
A Classi�cation of Design Steps and their Veri�cation

Wolfgang Ecker

Siemens AG

Corporate Research and Development

Munich, Germany, 81730

Abstract
Hardware design using the hardware description

language VHDL has to consider three independent
property scales that inuence the design process from
an abstract level to the gate level, namely the design
view, the timing aspect, and the value representation.

Considering this classi�cation, a systematic way for
design steps and their veri�cation with special empha-
sis on VHDL is presented in this paper.

1 Introduction
VHDL1 is a world-wide accepted and applied stan-

dard hardware description language. It was originally
developed as design and as description language in the
VHSIC2 project of the United States DoD3. This gave

VHDL its original name VHD2L4.
Two reasons forced VHDL to be a very powerful

however complex language: Its target which are very
complex systems and its goal to be design and descrip-
tion language. The �rst aspect requires a wide range
of di�erent description capabilities to allow for design-
oriented descriptions during the design process. Ex-
amples are a large variety of di�erent types, support of
reactive as well as imperative descriptions, and di�er-
ent levels of abstraction. The second aspect requires
deterministic and portable descriptions to allow for
design data exchange and deterministic models. This
was achieved by the explicit de�nition of the VHDL
simulation algorithm together with elaboration and
execution regulations based on the simulation algo-
rithm.

In 1987, VHDL was standardized by IEEE, and
shortly after, a lot of di�erent VHDL CAD-tools were
available commercially. A formalized methodology,
however, for the use and application of the complex
language did not exist. This paper presents a classi�-
cation for design steps and their veri�cation based on
the design cube presented in [5]. It serves as frame for
a VHDL-based design methodology but can be used
for other languages also.

In the �rst sections, aspects of design and
veri�cation5 are discussed. Veri�cation strategies, the

1VHSIC Hardware Description Language, see [7]
2very high speed integrated circuits
3Department of Defense
4VHSIC Hardware Design and Description Language
5Veri�cation is seen in this paper as full or partial veri�ca-

tion by formal methods (see [3]), worst case estimations as used

classi�cation of description styles and design steps as
well as a systematic approach for veri�cation of design
steps are presented in the subsequent three sections. A
summary and an outlook to VHDL-based requirement
representation conclude the paper.

2 Design and Veri�cation
2.1 Design and Design Step

During design process, information is added to al-
ready known features. An existing description or de-
sign representation, which is also called speci�cation
is re�ned. De�ning S as a representation of a speci-
�cation, C, the constraints, as the explicit or implicit
design process degree of freedom, and D as the design
decisions taken during the design process then the rep-
resentation of the result of the design process R can
be understood as a function D:

R = D ((S;C) ; D)

For complexity reasons, the design process mostly
is divided into a set of design steps. The design result
or (pre-)implementation is re�ned by each design step
piece wise. This design strategy is called top-down
design.

Ri = Di
��
Si; Ci

�
; Di

�
(1)

�
Si+1; Ci+1

�
= Ri (2)

The result of the i-th design step also represents the
speci�cation and the degree of freedom of the i+1-th
design step. The design process as a whole consists of
a concatenation of the functions Di representing the
transformations of the i-th design step, ie:

D = D1 � D2 � : : : � Dn (3)

Due to the fact that the representation of a speci�-
cation should allow for re�nement, the representation
may not carry all information of the �nal design result.
This can be achieved in three di�erent ways:

in timing veri�cation or as complete or incomplete correctness
check via simulation. Main focus however lies on the simulation
aspect.
Veri�cation can be assigned to the question "are we build-

ing the product right?". Validation in comparison answers the
question "are we building the right product?" (see [2])

1. Speci�cation consists of requirements only, ie. as
little implementation details as possible are coded
explicitly. The degrees of freedom are implicit in
this case. An example for this kind of description
are the VHDL built-in assertion statements or the
VHDL annotation language VAL [1].

2. Speci�cation describes degrees of freedom explic-
itly. An example is the speci�cation of sets of val-
ues instead of one value. This can be performed
using the don't care value from the VHDL stan-
dard logic [6] or nondeterministic statements like
included in UDL=I [11, 12].

