
VHDL Quality: Synthesizability, Complexity
and Efficiency Evaluation

��� �� !��!!�

�!��!��� ����� 	���
� ��!!���� ������ �� ����

����� �" ��� ��� ���#������ ��� �!"��� ��� ��� ���� ����

���#�� �!$� ��� ������� �� ����"!��� ��������
����!���!

Abstract

With VHDL models increasing their size, it becomes more

important to assure the quality of these descriptions in order

to improve simulation performances, to make project

maintainability easier and to create an efficient link with

hardware synthesis results. Goal of this paper is to

summarize the activities carried out within the SAVE

project, leading to the development of a collection of static

analysis tools in order to reduce the time spent in the design

verification phase, to improve modifiability, reusability and

readability of models and focusing on the different aspects

related to hardware semantics (synthesizability analysis).

1: Introduction

Because of the important role played by VHDL in
design methodologies and the increasing complexity and
size of descriptions, assuring that VHDL code is developed
following some well–founded guidelines may have a
relevant impact on the quality of the overall design process.
As many designers simultaneously work on the same
project, defining a standard coding style assumes a
considerable importance.
It is possible to analyze the quality of VHDL code under
different aspects: software complexity, good synthesis
results, testability and high simulation performances can be
considered the most important attributes in quality
evaluation of a VHDL model.
A good improvement derives from the definition of suitable
metrics and guidelines from software complexity,
synthesizability and testability points of view. Starting from
software engineering approaches, some metrics and
guidelines have been adapted to VHDL to make it more
readable and maintainable, while, regarding
synthesizability and testability, they have been
experimentally determined and assessed starting from the
existing literature. This kind of analysis is appreciated by

designers and, in this way, it satisfies their demands for
standardizing code and producing it in a more synthesizable
style.
The goal of the SAVE project is to create tools that, in an
automatic way, measure the quality of descriptions and help
designers to improve them with a set of suggestions.
Using these tools, code that has unacceptable quality is
identified early reducing the cost of finding and correcting
errors which grows rapidly with the life cycle.
This paper will report how the VQC (Verify Quality Check)
prototype, contained in SAVE, evaluates VHDL
descriptions quality and helps developers to create better
models. Session 2 presents the SAVE project. An analysis of
synthesizer results is described in Session 3. In Session 4 an
analysis in order to evaluate the readability and the
maintainability of VHDL models is reported. Session 5
describes the analysis from the simulation performances
point of view.

2: The SAVE Project

The goal of the SAVE project is to find rules and

guidelines (theoretical analysis) oriented to the

improvement of VHDL model quality as well as to the

implementation of a set of tools to improve readability and

maintainability of models, to manage hardware semantics

and to reduce the time spent in the simulation phase.

A set of guidelines, to evaluate and possibly increase the

quality of synthesis results and simulation speed of VHDL

descriptions, have been determined on an experimental

basis while, in order to measure and improve code

readability and maintainability, existing software

complexity metrics have been analyzed to verify their

applicability to VHDL models. Since these studies have

pointed out that complexity analysis of VHDL source code

is a completely unexplored research field and VHDL

specific aspects have no direct counterpart in software

design, new metrics have been developed.

Moreover, synthesizability analysis allows to show in

advance if code can be synthesized verifying its non

ambiguous hardware semantics and if it is optimized in

order to speed up the synthesis process and to improve the

quality of the results achieved. SAVE tools can give the

designer some suggestions about a more quickly

synthesizable coding style (currently related to synthesizer

AutoLogic of Mentor Graphics) or perform some checks to

avoid synthesis of bad descriptions. The designer can

choose to replace code in an automatic way.

The LVS (Leda VHDL System) supports the parsing step

of VHDL source files and also builds an intermediate

representation within an object–oriented database

according to VIF (VHDL Intermediate Format)

specifications. Starting from the results of the parsing step, a

custom tool (Preprocessor) builds a new representation

more suitable for further processing by exploiting LVS

support for user–defined extensions to the basic VHDL

schema.

