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Abstract circuits is proposed in [9]. The digital portion of the DUT is

In this paper, we address the problem of functional testested by using known methods (e.g., the pseudo-random tech-
ing of mixed-signal circuits using pseudo-random patternsiique). Also, by embedding the analog portion between a
By embedding the linear, time-invariant (LTI) analog circuitDAC and an ADC, the analog portion can be tested using dig-
between a digital-to-analog converter (DAC) and an analogital signals. Based on a similar testing configuration, we pro-
to-digital converter (ADC), we can model the analog anchose and thoroughly analyze the pseudo-random testing tech-
converter circuitry as a digital LTI system and test it using th@ique for mixed-signal circuits. We model the analog LTI cir-
pseudo-random vectors. We give mathematical analysis agdit, when embedded between the converters, as a digital LTI
formulate the pseudo-random testing process as the linegystem. By applying pseudo-random patterns generated from
transformation of a random process by the analog LTI deviage LFSRs and providing proper manipulation on the output
under test (DUT). We choose the first and the second meesponse (both are done digitally), we can perform functional
ments of the transformed random process, which are closetysting on the embedded analog DUT. Because the flat spec-
related to the functionality of the DUT, as the signatures fotrum of the pseudo-random signal essentially contains infinite
fault detection. We show that such signatures can be estimatimber of tones, we can use it as a universal stimulus for any
ed by proper arithmetic operations on the output responses of| circuit. Therefore, as opposed to other functional testing
the DUT to the vectors generated by LFSRs. We illustrate amgethods (e.g., the multitone method), we have alleviated the
compare the effectiveness of several possible choices of sigst generation problem.
natures, through analysis and experimental results of several In testing analog LTI circuits using the pseudo-random
circuits, in terms of their fault detection capabilities and thetechnique, the input stimulus can be viewed as a random se-

testing hardware requirements. quence generated by a random process. The output sequence
of the DUT is also a random sequence generated by another
. Introduction random process. The output random process can be viewed as

Mixed-signal circuits are gaining popularity in the appli-a linear transformation, performed by the DUT, from the input
cations such as telecommunications, multimedia, etc. Aandom process [10,11]. Because there exists a mathematical
mixed-signal circuit typically includes some analog circuitryrelationship between the moments of the input/output random
(amplifiers, filters, etc.), some digital circuitry (the DSP unit,processes and the functionality of the DUT, we can fully char-
control logic, etc.) and the converters (the ADC and thecterize the DUT if the moments of the random processes can
DAC). Due to the different types of circuitry involved, it usu-be obtained. As will be shown in Sec.lll, we use the first and
ally requires several completely different testing schemes tecond moments, i.e., the mean, the auto-correlation and the
test a mixed-signal chip. In general, testing methods for aneross-correlation, to characterize the DUT and these quantities
log circuitry and converters have not achieved comparablgan be estimated from the input/output random sequences us-
maturity as those for digital circuitry. Recently several teching common arithmetic operations. For example, we can con-
niques for testing the analog circuitry [1-4] and the converterstruct the impulse responses at selected time instances of the
[5-7] have been reported. Most techniques do not use any| system by obtaining the 'cross-correlation’ between the
fault model and essentially perform functional testing, whiclnput and output sequences. Because the impulse response ful-
checks a set of parameters of the DUT to see if they fall withiy characterizes a LTI system, we can use the constructed im-
the tolerance range. There are two major issues for functionglise response as the signature to determine the correctetness
testing: (1) the design of input stimuli (test generation) and (2)f the DUT. Note we may construct different signatures by
the manipulation of the output response (signature analysiglifferent ways of manipulation on the output response. These
The input stimuli could be sinewaves, square waves, DC sigignatures may have different fault detection capability, hard-
nals, etc. and the output response could be interpreted in fhare requirements and testing time. We will compare these
time or frequency domain. For example, to check the bandifferences in Sec.lV and Sec.V.
width of a filter, we may apply a multitone signal, whichisthe  This paper is organized as follows. Sec.Il describes how
summation of sinewaves with different frequencies, and pethe analog LTI circuit is modeled as a digital LTI system when
form the Fourier Transform on the output response to cormbedded between the converters. Sec.lll shows the mathe-
struct the signature. Here, how to choose the frequenciesmhtical relationship between the first and second moments
the multitone signal is a ‘test generation’ problem and thand the impulse response of the DUT. Sec.IV shows the hard-
Fourier Transform is used to perform the ‘signature analysisivare realization of the pseudo-random scheme. In Sec.V, we
In [8], a signature analyzer for analog and mixed-signal cituse the analog filters and a converter to demonstrate the pseu-
cuits, considering the imprecise nature of analog signals, did-random technique for various signatures. In Sec.VI, we
proposed. give some detailed discussion on the fault detection capability

