
Design and Use of a System-Level Specification and Verification Methodology

M. M. Kamal Hashmi & Alistair C. Bruce
Design Automation Centre, High Performance Systems,

ICL, Wenlock Way, Manchester, M12 5DR, U.K.

Abstract

This paper describes the problem of Design Capture at
System level and of moving a design verifiably down levels
of abstraction. We describe our steps on the way to
designing a methodology which captures system level
interface and functional specifications, and enables the
designers to decompose and refine specifications down to
RTL VHDL in a hierarchic and piece-wise manner.

1. Introduction

Design capture and verification at the earliest possible
stage increases the commercial viability of a product by
reducing the overall time to market.

One way to compress and effectively manage the
complete product timescale is to formally capture the
design earlier in the design cycle so that it can be verified
earlier, and problems conforming to the requirement
specification solved before reaching the later phases of the
design cycle.

Ensuring the correctness of a design early on, has a
beneficial “ripple” effect on later stages. This is magnified
by the growing complexity of the design.

1.1 Traditional Design

Traditionally, in the electronics industry, system
specifications and requirements have been captured as
natural language documents. These specifications are then
refined and elaborated in a series of manual design steps
until they are detailed enough to be captured formally in
schematic or textual form for simulation. Each such step is
usually verified against the previous step – its specification
– manually by review.

The first simulatable level that is formally captured is
usually at Register Transfer Level (RTL) or below –
though in the last few years there has been some
experimentation with algorithmic capture in the CAD
tools industry. Once captured, the design can be verified
by simulation with test patterns or a test harness. It is then

refined until it can be synthesised or manually translated
into a gate level description.

1.2 Previous Design Experience

The Corporate Systems Division (CSD) of ICL has
been involved in the design of large complex systems like
mainframes for over 35 years. In the early days, the
machines were captured at gate level after manual design.
Later, the level of capture rose to library cell level which
was equivalent to RTL

The design of the SX mainframe [1] was initially
captured at an algorithmic level which was refined into
RTL behaviours and then implemented at gate level. The
use of extensive simulation at all levels led to a large
reduction of faults in the first prototype compared to the
previous mainframe despite being a more complex
machine. Our simulation requirements meant that our in-
house simulation capability was provided at high levels
and high performance [2].

However, the next generation of very large servers, SY,
were again going to involve another leap in complexity
and total gate count. This, combined with a reduction in
timescale, meant the number of design faults and
redesigns had to be reduced even further at every level.

2. System Specification Problems

After the SX mainframe design was complete, an
analysis of the problems that occurred during its design
revealed three major causes of avoidable errors. These
were:

a) The system went, in a single step, from a natural
language specification to RTL. This produces more
errors than going to RTL in a series of well understood,
and formally captured, steps.
Also, slight ambiguities in the specification meant that
different designers wrote RTL models that did not
always work together. Finding these differences of
interpretation at RTL was time consuming, and the
problems were often difficult to fix.

b) The system was broken down early into its major
components because of its size and complexity. The
interfaces between the components were ambiguously
or incompletely specified leading to subtle interface
mismatches when the whole design was eventually
simulated.
These mismatches werenot in the static connections,
but in the actual behaviour of the units across the
interfaces.

c) The highest, and hence smallest, simulation model of
the entire system was at RTL.
This model was so large that its performance severely
limited the amount of full system testing that could be
performed – only a few million beats as against the
requirement of hundreds of millions of beats.

2.1 Initial Targets

To solve these problems we needed a language or tool
which would allow us to formally capture the specification
at a high level unambiguously.

This tool should also enforce the separation of the
specification of functionality and interface. A common
independent interface specification could then be written
to be used by the functional units at either end. This
specification must not just define the connections – it
should also specify the protocol of communication across
the interface.

These specifications must be able to be captured at
different levels of design, from an asynchronous level with
vague or fuzzy timings to synchronous clocked RTL with
precisely timed functional units.