Such an enriched representation collects all data needed for

the computation of simulation efficiency, complexity and

synthesizability analysis. The designer can choose to

evaluate the project in term of these aspects and the analysis

is performed activating different tools that compute metrics

embedded in the rule base.

A graphical interface module (Presentation Manager)

enables the display of the above characteristics by using
graphs, tables and diagrams.

3: Synthesizability

VHDL is a language essentially used to perform simulation,

but only some of its constructs are accepted by currently

available synthesizers. To assure quality results after the

synthesis phase and to reduce the time spent in this phase of

the project life cycle, a complexity analysis from a hardware

point of view has been developed. The main goal of this kind

of analysis is to suggest a more efficient coding style in

some particular situations or perform some checks to avoid

synthesis of non–correct descriptions.

A common situation is the presence of undesired latches:

when a signal is not assigned under all possible execution

paths through a process, latches will be inserted into the

design in order to store the value of the signal during all the

unspecified states.

A function that checks the presence of latches has been

implemented: for every signal that causes a latch, the

designer can choose between adding an assignment and

leaving the structure as it is.

For the first choice, two possibilities are provided: assigning

the value in the previous branch (or path) or assigning the

default value (the value in the initialization).

The assignments are inserted in the source code in an

automatic way. For any particular circuit there are many

ways to express the function in VHDL. Even if the

functionality is the same, two different coding styles can

produce very different implementations. Sometimes the

most intuitive method for describing a circuit will not

necessarily result in the best circuit.

Typical examples are large CASE and IF structures where

the same signals are assigned in all the branches with values

that changes for few bits. If code is modified so that the only

assignments to the bits that are changing are made, the

system will run much faster and with less memory. For

instance, the following code will generate, with AutoLogic,

an intermediate result of 28 generic gates:

p1:PROCESS (sel)

 BEGIN

 CASE sel IS

 WHEN ”00” => y <= ”0001”;

 WHEN ”01” => y <= ”0010”;

 WHEN ”10” => y <= ”0100”;

 WHEN ”11” => y <= ”1000”;

 END CASE;

 END PROCESS;

that can be reduced to about 6 gates in the following manner:

p1:PROCESS (sel)

 BEGIN

 y <= ”0000”;

 CASE sel IS

 WHEN ”00” => y(0) <= ’1’;

 WHEN ”01” => y(1) <= ’1’;

 WHEN ”10” => y(2) <= ’1’;

 WHEN ”11” => y(3) <= ’1’;

 END CASE;

 END PROCESS;

These two different ways of writing CASE statements will

have the same result, but the second one does not need logic

optimization.

Relating to the quality improvement of the results in terms

of chip area, it has been noted that particular care has to be

paid in order to assure that a specified code portion

produces, for example, the smallest number of gates.

Among many experiments made in this field, it is possible to

mention the recognition of code portions in which the ’X’

state is used. As AutoLogic does not treat assignments to the

’X’ state as an unknown state, this can lead to some

inefficient structures being generated. Choosing the default

value for don’t care states can make a big difference during

area optimization.

SAVE is also based on the analysis of synthesis guidelines

and design rules resulting from Italtel designers expertise.

For example, the tool is able to recognize Gated Clock,

Gated Latch Enable Signal and Tristate.

FF

LATCH

gclkclk

d1

d1

clk gen

Gated Clock

Gated Latch Enable

SAVE allows to automatically evaluate the VHDL code

giving measures and advises about it and the possibility to
replace code portions.

Other problems related to efficiency in the synthesis phase

are:

– the use of unconstrained integers that would be

implemented as 32 bit numbers; if all the 32 bits are not

required, they would be pruned from the circuit during logic

optimization with a certain waste of time. The preferred

method is to constrain all integers;

– the use of LOOP statements.

Another situation considered by the analyzer is the

verification of correctness in component declarations: in

fact, some compilers do not verify that the mode, type and

order exactly correspond to the entity declaration of the

component. This situation can cause very serious problems

during the synthesis phase that are very difficult to find out.