A Built-In Self-Test (BIST) structure for mixed-signal of the signatures.



Il. Modeling of an Analog LTI Circuit as a Digital LTI passes a LTI system, a new random pro¢eshich generates

System the random sequenggn], is formed at the output. Because
Fig.1 shows how we can model an analog LTI circuit alsq.(1) is valid for either deterministic or random signals, we

a digital LTI system. The analog circuit with impulse re<an determine the output sequeyie® if X[n] is given. Note

sponsen(t) is embedded between a DAC and an ADC. Ththat any functional fault which changes the impulse response

DAC converts the digital inpufn] into an analog signalt)  h[n] will change the output sequenga].

(we assume the inpx[in] is not interpolated and therefo«®

are successive analog rectangular pulses). The the respdhsk Relationships Between Moments andi[n]

y(t) is sampled by the ADC and converted into digital signal In the following we will derive the mathematical relation-

y[n]. The digital signals{n] are applied at a rate Bf (= 1/ ship between the first and second moments of a random process

T, which is equal to the sampling rate of the ADC. Note thand the impulse response of a LTI system. As will be shown in

the input sequenodn] and the output sequenga are de- this subsection, the first and second moments of a random pro-

. L - . cess can be expressed as the impulse response 'compressed’ in
fined at tlm_e mstancesnT_s, wheren 0’1’21"90'. If the sig certain manner. We first show the definitions of the first and
nal y(t) varies slowly during each sampling interval,

X ) second moments of a random process
(n+1)T4, it can be shown [10] that the impulse respdiise

of the modeled digital LTI system is equaligh(nTy). If the my[n]=E{x[n]} Eq.(2)
DAC and the ADC is of siZ8-bit, the ratio between the mean  Rdny,nol=E{x[nq]*X[n,]} Eq.(3)
square values of the quantization es@i=y[n]-y(nTy) and R [N1.n]=E{x[ny]*y[n,]} Eq.(4)

the |.nput signg(nTy) (assuming(nTy) is ranFiom, uniformly wherex[n] andy{n] is the random sequence generated by the

distributed over the full-scalé of the ADC) is roughly 12 random procesX and Y. The sequencey[n] in Eq.(2) is

For example, if we use 10-bit converters, the quantization @grmed by taking the mean of the random varigoii(the first

ror, in the mean square sense, is roughly 0.1% of the input si§oment). Egs.(3)-(4) are called the *auto-correlation of the ran-

nal. . o . dom procesX'and the 'cross-correlation between the random
We can describe the functionality of a digital LTI systenprocesseX andY respectively (the second moments). If the

in either thez-domain (with the transfer functi¢i(2) or the  random processe$ andY are stationary and we assume
discrete-time domain (with the impulse respdiigd). Inthe |, _, Egs.(2)-(4) become
discrete-time domain, the outpfih] of a causal LTI system =

(h[n]=0 for n<0) with impulse responggn], given the input my[n]l=my Eq.(5)
X[n] (deterministic or random), is RNy,No]=R (] Eq.(6)
® Ro[N1.No]=R [ Eq.(7)

yinl =3 xIn-Keh[K Eq.(1) A=l

=0 Egs.(5)-(7) show that for a stationary random process, the first
- ) . momentm, (m) is constant and the second moméRfsn|
Here we assume the LTI system is causal, which is t Qy[m]) andR,[m depend only on the distancebetween the
property for any system to be physically realizable. We al inst X f the tw d . d It
assume that the LTI system is stable (the oyfplicannot Ume instances of the two random variabeg] andx(ngl. It
grow to infinity as long as the inpxt] is finite). The stabil- ¢an also be shown [11] that the auto-correlation function is

ity of the system guarantees that the signatures to be discusB&@N RIM=R{-m|, R[m|=R[-m)).