Also important is the need for the lower level designs
to flow naturally from their higher level specification such
that, in a simulation, any high level specification can be
replaced by its lower level design. This form ofMixed
Multi-level Modelling would mean that each low level
design could be tested in a system simulation without a
severe performance overhead.

An important management requirement is that the
different parts of the system can be designed at different
rates by different teams working independently off
common interface specifications.

So, in summary, what we required from a specification
language or tool was:

• Separate Interface and Functional Specification.

• Multi-level Specification.

• Hierarchic decomposition of specifications.

• Mixed Multi-level Modelling.

We first investigated VHDL to see if it could meet our
requirements.

3. System Design with VHDL

VHDL is good for the capture of low-level RTL and
gate level designs, but is not a natural language for the
actualdesign of systems.

From an engineer’s perspective, the problems with
VHDL for high level design fall into three categories.

3.1 Syntactic Overhead

Every language chooses a balance between insisting
that a designer specifiesexactly what is meant, and filling
in any gaps, intentional or otherwise, that have been left.
In VHDL, the overriding need was for the precise
expression of specification and implementation.

However, at higher levels the need is for quickly trying
out ideas and speedy design changes. Only when a design
meets all the functional and performance requirements
will it be frozen and specified in detail for implementation
at the next level down.

The overhead of constant revisions to a VHDL model
is onerous, despite recent changes to the VHDL standard
[3]. Hence the plethora of tools appearing on the market
which try to hide the VHDL framework.

So the language requirement changes at different
stages of the design. Either different languages or a
language tool which behaves differently at each level is
needed.

3.2 Interface Level Changes

A system designer does not define every connection
and function. Some parts of the design are left to the lower
level designers. For example it may be specified that parity
checks exist, but not the where and how.

So, it is essential to be able to add to, or change, a
design’s interface as you go down levels of design.

In VHDL, changing an interface entity is not a trivial
task and usually the functionality will need rewriting to
cope with any changes.

One of our aims is to co-simulate designs from
different levels in order to reuse test harnesses and also
improve test coverage and performance. This is not
possible in VHDL if the interface has changed.

Figure 1: Interface Changes.

X

X’
Y

Y’

refine

Interfaces
may change
down levels

A

A’

B

so that unit A’
cannot talk
to unit B.

Additionally in a lower level design the timing of the
interface protocols may be a subset of the higher level
protocols and so, even if the interface is statically the
same, its dynamic behaviour may vary.

In these cases, the designer would need to write, and
maintain, a piece of VHDL to sit around one of the models
and translate one interface into the other.

3.3 Design Paradigms

Design at a system level is often in terms of general
paradigms rather than specific implementations. A system
would be designed as units which can do certain things
and which transfer the necessary information. The details
of how a unit performs its functions and its static
connections to other units are considered later.

VHDL is deficient at providing system level paradigms
in at least three of the ways we require for a system
specification and design language:

Firstly, the properties of VHDL processes and signals
lead to a structural form of design whereas system
designers tend to th ink of a system as a set o f
asynchronous communicating processes. In the design
process, each of these and their communication protocols
is refined and elaborated until a stage is reached where
each unit can be considered as a set of communicating
sequential processes. These are then implemented or
synthesized into gates.

Secondly, a model in VHDL is of a fixed size with a
known number of instances. This is obviously a
requirement of any model at gate or RT synthesizable
levels, but at system levels it would be very useful to have
creation and termination of processes as needed by the
simulation. This would not only make system modelling
easier but would aid the evaluation of concurrency versus
performance.

Finally, at system level, the designer would like to treat
time as an elastic property. VHDL allows only absolute,
precisely defined time steps, whereas a system designer
would like to build in terms of concepts or paradigms like
‘sometime after’ and ‘between X and Y beats after’, and
then simulate and analyse the resulting problems or the
performance.

4. Initial work – the CHISLE Prototype

After deciding that VHDL would not solve the system
specification problem, work was started on a methodology
that would solve this problem for SY.

4.1 Interface specification

A language was developed to capture interface
specifications which could be used to capture the interface
between two units at multiple levels of abstraction:

• The Transact ion layer defined the al lowable
conversations between units in terms ofItems.