3. Degrees of freedom are based on abstract descrip-
tions. Freedom results from di�erent implemen-
tation possibilities, which satisfy the speci�cation
respectively the abstract description.

The �rst two possibilities are not considered for func-
tional speci�cation in this paper. The third possibility
will be discussed in more detail.

The major problem which arises from using descrip-
tions with di�erent levels of abstraction is the de�ni-
tion of the abstraction levels. This is required to allow
for systematic de�nition of design steps and their ver-
i�cation.

2.2 Veri�cation of a Design Step

 Specifikation
 Functional Specifikation Constraints

Degree of
Freedom

 Requirements

 Implementation

Design-
Decisions

Design Step

horizontal
Validation

vertical
Validation

Figure 1: Design and Veri�cation

Due to [13] veri�cation of one design step can be
split into two tasks (see �gure1):

1. Horizontal veri�cation which checks consistency
between functional speci�cation and its require-
ment.

2. Vertical veri�cation, which checks correctness of
the design steps. We focus in this paper mainly
on veri�cation of design steps.

Vertical veri�cation can in addition be re�ned in
checking consistency between implementation and its
functional speci�cation and testing satisfaction of re-
quirements by the implementation. We call the �rst
part of vertical veri�cation functional veri�cation and
the second part requirement veri�cation.

3 Veri�cation Principles
According to [1], two di�erent approaches for veri-

�cation are reasonable:

1. Constraint veri�cation.

 Specification
 Simulation Result

Implementation

Output-
Constraints

 Simulation Result

Mapping-
Constraints

Input-
Constraints

 Stimuli

Figure 2: Veri�cation of Constraints

2. Equivalence veri�cation.

Veri�cation of constraints checks, as shown in Fig-
ure 2, the correctness of input-, output- and mapping
constraints for both, the speci�cation and the imple-
mentation. This veri�cation step, however, must not
be performed in one run. Either speci�cation or imple-
mentation can be checked. Due to the fact, that this
check is implementation-independent, the check is ob-
viously assigned to the interface. Concurrent assertion
statements, passive processes or (passive) concurrent
procedure calls are proper VHDL constructs for this
task. VAL (see [1]) allows to describe requirements in
a more comfortable way and supports veri�cation in
an VHDL environment.

Figure 3 shows an approach for the veri�cation of
equivalence. Here, both, speci�cation as well as imple-
mentation must be simulated concurrently. The test
consists in comparing the results of both models con-
sidering their abstraction levels.

 Specification

 Stimuli

 Simulation Result

Implementation

C
o
m
p
a
r
e

 Simulation Result

Figure 3: Veri�cation of Equivalence

Constraint veri�cation strongly relates but is not
assigned to horizontal and vertical requirement veri-
�cation and equivalence veri�cation to vertical func-
tional veri�cation. This will be discussed in detail in
section 5. Before, a classi�cation of design steps will
be proposed in the next section.

4 Classi�cation of Design Steps
This section classi�es design steps accordingly to

the design cube, which is shortly described in the next
subsection.

4.1 The Design Cube
As mentioned in section 2.1, a systematic way is

required to allow to classify design steps. We selected
the design cube [5] due to the fact, that it seems well
suited for hardware description languages, especially
VHDL [9].

The design cube realizes three independent prop-
erties: the view of the model, timing property, and
abstraction of values. In this sense, a model is a sin-
gle point in the three-dimensional space spanned by

the axes called view, timing, and values. This space is
called the design space.

view

timing

valuesstructure

time causality

sequential

concurrent

propagation delay

clock related

ab
st

ra
ct

 v
al

ue
s

co
m

po
si

te
 b

it
va

lu
es

bi
t v

al
ue

s

Figure 4: The Design Cube

A set of discrete coordinates classi�es di�erences
in view, timing and values. Geometrically, these co-
ordinates describe a three-dimensional cube, which is
called the design cube. Graph theoretically, the design
cube is a lattice graph G which is described as follows:

1. The vertex set consists of all triples
(view spec; timing spec; value spec), where

� view spec 2 fstructure;
concurrent;
sequentialg;

� timing spec 2 fpropagation delay;
clock related;
time causalityg;

� value spec 2 fbit values;
composite bit values;
abstract valuesg.