in the subsequent sections are always finite. To see the relationship between the functionatify]X
and the first and second moments of the stationary output ran-
IIl. Mathematical Analysis dom proces¥ (assuming the input random procesés station-

A random procesX (discrete-time) can be viewed as aary), we take the expectation on both sides of Eq.(1) and use the
process which generates the random sequgnféwe as-  Stationary property ofn] andy[n]
sumen=>0) with certain probability distribution. The random o ©
sequencg[n] may be mutually independent (i.e., white noise) _ _
or have some correlation between one another. A stationaryy=E{YIN}= Z E{O{n-K} h[KI= m, 3 hiK] Edq.(8)
random process implies that the probability derfgity for k=0 k=0

each random variabbgn] is identical. In other words, the simjjarly, the auto-correlation function for the output random
characteristics of the random process which generates the ISicess is

dom sequencgn] do not change with time. For example, the

random sequencdn] generated by the LFSR is stationary X X

and possesses the white noise property (if the period of tR@[m]:E{Y[n]'Y[n*'m]}:E{(ZO %x[n—k]-h[k]-x[n+m—r]-h[r]}
random sequence is long enough). When a stationary, whiteco © =0r= ©

noise sequencégn] passes a LTI system, the resulting output:zoh[k]%h[r]-E{ X[N-Klex{n+m-IT} =h[K] % h{rleR[m+k-r]
random sequencgn] is also stationary but not necessarily k=0 = r=

possesses the white noise property. Eq.(9)

__ In pseudo-random testing for an analog LTI circuit, thgypen the input sequenglr] possesses the white noise prop-
input stimulusq{n] is a random sequence generated by a spe-

— . . _ 2
cific random procesX. When the random sequende] €'Y andm=0, the auto-correlation functid{mj=o0,“+3[m,



for the relationship between the standard deviations of the es-
timated signaturesy, R[m] andR,[m| and the number of

random patterndNj is extremely difficult to derive. From the
R[m] = _Z h{Klh[k+m] Eq.(10)  simulation results we know (1) the probability distributions of
r=0 o , the output sequencep], y[n]ey[n+m] and x[n]ey[n+m] are
Note thatR [0] is simply the summation of the square of theglose to the Gaussian distribution and (2) the standard devia-
impulse response (the energy of the LTI system). Due to thiens of the estimated signatures are approximately proportion-
hardware requirement (will be explained in Sec. IV), we onlgl to the inverse square rooNdfTherefore, we can reduce the
useR[0] as the signature. The cross-correlation between thiiifference between the derived and estimated signatures (en-
random processes(white noise with zero mean) axds hancing the fault detection capabilities of the signatures) by
© gpglyingArPore randhom pat’;]erns, whicpbisssubject t:?0 g]1e testing
_ _ e udget. Also, we choose theange n,-30,, , my+ as
Rotml =E{Xn]ey[n+mi} = EOqn] kgox[mm Keh{n-mi) the fault-free range (this rangg correspondgs tgba 99.5% confi-
dence level if the random varialgl@] (= y[n], y[n]*y[n+m] or
Eq.(11) x[n]ey[n+m]) approaches the Gaussian distribution). Note that
) ] ) ) ' for a practical purpose, instead of obtaining the signature range
The relationship between the functionality of the LTI systeraf the DUT Iy puT-39G puT: My pUT+ 304 pUT] tO See if the

(the impulse response) and moments of the random procesggfived fault-free signature, falls within this range (claimed
X andy are established by Eqs.(8), (10) and (Ihgrefore, as fault-free), we simply obtain the estimated signEy@JT

we can use the meam,, the auto-correlation Ry[m] and . -

the cross-correlationR,,[m] as the signatures to test a LTl of the DUT to see if it falls within the rangeyf3oy ,

system by applying the white nois&[n]. As can be shown Tg"39gl- The fault-iree rangerl-304 , my+30] correspond-

in subsequent sections, the three signatures have differé}g to specific number of random pattehseeds to be pre-

fault detection capabilities and hardware requirements. ~ calculated and the estimated signatagg,yr is obtained by
processing the output responses of the DUT tdNtredom

I1I-2 Computation of the Signature patterns.