All these checks are notified by the analyzer through a

textual report.

4: Complexity

The relevance of complexity analysis is

particularly related to the problem of maintenance of source

code which involves different aspects such as modifiability,

reusability, readability, and so on.

The SAVE project investigates existing complexity metrics

and adapts them in order to satisfy VHDL requirements.

In the following, metrics measuring the complexity of

sequential statements and guidelines making source code

more readable will be introduced.

4.1: Maintainability Analysis

The first kind of metrics applied represents a

combination of three suitably adapted traditional metrics :

Mc Cabe’s cyclomatic number [Hen92], nesting level and

information flow. They measure the statements complexity

(i.e. low maintainability, low testability ...). These metrics

are applied to single VHDL sequential blocks (processes,
functions and procedures) and then the complexity of the

whole VHDL description is estimated with some cost

functions.

Mc Cabe’s cyclomatic number is one of the most popular

metrics in Software Engineering [McCab76]. It grows with
the program complexity and can be considered a measure of

maintainability and testability.

The nesting level metric represents the maximum depth of

nested statements, that is each statement contained in

another one. A large nesting level is often an indication of

bad programming style: subprograms can help to break code

into manageable parts.

Information flow has been adapted to VHDL

communication mechanism and measures the information

exchange between processes. A high value of this measure

can indicate confused processes without a well defined

functionality. The definition studied is :

IF = a1 � Nsgl + a2� Nsgs

where Nsgl and Nsgs stand for the number of signals read

and the number of signals written respectively with a1 < a2

(it has been given more importance to signals written

because they wake up all processes sensitive to them).

The complexity evaluation of a process has been calculated

by the following formula:

������		 ���C_Size�(k1��
���
�+ � ���C_Nest + � ���C_IF)

where coefficients C_Cabe, C_Nest and C_IF depend on

evaluation of cyclomatic number, nesting level and

information flow respectively and C_Size depends on

dimension of the process measured in non–comment source

lines of code. A possible argument that C_Size should be a

significant factor, rests on theory that, since the developer

has more code to understand, maintaining it would be more

difficult.

The average on complexity values of the single processes

determines the description evaluation. The results are

presented in a histogram which represent each process with

its evaluation, making easy and quick to localize any

process difficult to maintain.

Some checks have been made in order to report suggestions

for a good programming style oriented to maintainability,

although they did not influence the evaluation.

4.2: Readability Analysis

Another approach to complexity analysis consists

in creating a readable and easily modifiable code. In fact

designers coding style determines the readability of their
descriptions, therefore they can improve it following some

general guidelines.

A standard form of the code could increase its readability:

only one statement per line, uniform indentation and

uniform casing for VHDL reserved words are verified and

automatically applied in the SAVE project. If the header

does not exist or does not complain to a standard template, it

is possible to automatically insert all the fields: Title,

Engineer, Company, Project, Filename, Purpose, Simulator,

Synthesis, Revision and optionally Limitations and Note. If

some of these fields are not present, the tool inserts the

informations available from the VHDL code file as default

(Engineer and Filename) and asks for the others to the user.

It is possible to distinguish between information comments

and separator ones. Information is inversely proportional to

the repetition of a set of alphanumeric characters (the

maximum amount of information per symbol is provided by

an alphabet whose symbols occur with an equal probability

[Har92]). So a regular composition of repeated characters

(low information) is named ”separator” while in all the

other cases the line is properly named ”comment”.

Others checks are carried out on the identifiers used for files,

signals and variables. Some of these informations, for

example using of a suffix related to the dimension or to the

ports and signal goal (vectors: ’ v_ ’, tristate: ’ z_ ’, present

state: ’ ac ’, future state: ’ px ’), are also utilized in the

synthesis analysis to verify the correspondence between the

designers specified target and the actual hardware

implementation.

Another kind of control is related to the name of the

architecture: it should have a suffix which represents the

kind of modeling style used (BEHAVIORAL,

STRUCTURAL, DATAFLOW).