• The Item layer defined an ordered sequence ofPackets
from one unit to the other.

• The Packet layer defined an ordered and timed
sequence ofSlices from one unit to the other.

• The Sl ice and Wire levels defined the stat ic
connections between the units, and their direction.

Interfaces could also handle concurrency which was
modelled as an array of the concurrent entity.

Time relations were specified between two instances as
‘after-end’, ‘after-start’ or ‘none’ with bounded or
unbounded ranges.

4.2 Functional Specification

This language was then extended and a new dialect
designed which could be used to capture the functional
units that communicate using the interfaces. These were
captured at three basic levels:

a) Group level units which used theItem layer of its
interfaces to communicate with other units. Thus, as in
items, a group level unit specified functionality using
unbounded time relations.

b) Set level units used thePacket layer of their interfaces
to communicate. So a set level unit was specified using
bounded time relationships.

c) Element level units used theSlice layer of their
interfaces. So, since slices are timeless structures of
data, the element level unit specifies completely how it
communicates via structured data paths with other
units. They use interfaces just for static connectivity
and for checking that their communication adheres to
the higher level protocols. This level can be written at
RTL.

4.3 The CHISLE compiler

The whole language comprising the two dialects was
called CHISLE - Combined Hardware and Interface
Specification Language for Engineers [4]. The language
also contained normal language features such as type
definitions and abstract data types like queues.

A prototype compiler was written which generated
models for the in-house MSIM simulator. The compiler
treated different levels ofCHISLE in different ways – for
example, the use of a particular timing construct which is
allowed at group level may produce a warning at set level
and an error at element level. Even the generated code
differed depending on the level of the unit.

The interfaces allow a unit to communicate with other
units at any level. Agroup level unit could send an item to
a set level unit. Its side of the interface would break down

the item, generate the correct sequence ofslices and send
them on thewires to the other units. Theset level unit
would receive thewire data and its interface would check
the data and build up the correctslice andpacket before
passing it on to the internal functionality.

Figure 2: Group to Set Communication.

CHISLE is being used by the SY project and so far, the
project has run over 100 interfaces and 400 functional
units (including test specifications) through theCHISLE
compiler. It has enabled greater testing and better model
performance, and increased design productivity by a factor
3 to 4 times compared to the previous design.

5. Post-CHISLE Analysis

A review of CHISLE’s capabilities and an analysis of
the problems the engineers had with it indicated that there
were some changes needed to improve the tool.

5.1 Design Clarity

When analysing how the engineers designed in
CHISLE we discovered that much of the design still
occurred off-line before they captured it inCHISLE. They
could not capture some of their ideas in the most natural
view.

The interfaces were usually designed using diagrams
and then captured in the interface dialect. The functional
dialect also did not facilitate a clear implementation of a
unit’s interface requirements.

1. Interface and functionality structure should be captured
graphically to provide a clearer view of the design, and
of how the units satisfy the interfaces.

The many fixed levels provided inCHISLE did not
always lend themselves to all kinds of design. Designers
had to fill in all the levels even though they only wished to
use a couple for some designs.

2. There should beflexible multiple levels so that the
system designer could choose the levels to use.

5.2 Language Reuse

When the requirements forCHISLE were generated the
synthesis tools available were not advanced enough to
meet high-performance engineering standards but they

Group Item

Packet

Slice

Wire Wire

Slice

Packet Set Unit

have improved enough that their use in parts of the design
would improve productivity.

Most synthesis tools take VHDL input, and the
emergence of VHDL as a standard HDL meant that we
would use VHDL somewhere in our next design route.

3. The tool should bebased on VHDL, such that the
design would naturally flow into pure VHDL at RTL.

5.3 Even Higher Levels

Finally, asCHISLE was being implemented it became
apparent that transactions were a powerful idea that had
not been fully utilised. A more generic definition of a
transaction could be used in functional units as well as
interfaces and would enable an even higher level of
functionality. It would then be possible to specify and
simulate the complete dataflow of a system before
specifying the control or data transformations – the
dataflow performance of the system could then be
analysed.

