidth 1KHz) and 5 poles (bandwidth
100Hz) respectively. Circuit X3 is a notch filter with 2 zeros
and 2 poles (notch bandwidth from 55Hz to 65Hz). Circuit
X4 is a 4-bit DAC (highlighted). Circuits X1, X2 and X3 are
tested using the configurations in Fig.2(a)-(c) with the con-
verters of size 10-bit at the sampling rateFs=1MHz. Fig.3(d)
shows how the circuit X4 can be tested. Note that the config-
urations for construction of the three signatures are similar to
Fig.2(a)-(c) except that the 10-bit ADC is not required. The
output of the 4-bit ADC is combined with a 6-bit all-zero pat-
tern to incorporate the quantization error. The 10-bit signal
y[n] thus formed is connected directly to the arithmetic unit
for signature analysis. Note that the impulse response for the
DAC-ADC digital module is an unit impulseδ[m].

Table 1(a)-(c) shows the faultsf1-f5, f6-f10 andf11-f15
we considered for circuit X1, X2 and X3 respectively. The
column ’deviation’ shows the amount of deviation of the pas-
sive components from their nominal values in terms of per-
centage. For example, ’C1: +20%’ of f1 means the value of
the component C1 in circuit X1 increases by 20% and there-
fore the faulty value becomes 16.70nF (the nominal value is
13.92nF). For circuit X4, three faultsf16 (the nonlinearity er-
ror), f17 (the gain error) andf18 (the offset error) were con-
sidered. The input/output transfer curves for the fault-free and
the faulty ADCs are shown in Fig.4(a)-(d).

When we apply the random sequencex[n] to test the cir-
cuits X1-X4, the all-zero pattern is interpreted as ’-1’ and the
all-one pattern is interpreted as ’1’. However, according to
Eq.(8), if the mean ofx[n] is zero, the mean of the estimated
signaturemy will be zero for the faulty and fault-free DUTs.
Therefore, we interpret the all-zero pattern and the all-one
pattern as ’0’ and ’1’ respectively (mx=0.5) when construct-
ing the signaturemy.

Table 2(a)-(d) shows the fault detection capability of the
three signaturesmy, Rxy[m] and Ry[0] for circuit
X1(N=128K), X2(N=256K), X3(N=256K) and X4(N=16K).
The row 3σ in each table is the ’uncertainty’ of the fault-free
signature estimated by the associated number of random pat-
ternsN. The row∆f stands for the difference between the
’mean of the estimated signature of the faulty circuit’ and the
’derived fault-free signature’. That is,∆f = E{Rxy,DUT[m]} -
Rxy[m], E{Ry,DUT[0]} - Ry[0] andE{my,DUT} - my for the en-
tries under columnRxy[m], Ry[0] andmy respectively. The
quantitiesE{Rxy,DUT[m]}, E{Ry,DUT[0]} and E{my,DUT} are
obtained by applying 100 independent sets ofN random pat-
terns. In the actual testing process, however, we only apply
one set ofN random patterns for fault detection. The faultf is

detected if |∆f | is less than the 3σ value in the same column and
the detected faults are highlighted. For example,f1 in circuit
X1 can be detected by the signaturesRxy[200] andRy[0]. From
the simulation results, we also found thatσ is roughly propor-
tional to the inverse square root ofN. Therefore, by enhancing
the number of random patterns from 128K to 512K (reducing
the value ofσ by half) f1 can also be detected byRxy[400],
Rxy[800],Rxy[1000] andRxy[1200].

From Table 2(a)-(d), the signaturemy can hardly detect
the faults in circuits X1, X2 and X3 but it has comparable de-
tection capability toRxy[m] andRy[0] for circuit X4. Also, by
changing the delay timem in LFSR2, we can useRxy[m] at dif-
ferentm’s for fault detection. Therefore, to enhance the fault
detection capability ofRxy[m], we can try (1) increasing the
number of random patternsN or (2) using more signatures at
differentm’s. For circuit X1, X2 and X3, we use sixRxy[m]’s.
To detect all the five faultsf1-f5 in circuit X1,Rxy[m] needs 6N
(N=128K) random patterns whileRy[0] needs 36N random
patterns. Similarly, for the faultsf6-f10 and f11-f15, Rxy[m]
needs 12N (N=256K) random patterns andRy[0] needs 4N ran-
dom patterns. For faultsf16-f18 in circuit X4,Rxy[m] needs
roughly four times of the random patterns required byRy[0]
even we only useRxy[0] as the signature.

Note that some hard-to-detect faults by signatureRy[0] is
not necessarily difficult to be detected byRxy[m] and vice ver-
sa. For example, the faultsf3 andf5, which makeRy[0] seem-
ingly less efficient thanRxy[m], are the most easily detectable
faults forRxy[m]. Therefore, if two multipliers are available, by
constructing the signaturesRxy[m] andRy[0] concurrently for
fault detection, the testing time can be reduced.