These sets are assumed to be ordered.

2. There is an edge between the vertices (x1; x2; x3)
and (y1; y2; y3) if and only if the vertices di�er
in exactly one component, say i, such that either
xi covers yi or yi covers xi with respect to the
corresponding set ordering.

3. An edge is directed from vertex Y = (y1; y2; y3)
to vertex X = (x1; x2; x3), if the dis-
tance of X from the coordinate origin

(structure; propagation delay; bit values)

equals the distance of Y from the origin minus 1.
(Here, "distance" means the ordinary graph the-
oretic distance function, which measures shortest

paths between vertices. The length of a path is
its number of edges.)

An edge in the cube represents one (primitive)
design step.

4. We extend the design cube of [5] with hyper-
edges. They describe composed design steps ex-
cept hyper-edges starting and ending in the same
point. These hyper-edges classify optimizations.

Hyper-edges representing optimizations are not
directed in the design due to the fact, that they
start and end in the same point. We assign these
hyper-edges a direction to distinguish between
view-, value- and timing optimization.

Design steps and optimizations are discussed in de-
tail. We assume, for simpli�cation reason, that a com-
posite design step can be split into its primitive design
steps and that its veri�cation can be performed by
combination of veri�cation approaches described be-
low.

4.2 Optimization
Optimization is a special design step, which im-

proves measured or estimated costs of a design but
keeps the abstraction due to the design cube un-
changed. As mentioned above, di�erent optimization
classes, namely view optimization, value optimization,
and timing optimization exist.

4.3 View Transformation
The view transformations partitioning and struc-

turing are in the design cube transformations parallel
to the view axis. Ie. all coordinates representing the
modeling style of the transformed units with exception
of the coordinate view spec remain unchanged.

Partitioning

Consider the problem of partitioning a design.
Partitioning6 means to divide one sequential speci�-
cation into a set of concurrent interacting units. This
process can be described by the design cube in terms
of transformations from the points

(sequential; timing spec; value spec)

to the points

(concurrent; timing spec; value spec),

where timing spec and value spec are constant
during one transformation (see Section 4.1 Point 1).

It is important that such a partitioning opens new
design cubes associated with each component. The
coordinates of the modeling style in each sub-cube are

(sequential; timing spec; value spec),

6In this case concurrent partitioning only is considered as
design step. Sequential partitioning is either performed for soft-
ware engineering and description reasons or for space optimiza-
tion reasons.

ie., each sub-unit is described sequentially.
Moreover it is essential to note, that partitioning

may a�ect the description of timing. For example par-
tial time orderings that may di�er strongly from the
total orderings proper to a sequential description are
introduced by partitioning. The abstraction level of
timing, however, remains unchanged.

Structuring

Structuring a unit transforms the coordinates repre-
senting the modeling style from the points

(concurrent; timing spec; value spec)

to the points

(structure; timing spec; value spec),

where timing spec and value spec remain stable
during the transformation step. Moreover, structur-
ing is represented by creating new and independent
design cubes with the abstraction level of the encap-
sulated units.

The independent new design cubes resulting from
structuring represent both, the possible mapping of
a sub-unit onto a unit, which was already or is cur-
rently designed, and the in-dependency of the sub-
units (which was achieved by structuring and which
allows for independent as well as concurrent design of
the subunits).

4.4 Value Transformation
Value transformation is either value coding or

value attening. Coding maps abstract values on a
vector of bits. In most cases the ordinal number
or the TYPE'POS representation of the value is 2's-
complement coded.

Two goals are important for coding:

1. To allow for easier description of the model.

2. Optimization of the implementation of a circuit
in area and time. This can be done with relation
to gate level implementation, only.