To make the pseudo-random scheme practical, the ex-

pectation operation on the random variablegn],( IV.Hardware Realization for the Pseudo-Random Testing

y[n]ey[n+m] andx[n]ey[n+m] in Eq.(8), (10) and (11) respec-  Technique

tively) should be replaced by the 'time averaging’ operation.  Fig.2(a)-(c) show the possible hardware realizations of

That is, we use finite numbeM)(of samples observed during the pseudo-random testing technique using the signatires

certain finite time interval to estimate the expectations of & [0] andR,,[m] respectively. The analog LTI circuit is mod-

random variables. Therefore, the signature thus obtained (al§ed as a digital LTI system by embedding it within the DAC
arandom variable) is an estimate of the derived signature. Thgj the ADC. The random pattern generator LFSR1 generates
mean of the estimated signature is equal to the derived sigige input stimulus{n] and the output sequengg] is pro-

ture and we should make the standard deviation of the esfissed by the arithmetic unit. Without including the DAC and
mated signature as small as possible such that a certain Cojié ADC, the hardware requirements for constructing the sig-
dence level is achieved for fault detection. The 'time averagaturesn, R [0] andR,[m] are as follows.

ing’ operation (we denote as < >) used to obtain the estimated — _ a LFSR (LFSR1) and an adder (without scaling the
signature can be carried out easily. The fact that the mean of
the 'time averaged’ random variable is equal to the mean of
the random variable itself is shown as follows.

whereox2 denote€{x[n]%}. Therefore, Eq.(9) becomes

0
=kZOh[k] Ecqnl(n+m-K) = h[mj 0,2

_ final sum byN)
. B./[O] -a LFSR (LFSR1), an adder and a multiplier
. RyIml- two LFSRs (LFSR1 and LFSR2), an adder and a
multiplier .

In Fig.2(a), the signature, is constructed by summing
Eq.(12) up N output datg[n]. In Fig.2(b), the output daggn] are first
, whereg[n] denotes any random sequence generated by a stguared and then summed up to obtain the sigriafOieThe
tionary random process ang is the mean af[n]. For clari- signatureR,,[m], as shown in Fig.2(c), is constructed by mul-
ty, we denote the estimate of the derived signatdg[m]  tiplying y[n] with the delayed version of the input sequence
andR[m] asm, R[m] andR,[m] respectively. By replac- X[n-m and summing up the produgisjsx[n-m. Note that for
ing g[n] in Eq.(12) withy{n], y[n]sy[n+m] andx{njey{n+m],  €very distinct _delayn, we can co_nstruct thg signatirg{m]
we can ShOV\E{ﬁl]}: m, E{ﬁy[m]}: R/[m] and E{R, [} by programming the LFSR2 without adding any delay ele-

1 N-1 N-1 '
BednP)=E( F- 2. ol N2 Elih=my
I = =

=R {ml. ments. However, to construct the signaRyfer] for different
m's, multiple delay elements are required and this turns out to
I1I-3 Fault Detection Using the Signatures be impractical whem becomes large (if we need more signa-

Because the estimated signaturgsR [m] andR[m] tures for fault-detection). Therefore, only the auto-correlation

are random variables, in addition to knowing the expectél)—f zero delayR (0] is used for fault detection.

tions, we need know the standard deviations such that the Because the DAC, the ADC and the DSP unit are com-
fault-free ranges can be defined. However, an analytical forfion €lements in a mixed-signal chip, limited amount of extra



hardware is required for the BIST realization. The first andletected iff | is less than thes3/alue in the same column and
second moments of a random process, which we choosethe detected faults are highlighted. For exanipli circuit
the signatures, can be easily computed by properly prograidi can be detected by the signatiRgf200] andR [0]. From

ming the DSP unit. the simulation results, we also found thas roughly propor-
. _ tional to the inverse square rootbfTherefore, by enhancing
V. Simulation Results the number of random patterns from 128K to 512K (reducing

In this section we show results to compare the effectivehe value ofo by half)f1 can also be detected By,[400],
ness (thatis, fault detection capability) of the three S|gnature,§):( [800], R,[1000] ancR,,[1200].