Extending transactions and other interface entities into
functionality would allow the functional activities to have
a dynamic temporal interface instead of just a static one.
Designers could then grow internal interface components
which could become real interfaces when the design was
hierarchically decomposed.

4. Interface concepts should be extended and allowed in
functional units.

TheCHISLE timing and concurrency paradigms, while
considered extremely useful, were not generic enough or
simple to use. In particular the timing paradigm, when
used heavily, made the design intent obscure rather than
clearer.

5. The timing relationships should have a graphical view.

6. The concurrency paradigm should be extended to cover
the different requirements at different levels.

5.4 Performance

The performance of theCHISLE system models was
much better than the previous design’s system model but a
performance analysis showed that we could get another
gain in performance of at least 3x by redesigning the
models produced for MSIM.

At the time that theCHISLE compiler was written, the
MSIM simulator worked only on VME mainframes and
used S3 as its main behavioural language but it has been
recently enhanced to run on Unix and take VHDL
behaviours [5] – partly as a response to our post-CHISLE
system specification review – and is also much faster.

7. By using the new MSIM simulator and the new model
des ign , we expec t to make the new Sys tem
Specification Tool at least 5x faster than CHISLE.

6. The New Methodology

So, the extra aims we had for the new tool included:

• Multiple views and capture of the specification – much
of it graphical – enabling the designers to captures his
ideas in the most natural form.

• Paradigms for concurrency and timing which are easier
to use at high levels and transform easily to lower level
versions of the paradigms.

• Better Simulation Performance.

• Smooth transition to the VHDL RTL tool of choice.

6.1 Overall Structure

For SY, the average size of an interface was about 200
statements and of a unit was 1500 statements. We want as
much of this as possible to have graphical capture with
multiple views. This would make the design more
comprehensible and the tool more designer friendly.

The idea is that engineers will not perceive that they
use any textual language other than VHDL, the rest of the
information being captured graphically – the tool would be
asupra-language of mixed graphics and text.

The unit of design is aninteractive document called a
Specification Document. This can be one of the following
types:

• Interface Specification Documents – for the capture of
interfaces. Most of the information in an interface can
be captured graphically with a little text.

• Unit Specification Documents – for the capture of
funct ional i ty and assoc ia ted data. We make
functionality clearer by giving graphical views to the
overall structure and the concurrency flow, with
VHDL text for most of the rest.

• Library Documents – a necessary enabler for reuse.
VHDL packages are an example of a library document.

Figure 3: Specification Structure.

Unit specification documents reference theinterface
specification documents that they use, and the Units into
which they decompose. Note that interfaces are in

i

U

BA

AA ABj BA BBk

decomposition communication

themselves multilevel – so in figure 3, unit AA would
communicate with units B, or BA and BB, via the
interface ‘i’

6.2 Interface Specification Documents

Interfaces now have only two explicit levels. The
lowest level, at which communication with pure VHDL
models takes place, is composed ofsignals. The higher
levels are composed ofpackets andtransactions, which
can now be hierarchically defined at any level.

The higher levels can be specialised by the attributes
loose, timed andtimeless which can be used to specify
intentions about a level but they are not compulsory. So,
for example, if an entity istimeless then it not allowed to
have timing constructs in its definition or in its children.

Figure 4: Levels of Interface.

Interfaces can now have one, two or more ends. Also,
they no longer know to which units they are connected, so
that interface specifications can now be reused between
different units.

There are four main parts to an interface definition – all
of which are optional:

a) Theservicesdefinition specifies the throughput or
capac i ty o f the in ter face by defin ing which
‘conversations’ are allowed concurrently.

b) Transaction definitions still specify conversations
across interfaces. Unlike inCHISLE, transactions can
now define communication at any level from a loosely
timed non-deterministic system level to a tightly timed
RT level.

c) Packets define a one-way stream of information from
one end of the interface to another end. They can be
decomposed into otherpackets or intosignals and can
be defined at any level.

d) Signals specify static connectivity. If the designer
wishes to co-simulate with VHDL models or to
decompose into pure VHDL, this level is essential.