The e�ect of coding for the quality of the design result
is indisputable. Today, however exist approaches for
state as well as input and output coding of �nite state
machines only. No approach exists, which attacks the
coding problem for design architectures in general.

Value attening divides the vector of bits in single
bits. This simple task is performed by both, layout
tools and synthesis tools.

The coordinates of the descriptions change during
value coding and attening from

(view spec; time spec; abstract values)

over the point

(view spec; rime spec; composite bit values)

to the point

(sequential; clock related; bit values).

4.5 Timing Transformation
Synthesis is de�ned as the transformation of a de-

scription of one design level to a description on the
next lower design level. Due to the the design cube
the de�nition of design levels can be based on time
abstraction. Thus synthesis would only be a transfor-
mation of the coordinates along the time axis from the
points

(view spec; time causality; value spec)

to the points

(view spec; clock related; value spec),

or a transformation of the coordinates from the
points

(view spec; clock related; value spec),

to the points

(view spec; propagation delay; value spec)

where view spec and value spec keep their values
during one transformation. The �rst and second trans-
formation relates, but meets not exactly, tasks of sys-
tem level and RT-level synthesis, respectively.

However, to be more general it is better to de�ne
synthesis as a transformation of descriptions, where at
least one coordinate is changed.

5 A Systematic Approach to the Veri-

�cation of Design Steps
This section �nally presents a systematic approach

for vertical functional and requirement veri�cation for
each class of design steps as de�ned in section 4. Tim-
ing and coding constraints are considered only.

5.1 Veri�cation of View Transformation
View transformations serve primarily for the task

of parallelization, which is necessary due to the high
concurrent nature of hardware. They do not change
coding and timing7 of the description. Thus, require-
ment veri�cation must not be performed for this de-
sign step.

 Specifikation

 Stimuli

 Simulation Result

Implementation

C
o
m
p
a
r
e Simulation Result

Frame

Frame

Figure 5: Detailed Veri�cation of Equivalence

Functional veri�cation can be done by applying
stimuli to both, functional speci�cation and imple-
mentation and by comparing the output values. This

7It is important to note, that view transformation often goes
in hand with timing optimization. In this case, veri�cation
strategies for both design steps must be combined.

stimuli must not have identical signal value behavior.
To allow for veri�cation, the method shown in �gure 3
must be re�ned as depicted in �gure 5. A timing
dependent frame takes the stimuli and applies them
separately to each unit. Similarly, the frame takes re-
sults and generates simulation results for comparison.
Tasks of the frame can be described for view transfor-
mation veri�cation as follows:

� If causality is speci�ed only, subroutines, which
preserve the abstract, causality preserving proto-
cols, are used in the frame to apply stimuli and to
take the result. Signal values may di�er especially
in this case due to the fact, that causality speci�es
order of operations (at the interface) only.

� Pure clock related descriptions are determined
by clock related storage devices and delay less8

combinational operations. This implies, that in-
put stimuli are equivalent but the time of out-
put values may di�er in delta cycles. The best
way focusing simulation results for veri�cation is
by synchronizing with the clock. Postponed pro-
cesses, which are included in VHDL'93, can be
used for comparison of not synchronized simula-
tion results.

� Both, stimuli and simulation result must be
equivalent, if propagation delay is speci�ed.

5.2 Veri�cation of Value Transformation
Coding and value attening do not change timing or

view. Thus, stimuli, constraint checks as well as sim-
ulation results can be applied or tested at the same
simulation time. The representation of the values,
however, di�er.

Coding transforms abstract values into a compos-
ite bit representations. The mapping can be speci�ed
as algorithm or table which can be implemented in
VHDL by using array constants or functions. Func-
tions can be directly used as type conversion functions
in the port map to perform required transformations
of the frame.

Value attening increases the number of objects.
The speci�cation of attening can also be done by us-
ing subroutines, but procedures are required in this
case because a set of objects must be returned. A
separate frame unit must be described additionally in
VHDL because VHDL does not allow to combine sev-
eral port objects by one type conversion function.