the meam,, the auto-correlatioR,[0] and the cross-correla- From Table 2(a)-(d), the signaturg can hardly detect

tion Ry[mj. The analog LTI circuits used for experiments A%he faults in circuits X1, X2 and X3 but it has comparable de-

shown in Fig.3(a)-(d). Circuit X1 and X2 are low-pass filterSg tion capability taR[m] andR [0] for circuit X4. Also, b
with 3 poles (bandwidth 1KHz) and 5 poles (-bandWIdthchan in E[)he de)lla t)i(ry1[mgn LFQ‘\EZ] we can usg,[m)| at,dif-y
100Hz) respectively. Circuit X3 is a notch filter with 2 zeros ging y ' o

and 2 poles (notch bandwidth from 55Hz to 65Hz). Circuiferentm's for fault detection. Therefore, to enhance the fault
X4 is a 4-bit DAC (highlighted). Circuits X1, X2 and X3 are detection capability oR,[m], we can try (1) increasing the
tested using the configurations in Fig.2(a)-(c) with the conaumber of random patterfsor (2) using more signatures at
verters of size 10-bit at the sampling fagelMHz. Fig.3(d)  differentm's. For circuit X1, X2 and X3, we use $¥[m's.
shows how the circuit X4 can be tested. Note that the config-o detect all the five faultd-f5in circuit X1,R,,fm] needs 6l
urations for construction of the three signatures are similar {N=128K) random patterns whilg[0] needs 3B random
Fig.2(a)-(c) except that the 10-bit ADC is not required. Theyatterns. Similarly, for the fault§-f10 andf11-f15 Refmi

output of the 4-bit ADC is combined with a 6-bit all-zero pat-, oo 45 18 (N=256K) random patterns aRy[0] needs &l ran-
tern to incorporate the quantization error. The 10-bit agnzﬂ For faulfd6-f18in circuit X4. R d
vin] thus formed is connected directly to the arithmetic unil®™ Patterns. For faulf36-f18in circuit X4, R,fm| needs

for signature analysis. Note that the impulse response for theughly four times of the random patterns requiredR 9]
DAC-ADC digital module is an unit impul&gm]. even we only usB,[0] as the signature.

Table 1(a)-(c) shows the fauftsfs, f6-f10andf11-f15 Note that some hard-to-detect faults by signa®j@ is
we considered for circuit X1, X2 and X3 respectively. The,gt necessarily difficult to be detectedRyjm and vice ver-

column 'deviation’ shows the amount of deviation of the pas: ;
sive components from their nominal values in terms of pe >a. For example, the fauf8sandif5, which makeRy[O] seem-

centage. For example, {G+20%' off1 means the value of ingly less efficient thaR,,[m], are the most easily detectable

the component Cin circuit X1 increases by 20% and there- faults forR, [m]. Therefore, if two multipliers are available, by

fore the faulty value becomes 16.70nF (the nominal value gonstructing the signatur&[m] andR[0] concurrently for

13.92nF). For circuit X4, three fauffs (the nonlinearity er- ~ fault detection, the testing time can be reduced.

ror), f17 (the gain error) anfi8 (the offset error) were con- ] ] ) _

sidered. The input/output transfer curves for the fault-free andl. Discussions and Comparisons of the Signatures

the faulty ADCs are shown in Fig.4(a)-(d). For a stable LTI system, the impulse respofisiedecays
When we apply the random sequexjcito test the cir- 0 zero whem approaches infinity. According to the Fourier

cuits X1-X4, the all-zero pattern is interpreted as -1’ and thd ransform relationship, the significant portion of the impulse

all-one pattern is interpreted as '1’. However, according téeésponse is roughly bounded by the time intervag|[Qvhere

Eq.(8), if the mean ofn] is zero, the mean of the estimatedt, is roughly equal tevBW (BW denotes the 3-db bandwidth

signaturem, will be zero for the faulty and fault-free DUTS. of the LTI system). In terms of the discrete-time inde®r

Therefore, we interpret the all-zero pattern and the all-on@), the time interval is [Qyg], whereng=ty/Ts. According to

pattern as ‘0’ and "1’ respectivelyng=0.5) when construct- Eq.(1), only the significant portion &fn] contributes to the

ing the signaturer_l),. outputy[n]. Therefore, if we us®,[m] as the signature, we
Table 2(a)-(d) shows the fault detection capability of thexeed only to investigate one or mByg[m's where &m<n,.
three signaturesm,, R,[m] and RjJO] for circuit Fig.5 shows the impulse response for the fault-free (solid