Communication viapackets defaults toasynchronous
communication with a channel size of one, however the
tool can also modelsynchronous communication with a
rendezvous[6].

PacketsTrans-
actions

Signals

Loose ...

Timed ...

Timeless ...
VHDL

6.3 Unit Specification Documents

This document captures three aspects of the unit:

• TheFunctionality of the unit.

• Its de-Composition into lower level interfaces and
units. This is captured graphically, and can generate
initial skeletons for the lower level documents.

• Test Specifications for the unit which are held as
appendices to the document. These are used to test the
unit and its decompositions.

TheFunctionality of the unit can containtransactions,
packets andsignals like interfaces. However, inInterfaces
total communication always takes absolute time, whereas
in Units communication can also take place in delta time
and instantaneously.

Theservicesdefinition specifies the transactions from
the unit’s interfaces that theFunctionality satisfies.

Activities are the part of aFunctionality which actually
guide the running of the unit through time. Activities are
mapped to transactions, and are expected to satisfy one
end of the transaction.

Internally, anactivity is composed of ‘leaves’ of
VHDL code, and dependencies between these leaves
which define when the leaves get activated. Using this
mechanism it is possible to define arbitrarily complex
braids of action, mixing concurrent and sequential leaves.
The internal structure of an activity can be viewed and
captured graphically.

Figure 5: Graphical Activity structure.

We have also defined three kinds of concurrency:

• Parallel, when each activation is independent of the
others and takes up resource.

• Pipelined, when each activation must be at a different
state to the others and reuses resource.

• Concurrent which is either of the other two.

The user is allowed to specify a maximum number of
concurrencies or ask for ‘unlimited’ where the tool spawns
another whenever needed – this is useful at the higher
levels when performance is still being investigated.

Also at the higher levels, the tool allows some non-
determinism where a set of paths are tagged by booleans,
and a fair choice is made of one of the paths whose tag
evaluates to true.

A
... ...
... ...
... ...

A

B

D
C

B

C
D

... ...

... ...

... ...

... ...

... ...
... ...
... ...

7. Current Status

Design is complete and work on the production of the
tools, using an extended version of MSIM as the core
simulator, has begun.

Our target is to create a new product and methodology
which wi l l assist the System Designer, improve
productivity and lead to better design methods.

Our primary objectives are ease of use and raw
performance.

8. Future Possibilities

Since the supra-language formally captures all the
design stages from a very high level down to a low level
register-transfer level it becomes possible to investigate
methods of high level synthesis.

Also the formal verification of designs at levels higher
than netlists of combinational logic becomes available for
investigation.

9. Acknowledgements

Grateful thanks go to Tony Jebson and Chris Jones
who decided to go and actually do something with the
results of the SX post-mortem analysis. And to the rest of
the ICL hardware engineers who aided and abetted the
development and validation ofCHISLE; and Martyn
Edwards and Joe Murphy of UMIST who kept a critical
eye on the post-CHISLE re-design.

10. References

[1] G.P.Abraham, D.C. Freeth and H.Vosper:SX Design
Processes, ICL Technical Journal Vol. 7 No. 2, 1990

[2] S.Hodgson:A Multi-Level, Mixed State Simulator for
Hierarchical Design Verification, IEEE European Design
Automation Conference 1984.

[3] IEEE Standard VHDL Language Reference Manual. IEEE
Std 1076-1993, The Institute of Electrical and Electronic
Engineers, New York, USA, 1994.

[4] A.Jebson, C.Jones and H.Vosper:CHISLE: An Engineer’s
tool for hardware system design, ICL Technical Journal
Vol. 8 No. 3 May 1993.

[5] S.Hodgson, Z.Shaar and A.Smith:A High Performance
VHDL Simulator for Large Systems Design, IEEE
European Design Automation Conference 1995.

[6] C.A.R.Hoare:Communicating Sequential Processes,
Prentice-Hall International, 1984.

	EURO-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