Functional and constraint veri�cation can be per-
formed in one run by comparing simulation results
of speci�cation and implementation using equivalence
veri�cation. Requirement veri�cation can accordingly
be performed by replacing the abstract values with
composite bit values or composite bit values with a
set of single bit values in an equivalence veri�cation
run.

5.3 Veri�cation of Time Transformation
Veri�cation of time transformation can not be

achieved by one veri�cation principle only. Func-
tional veri�cation, one veri�cation task, is performed

8Delay less means in this case delta or zero delay.

by equivalence veri�cation. For this, stimuli must be
related to the more abstract timing.

� Stimuli are applied in relation to a clock, if timing
changes from clock related to propagation delay.
In addition, simulation results must be synchro-
nized to allow for comparison of simulation re-
sults.

� Stimuli must be processed by both, an abstract
protocol, which communicates with the causal de-
scription, and a concrete, clock related protocol,
which communicates with the clock related de-
scription. Results are processed in the same way.
Simulation results can be compared, each time
one protocol operation was �nished successfully
for both descriptions.

Requirement veri�cation checks, whether either prop-
agation delay constraints or clock cycle constraints
have been violated.

� Propagation delay constraints are mostly speci-
�ed in relation to clock cycles ie. setup and hold
time violation. Veri�cation checks the time di�er-
ence between the last change of a value before the
clock edge and the �rst change after clock. Useful
VHDL constructs to do so are all signal related
attributes and the function now. Examples can
be found eg. in [4] or in [8].

� No technique, however, is known to verify
whether clock cycle constraints are met. We pro-
pose to use a similar approach as applied for the
veri�cation of propagation delay requirements.
Timing constraints are however not bound to a
clock edge but to the successful execution of a pro-
tocol. So, cycle constraints are checked between
di�erent protocols. An example, which exibly
checks clock cycle constraints between two hand-
shake protocols is shown in listing 1.

use SynchronousLib.HandShake.a l l ;

use UtilityLib.IntegerBuffer.a l l ;

procedure CheckCycle(

signal clk : in bit;

signal ack_in, valid_in : in bit;

signal ack_out, valid_out : in bit;

constant pipeline_stage : in integer;

constant min_cycle, max_cycle : in integer) i s

-- types and objects

variable cycle, old_cycle : integer;

variable cycle_buffer :

integer_vector(pipeline_stage downto 0);

variable cycle_index: integer;

begin
loop

wait unti l clk = '1';

cycle := cycle + 1;

i f ProtocolReady(ack_in,valid_in) then

PutBuffer(cycle,cycle_buffer,cycle_index);

end i f ;

i f ProtocolReady(ack_out,valid_out) then

old_cycle := GetBuffer(cycle_buffer,cycle_index);

assert ((cycle-old_cycle) > min_cycle) and

((cycle-old_cycle) <= max_cycle)

report "cycle constraint violation detected"

severity error;

end i f ;

end loop ;

end CheckCycle;

Listing 1: Clock Cycle Veri�cation

5.4 Veri�cation of Optimization
The description style of the speci�cation and re-

sult model remains unchanged through optimization
as mentioned in subsection 4.2.

This suggests, that equivalent stimuli, constraint
checks and comparators can be used. This assump-
tion, however, is only partially true.

5.4.1 Veri�cation of View Optimization

View optimization changes behavior similarly as view
transformations. So, the same veri�cation strategy as
described in 5.1 can be used.

5.4.2 Veri�cation of Value Optimization

Value optimization describes the mapping of one value
implementation into another value implementation
however without changing abstraction of values.

For veri�cation of this kind of optimization, the
same method can be applied as described in 5.2 for
value transformation but with one di�erence: The
functions represent mapping of values of the same ab-
straction level. Thus, the functions parameters are
abstract or bit composite values and the return val-
ues are abstract or bit level values also. Similarly, the
procedures responsible for the mapping of bit values
have a set of bit type inputs and outputs.