X1(N=128K), X2(N=256K), X3(N=256K) and X4=16K). line) and the faultyf6, (dotted line) circuit X2. The observa-
The row & in each table is the 'uncertainty’ of the fault-free tion time in Fig.5 (from 0 to 0.04 sec) corresponds to the dis-
signature estimated by the associated number of random pettete-time indexm from 0 to 40000 (by the relationship
ternsN. The row/; stands for the difference between thet=meT, whereT=1us). The significant portion of the impulse
‘'mean of the estimated signature of the faulty circuit’ and theesponse in Fig.5 is bounded by [0, 31400] in terms ibfve
'derived fault-free signature’. That 8 = E{R,, pu7lml} - want to use, for examplB,,[31400] as the signature, we will
R, E{ﬁy,Dm{O]} - RIO] andE{ﬁ,’DUT} - m,forthe en-  need 31400M clock cycles. The amount of delaymay be
tries under cquerXy[m], [0] andm), respectively. The nontrivial with respect tdN. This problem becomes worse
quantitiesE{ﬁXy,DU Aml}, E{R, purol} and E{ﬁnyUT} are  When the bandwidth of the DUT is low, that is, the speed of the

obtained by applying 100 independent sets mtndom pat- DUT is slow. For example, to test a 10Hz device, the delay

. ime required could be as long as 0.3 sec. Therefore, if we want
terns. In the actual testing process, however, we only ap g ¥ :
one set oN random patterns for fault detection. The faigt pﬁg reduce the testing time by increasing the clockataere



is an lower bound placed by the speed of the DUT. The proBS,[O] are comparable bLRy[O] requires less hardware. The
erty that the testing time usify,[m] as the signature is de- signaturesy [0] andm, for testing the DAC and the ADC are
pendent on the speed of the DUT is undesirable. The signgetter tharRXJm] in terms of the number of random patterns
turesR,[0] andm, have no such problem because no delay igequired. In general, the fault-cancellation phenomenon results

needed.
From the simulation results, we also found the signature
has significantly lower detection capability tHag{m
andR[0] for circuit X1, X2 and X3. The low detection capa- [1]
bility of m, can be explained by Eq.(8) and Fig.5. From
Eq.(8) we know the deviatial is the summation of the dif-
ferences betwedg[n] andh[n]. Fig.5 shows that for faufi,
the differences to be summed tend to cancel out and therefore
the final deviatiory; is small. We have observed similar phe—[3]
nomenon for fault§l-f15 However, for fault$16-f18 the
only significant difference betwedsin] andh[n] occurs at

[4]
n=0 (the impulse responsedpm]) and therefore the fault-
cancellation phenomenon does not occur. Similar fault-can-
cellation phenomenon could happeRyi®] but is much less  [5]

distinguished. If we assume the faulty output sequence is
yin]= yin]+3y[n], the difference betweegn]? andy[n]? is

[6]
28y[njey[n]+dy[n]2 and the terndy[n]? is always summed up
in A¢ without cancellation.
For circuit X4, the detection capabilityRf0] andmyis  [7]

better tharR,,{m]. This can be explained as follows. We as-
sume the outpwg[n]=y[n]+dy[n] and we knowx[n]=y[n] for

the fault-free circuit (excluding the quantization noise). Thés]
final differenceg for the signaturesi, R [m] andR[0] are
constructed by summing up the quantiigs]-y[n] = dy[n],
ynleyin] - yn|* = &yinlyin] andy{n]? - yin]* = 2y{nlyir]
+dy[n]? respectively. It can be seen thafor R [0] is rough-
ly two times of thel for R[m]. Also, becausg[n] varies