VI. Discussions and Comparisons of the Signatures
For a stable LTI system, the impulse responseh[n] decays

to zero whenn approaches infinity. According to the Fourier
Transform relationship, the significant portion of the impulse
response is roughly bounded by the time interval [0,t0], where
t0 is roughly equal toπ/BW (BWdenotes the 3-db bandwidth
of the LTI system). In terms of the discrete-time indexn (or
m), the time interval is [0,n0], wheren0=t0/Ts. According to
Eq.(1), only the significant portion ofh[n] contributes to the
outputy[n]. Therefore, if we useRxy[m] as the signature, we
need only to investigate one or moreRxy[m]’s where 0<m<n0.

Fig.5 shows the impulse response for the fault-free (solid
line) and the faulty,f6, (dotted line) circuit X2. The observa-
tion time in Fig.5 (from 0 to 0.04 sec) corresponds to the dis-
crete-time indexm from 0 to 40000 (by the relationship
t=m•Ts, whereTs=1µs). The significant portion of the impulse
response in Fig.5 is bounded by [0, 31400] in terms ofm.If we
want to use, for example,Rxy[31400] as the signature, we will
need 31400+N clock cycles. The amount of delaym may be
nontrivial with respect toN. This problem becomes worse
when the bandwidth of the DUT is low, that is, the speed of the
DUT is slow. For example, to test a 10Hz device, the delay
time required could be as long as 0.3 sec. Therefore, if we want
to reduce the testing time by increasing the clock rateFs, there



is an lower bound placed by the speed of the DUT. The prop-
erty that the testing time usingRxy[m] as the signature is de-
pendent on the speed of the DUT is undesirable. The signa-
turesRy[0] andmy have no such problem because no delay is
needed.

From the simulation results, we also found the signature
my has significantly lower detection capability thanRxy[m]
andRy[0] for circuit X1, X2 and X3. The low detection capa-
bility of my can be explained by Eq.(8) and Fig.5. From
Eq.(8) we know the deviation∆f is the summation of the dif-
ferences betweenhf[n] andh[n]. Fig.5 shows that for faultf6,
the differences to be summed tend to cancel out and therefore
the final deviation∆f is small. We have observed similar phe-
nomenon for faultsf1-f15. However, for faultsf16-f18, the
only significant difference betweenhf[n] andh[n] occurs at
n=0 (the impulse response isδ[m]) and therefore the fault-
cancellation phenomenon does not occur. Similar fault-can-
cellation phenomenon could happen toRy[0] but is much less
distinguished. If we assume the faulty output sequence is
yf[n]= y[n]+δy[n], the difference betweenyf[n]2 andy[n]2 is

2δy[n]•y[n]+δy[n]2 and the termδy[n]2 is always summed up
in ∆f without cancellation.

For circuit X4, the detection capability ofRy[0] andmy is
better thanRxy[m]. This can be explained as follows. We as-
sume the outputyf[n]=y[n]+δy[n] and we knowx[n]=y[n] for
the fault-free circuit (excluding the quantization noise). The
final differences∆f for the signaturesmy,Rxy[m] andRy[0] are
constructed by summing up the quantitiesyf[n]-y[n] = δy[n],

yf[n]•y[n] - y[n]2 = δy[n]•y[n] andyf[n]2 - y[n]2 = 2δy[n]•y[n]

+ δy[n]2 respectively. It can be seen that∆f for Ry[0] is rough-
ly two times of the∆f for Rxy[m]. Also, becausey[n] varies
uniformly between [0,1] (the average is about 0.5), we can
expect that the∆f for my is roughly two times of the∆f for
Rxy[m].

VII. Conclusions
We have provided mathematical analysis, hardware im-

plementation schemes and experimental results for several
signature analysis methods for testing mixed-signal circuits
using the pseudo-random technique. We model the analog
LTI circuit as a digital LTI circuit such that the stimuli gener-
ation and signature analysis can be performed digitally. We
then employ the concept of the linear transformation on a ran-
dom process and use the mean (my), the auto-correlation
(Ry[0]) and the cross-correlation (Rxy[m]) as the signatures.
By proper arithmetic operations on the output random se-
quence generated by the output random process of the DUT,
we have constructed the signatures which are closely related
to the functionality of the DUT. The hardware required for
the testing scheme is usually available on a DSP-based
mixed-signal chip. For such chips, these techniques can be
used for a BIST implementation. For other circuits that don’t
have a DSP unit on chip, these methods can be used for exter-
nal testing and the testing hardware can be included in the
tester. We have shown by analysis and simulation results that
the fault detection capability for the signaturesRxy[m] and

Ry[0] are comparable butRy[0] requires less hardware. The
signaturesRy[0] andmy for testing the DAC and the ADC are
better thanRxy[m] in terms of the number of random patterns
required. In general, the fault-cancellation phenomenon results
in the low detection capability ofmy.
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