Furthermore, there is the possibility to check if types,

procedures, functions and components are defined into the

VHDL file. Because it should be better to avoid this

programming style, a suggestion is given in order to

separate this portion of code making a package.

To measure all code attributes, the basic idea is to divide a

description in single modules (entity and architecture

declarations, blocks, processes, functions and procedures)

and then evaluate the readability degree of each one on a

scale of values obtained by heuristic methods. So the

following formula can be used to evaluate the entity

readability:

���
�
� � � �� k� � � � DPC + k2 �� CLMI + k3 �� �	��� +

��� � � DGC

where DPC is the density of the commented ports in the

source code, CLMI is a coefficient that represents

identifiers average length, CQNP is related to the quality of

the name of the identifiers (e.g. an IN port should be named

with identifiers like port_IN) and SGC is the density of

commented generics. The weights k1...k4 and the

coefficients above are empirically obtained.

The measure of readability of blocks, processes, functions,

procedures can be calculated with the following:

������
 � � �� t��CS � t2�CLMI � t3���� �� 	��DCI�

	��DVS�� 	��CHEAD

where CS depends on the presence and the quality of

comments with the functionality to separate, in a visual way,

the module from other parts of code; CLMI is the coefficient

of the identifiers average length while CL is related to the

presence of a label of the module; DCI and DVS represent

the density of inside comments and the density of the

commented variables and signals respectively. Finally

CHEAD is a coefficient related to a possible header

comment at the beginning of the module. The weights t1...t6
and coefficients are calculated in a heuristic way and they

have different values if the module is a block, a process, a

function or a procedure.

Moreover the architecture declaration is evaluated with the

following formula:

�����
�
�� � � �� h1�CLMI + h2���� +� ���DVS

Finally the readability of the whole project is calculated as

follows:

�	�	 ��� w1�������� � + w2�� ��� / � ��� � ��������������

�

�
�������
�
��

where N is the modules number.

The result of the application of these kind of metrics is not
only a degree of readability but also several guidelines that

help the designer to improve the project.

5: Efficiency

The purpose of this kind of analysis is to find

guidelines in order to increase the simulation speed of

VHDL descriptions. The improvements obtained following

the proposed guidelines are still useful (although at a lower

degree) even if new generation simulators are available in

the market. Such guidelines have been discovered on an
experimental basis making several tests on various

commercial simulators such as Vantage of ViewLogic,

QuickSim II and QuickVhdl of Mentor Graphics and

searching for constructs which are semantically equivalent

but with different simulation performances.

It has been noted the higher efficiency of sequential VHDL

descriptions versus concurrent ones: so merging together

processes with the same sensitivity list, replacing signals

with variables whenever possible, joining together

processes sharing one signal as communication channel to

get rid of it and so on, are some of the guidelines suggested.

Tests have shown that static sensitivity lists are more

efficient than dynamic ones at the bottom of the process and

without conditions. Moreover, in order to create fast code, it

is suggested to the designer to avoid resolved signals

whenever possible, limit the use of attributes returning

signals, reduce the number of functions, procedures and

generics and so on.

Besides, if in some examples with QuickSim II and Vantage

simulators applying suggestions has led to a gain up to 50%

in simulation time, the gain obtained with the more efficient

QuickVhdl is not so evident. For more detailed information

about this task see [Bal94].

6: Conclusions

The goal of the SAVE project is the definition and

the implementation of a set of tools to support designers to

improve the quality of VHDL descriptions in the

synthesizability, complexity and efficiency area.

It should be pointed out that quality attributes have different

weights according to different project targets. The presence

of historical archives could help in determining more

precisely these weights. Even if some attributes may be in

contrast with others, for example using procedures
improves readability but makes simulation performances

worse, in future developments a trade–off analysis will be

welcome in order to support a full integration of the

different analyzers managing conflicting goals.