9]

in the low detection capability af,.
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VII. Conclusions
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plementation schemes and experimental results for several
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using the pseudo-random technique. We model the analog
LTI circuit as a digital LTI circuit such that the stimuli gener-
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LTI sytem: impulse response h[n]

x[n y t) Y[ln]

linear

analog

circuit
h(t)

ation and signature analysis can be performed digitally. We Fig.1 Modeling an analog LTI circuit as a digital LTI system

then employ the concept of the linear transformation on a ran-
dom process and use the meam),(the auto-correlation
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Fig.2 Hardware realizations of the pseudo-random testing
scheme by using the signatures (a) m,, (b)R,[0] (c) Ry, [m]
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faults | deviation faults | deviation faults| deviation
fl1 | Cy +20% 6 | Rag: -20% f11 | Ry +20%
2 R;. +20% 7 Cpaq: +20% f12 | Ry -20%
3 Ra: -20% f8 | Cgq:-20% f13 | Ry -20%
f4 Co: -20% f9 Rco. +20% f14 | Ry +20%
5 Ca: -20% f10 | Crqi +20% f15 | R4 -20%

(a) Circuit X1 (b) Circuit X2 (c) Circuit X3
Table 1 Fault list for circuit (a)X1 (b)X2 (c)X3

R [200] R,J400] R[600]| R[800]|R,[1000]R[1200] R/[0] | My,
30 | 511 | 6.20 | 433 [ 4.31] 4.45 | 4.06 |56.99]23.71
Oy | -6.46 |-4.18 | 0.61 | 3.61 | 4.14 | 2.59 |-86.52[-0.17
by | -6.12 [-4.60 | 1.89 | 560 | 3.78 | 1.06 [-82.03]|-0.14
Az | 10.42(-2.81 |-12.72| -3.93 | 5.11 | 4.71 | 10.94| 0.02
Dy | 12.49|-0.42 |-13.92| -7.44 | 356 | 5.25 | 61.55| 0.01
DN | 869 |-4.35 |-11.10| -1.88 | 5.42 | 4.11 |-15.40|<0.01
(a) Circuit X1 ( N=128K)
R[2K] | Ry [4K] | RyI6K] | Ro[8K] [R[1OK]|R[12K]| R[0O] | m,
30 | 6.55 | 9.23 | 12.75] 12.56] 7.40 | 6.73 | 128 0.021
D | 068 | 478 | 8.24 | 4.40 | -4.23 | -8.95 | 140 | 0.01
Ny | -0.47 | -354 | 6.7 | -451 | 1.90 | 6.38 | -103|-0.005
Mg | 081 | 573 | 9.97 | 4.04 | -8.74 |-14.71] 175 0.003
Mg | 059 | 422 | 364 | -6.00 |-11.58| -2.13 | -68 | -0.001
Dol 042 | -3.16 | -4.01 | 249 | 9.96 | 7.26 | 65 | 0.001
(b) Circuit X2 ( N=256K)
Rof6K] | R [12K] (R 18K]| R, [24K]| R [30K] R, j36K]| R/0] m,
30| 796 | 8.49 | 11.87] 12.47| 7.42 | 8.28 [124.27/ 0.027
Nyq| 0.68 | 474 | 8.22 | 4.42 | -4.21 | -8.96 |139.35] 0.007
Dno| 050 | -3.52 | -6.61 | -452 | 1.88 | 6.37 [-102.91-0.005
Myal 0.73 | 5.62 | 9.92 | 4.08 | -8.68 | -14.70{174.61] 0.003
Dyl 0.47 | 426 | 3.76 | -5.95 | -11.66| -2.20 |-66.62 | -0.001
Dys| 045 | 3.73 | 247 | -6.49 | -10.12 -0.11 |-83.10] 0.001
(c) Circuit X3 ( N=256K)
RO Rof1l | R2] | R3] | RJO] m,
30| 0.0075| 0.0075 0.0072 | 0.0072 | 0.0075 | 0.0072
Mpg  |-0.0103 | -0.0106(-0.0106 | -0.0106 |-0.0199 | -0.0213
A7 | 0.0287| 0.0251 | 0.0252 | 0.0252 | 0.0609 | 0.0505
Drg | -0.0159( -0.0164 -0.0164|-0.0164 |-0.0309 [ -0.0330

(d) Circuit X4 ( N=16K)
Table 2 Fault detection for Ry, [m], R/[0] and m,,

Impulse response of circuit X2
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Fig.5 The impulse response for the fault-free and
the faulty ( f6) circuit X2
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