5.4.3 Veri�cation of Timing Optimization

Verifying timing optimizations must be split into two
tasks as validating timing transformations. Optimiz-
ing causal descriptions requires equivalence veri�ca-
tion only, due to the fact that these descriptions con-
tain neither clock cycle nor propagation delay.

Same techniques as described in 5.2 can be applied
for requirement veri�cation. Functional equivalence
must consider, that timing may be changed by opti-
mization.

� For causal descriptions, subroutines, which hide
abstract protocols are required for application of
stimuli and taking stimuli to the speci�cation as
well as to the implementation.

� Synchronous protocols, which orientate according
to description causality, are used in the frame to
process stimuli and result, if clock related descrip-
tions are optimized.

� Similarly, stimuli are applied and result is taken
clock related, if propagation delay is optimized.

We would like to point out, that the next higher time
abstraction is used to guide the functional veri�cation
of timing optimization.

6 Summary and Outlook
This paper presented a classi�cation for design

steps and their veri�cation. The relation to hardware
description languages, especially VHDL, restricted the
methods to design steps changing view, value and
timing of a functional speci�cation. Considered con-
straints were also focused on view, value and timing
for the same reason.

Extensions of the technique shall also consider in
hardware description languages not directly included
constraints like area, power or testability. The �rst
step in this direction is the hardware-description-
language-based speci�cation of this design constraints.
The second step is the extension of veri�cation steps
in this direction. VHDL constructs, which seem to be
from interest for this topic, are physical type declara-
tion and global variables.

Acknowledgments
I would like to thank Michael Hofmeister, Sabine

R�ossel and all reviewers for their support, their sug-
gestions and for helpful discussions.

References
[1] L.M. Augustin, B.A. Gennart, Y. Huh, D.C. Luckham,

and A.G. Stanculescu,Veri�cation of VHDL Designs using

VAL, Proceedings of the 25th Design Automation Confer-
ence (DAC), Las Vegas 1991, pp. 48-53.

[2] B. W. Boehm, Software Engineering Economics, Prentice-
Hall, 1981.

[3] D.D. Borrione, L.V. Pierre, A.M. Salem, Formal Veri�ca-

tion of VHDL Descriptions in the Prevail Environment,
IEEE Design and Test of Computer, June 1992, pp 42-56.

[4] D. R. Coelho, The VHDL Handbook, Kluwer Academic
Publishers, 1989.

[5] W. Ecker and M. Hofmeister, The Design Cube - A new

Model for VHDL Designow Representation, Proceedings

of the EURODAC=EUROVHDL'92, Hamburg 1992, pp.
752-757.

[6] IEEE Standard Logic Package, IEEE Std 1164-3992.

[7] IEEE Standard VHDL Language Reference Manual, IEEE
Std 1076-3987.

[8] IEEE Timing Working Group, IEEE Par 1076.4.

[9] F. Rammig, System Level Design in J. Mermet ed., Fun-
damentals and Standards in Hardware Description Lan-

guages, Kluwer Academic Publishers, Dornbrecht 1993, pp
109-351.

[10] F.J. Rammig,A Multilevel Cybernetic Model of the Design

Process, Proceedings of the IFIP WG 10.1 Working Confer-

ence on Methodologies for Computer System Design, 1985.

[11] Osamu Karatsu, VLSI Design Language Standardization

E�ort in Japan, Proceedings of the 26th Design Automa-

tion Conference (DAC) 1985, pp. 50-55.

[12] Hiroto Yasuuma, Nagisa Ishiura, Semantics of a Hard-

ware Design Language for Japanese Standardization, Pro-
ceedings of the 26th Design Automation Conference (DAC)
1985, pp. 836-839.

[13] A. Schmitt, Entwurf der Hardware-Beschreibungssprache

REGLAN im Rahmen von CONLAN: Spezi�kation der dy-

namischen Semantik und deren Implementierung, Disserta-
tion, TechnischeHochschule Darmstadt, Institut f�ur Daten-
technik, 1992.

	EURO-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