SAVE produces not only a numerical quality measure but
mostly gives to the designer a set of textual and graphical

suggestions to improve his knowledge and the description

quality. Currently, Italtel designers utilize SAVE not to

obtain a mere hardware designers ability evaluation, which

is often unappreciated, but to learn to write good quality

code.

References

[Bal94] A.Balboni, M.Mastretti, M.Stefanoni : ” Static
Analysis for VHDL model Evaluation ”, EURO VHDL,
1994 IEEE
[Bon92] A.Bonomo, P.Garino, G. Ghigo, A. Balboni,
M.Mastretti ” VHDL optimisation techniques for coding
and simulation ”, Rapporto Tecnico CSELT
[Cha93] S.Cha, I.S.Chung, Y.R.Kwon, ” Complexity
measures for concurrent programs based on
information–theoretic metrics ”
[Fen91] N.E. Fenton ” Software metrics : a rigorous
approach ”, Chapman & Hall 1991
[Fen94] N.Fenton ” Software Measurement: A necessary
Software Scientific Basis ”,IEEE Transaction on Software
Engineering,vol. 20,no. 3, march 1994
[Gan86] J.D. Gannon, E. Katz, V Basili, ” Metrics for ADA
packages: an initial study ”, Communication of the ACM –
July 1986
[Gill91] G.K.Gill C.F.Kemerer ” Cyclomatic Complexity
Density and Software Maintenance Productivity ”, IEEE
Transaction on Software Engineering, vol.17
n.12,december 1991
[Har 92] W. Harrison ” An Entropy Based Measure of
Software Complexity ”, IEEE Transaction on Software
Engineering, vol. 18, n. 11, november 1992
[Hue91] M.Hueber ” VHDL experiments on Performance ”
Euro–VHDL 1991
[Hen92] B. Henderson Sellers, ” Modularization and
McCabe’s cyclomatic complexity ”, Communication of the
ACM 1992
[Kit90a] B.Kitchenham, L. Pickard, S. Linkman ” An
evaluation of some design metrics ”, Software Engineering
Journal, january 1990
[Kit90b] B.A. Kitchenham, S.J. Linkman ” Design metrics
in practice ”, in Information and software technology 1990
[Lev91] O. Levia ” Writing High Performance VHDL
Models ”, Euro–VHDL 1991

[McCab76] T.J.McCabe, ” A complexity measure ”, IEEE
Trans. Software Engineering, vol. SE–2, pp. 308–320,
1976.
[Mid90] S.Midkiff , D.Padua ” Issues in the optimization of
parallel programs ”, International Conference on Parallel
Processing, 1990
[Oma92] P.Oman, J.Hagemeister ” Metrics for assessing a
Software system’s maintenability ”, IEEE Transaction on
software engineering, 1992
[Ott92] L.Ott, J.Bieman ” Effects of software changes on
module cohesion ”, IEEE Transaction on software
engineering, 1992
[Pau91] B.Paulsen O.Levia ” Techniques for Writing High
Performance and High Quality VHDL Models ”, Euro
VHDL 1992
[Ram85] J.Ramamoorthy, W.Tsai, T. Yamaura, A.Bhide
”Metrics guided methodology”, Proc. 9th Computer
Software and Application Conf. Oct.1985 p 11
[Rob91] P.N.Robillard, D.Coupal, F.Coallier ” Profiling
Software Through the Use of Metrics ”, Software–Practice
and Experience, Vol. 21(5), 1991
[Sch92] N.F.Schneidewind ” Methodology For Validating
Software Metrics ”,IEEE Transaction on Software
Engineering,vol. 18,n. 5,may 1992
[Sha88] S.Shatz ” Towards Complexity Metrics for ADA
tasking ”, IEEE Transaction on software engineering,
august 1988
[She90] M. Shepperd ” Design metrics : an empirical
analysis ”, Software Engineering Journal, january 1990
[Wood81] S.N.Woodfield, H.E.Dunsmore, V.Y. Shen ” The
effect of modularization and comments on program
comprehension ”, 5th International Conference on
Software Engineering March 1981

	EURO-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

