
VHDL-based Communication- and Synchronization Synthesis

Wolfgang Ecker { Manfred Huber

Siemens AG

Corporate Research and Development

Munich, Germany, 81730

Abstract

This paper describes an approach for VHDL-based
communication and synchronization synthesis. This
design step transforms a system level VHDL descrip-
tion into an RT-level description. The idea is, not to
synthesize system level implementations of communi-
cation and synchronization mechanisms but to perform
the synthesis step as a mapping step of an abstract
communication or synchronization mechanism to one
of a set of RT-level implementations.

The major sub-problem, which needed to be solved
for the synthesis algorithm was the topology dependent
mapping of implementations.

1 Introduction
Today, automated HW synthesis starting from an

RT-level VHDL description is well established. For
system-level speci�cation and design, however, other
formal description techniques than VHDL have been
considered. These include SDL in the telecom domain
[2], Grapes [10], StateCharts for reactive systems [9],
SpecCharts [18], Structured Petri Nets [3], or Con-
currently Structured Flowgraphs (CSF) [16]. While
speci�cation methods for HW design or HW/SW co-
design do considerably di�er in their application do-
mains, many of these methods provide a link to sim-
ulation, RT-level synthesis, or formal HW veri�cation
through appropriate VHDL interfaces. Examples are
the SDL-to-VHDL compilers [12, 15], tools based on
StateCharts [8], the SpecCharts-to-VHDL translator
presented in [14], and the VHDL back-end of the CSF
approach [17].

These speci�cation methods certainly provide fea-
tures that are not or not directly supported by VHDL.
We believe, however, that it is important to use VHDL
also for the early design activities covering system-
level modeling, system-level simulation and analysis,
system-level partitioning, synchronization and com-
munication synthesis. Using VHDL at system level al-
lows for the integration of these design activities with
RT-level HW design in a unique environment. The
most obvious advantages are early validation with ex-
isting components both on gate and on RT level, code
re-usability, and re-usability of test frames and test
vectors.

In order to avoid confusion with the many di�erent
associations to what is meant by a \system", the term
\system-level speci�cation" has to be considered in
more detail. System-level speci�cation is used here to

indicate a high degree of abstraction with respect to
data, functionality, and time.

The design cube (see Figures 1, 2) introduced in [5]
identi�es time abstraction as the most important crite-
rion for classifying design levels. With respect to time,
the current level of abstraction accepted by synthesis
tools is the RT level (=clock-related). The causal level
is a further consequent abstraction of time. We pos-
tulate that \system-level speci�cation" corresponds to
a speci�cation on the next level of time abstraction
which we call the level of (time) causality.

st
ru

ct
ur

e

da
ta

flo
w

propagation delay

clock related

time causality

be
ha

vi
or

bit values

composite bit values

abstract values

Figure 1: Coordinates of the Design Cube

An RT level (clock-related or clock-cycle based) de-
scription abstracts from propagation delays which in
turn are speci�ed as design constraints. In a similar
way a speci�cation at the causal level abstracts from
a clock-cycle based view which in turn allows for the
speci�cation of clock-cycle based timing constraints
(see [4]).

The timing speci�cation at the causal level is
based on communication and synchronization opera-
tions well known from operating systems. These op-
erations specify synchronization points which provide
a hook for clock-cycle based timing constraints.

We showed in [6] the applicability of VHDL at sys-
tem level and the advantages in doing so. There, all
transformations from system level to RT-level were
performed manually. In this paper, we describe an
approach towards the automation of these transfor-

view

timing

values

system level

RT level

gate level

Figure 2: The Design Levels in the Design Cube

mations.

2 Overview
The key for synthesizing system level descriptions

downto RT-level descriptions is the synthesis of causal
communication and synchronization mechanisms to
RT-mechanisms. We call this step communication and
synchronization synthesis or protocol synthesis. One
possibility to perform this design step is the synthesis
of causal VHDL implementations of communication
and synchronization mechanisms. We believe how-
ever, that this does not give enough freedom for di�er-
ent implementation alternatives, due to the fact that
all currently available synthesis tools produce results,
which strongly depend on their input description1. We
focussed for this reason on another solution of the
problem.

Protocol synthesis, as presented in this paper, is a
mapping of an abstract protocol to a protocol, which
can be selected out of a set of clock related implemen-
tations. Due to the fact that we propose a pure VHDL
based design ow, this synthesis step is primarily a
selection step of a possible implementation for syn-
chronization and communication operations and the
replacement of the abstract protocol by the selected
protocol. The selection consists of a topology check of
RT-implementation versus abstract implementation, a
functional comparison and a heuristic considering area
and timing. The replacement can be achieved by re-
placement of the abstract mechanisms type, objects
and subroutines. All required tasks for communica-
tion and synchronization synthesis are described in the
rest of the paper.

The next section discusses implementation details
of abstract and concrete protocols and derives a set of
requirements for the synthesis step from causal to RT-
implementation di�erences. Section 4 describes the
synthesis step with a main focus on the topology prob-
lem. A language for specifying synchronous protocols

1This e�ect can be observed in an excellent rate by current

commercially available RT-level synthesis tools.

is also shown in this section. Afterwards details of the
software implementation are presented.

3 Communication- and Synchroniza-

tion Mechanisms
This section classi�es di�erent implementations of

abstract and RT-level communication and synchro-
nization mechanisms.

3.1 Abstract Mechanisms

Currently semaphore types are implemented for
synchronization (see [7]). The implementation
includes di�erent semaphore classes derived from
semaphores without, with static and with dynamic
priority as well as simple semaphores, set semaphores
and multiple semaphores2. Nevertheless, we currently
plan to implement other mechanisms like concurrently
structured ow-graphs [17] to allow for simpli�cation
of system level descriptions.

For our synthesis approach this requires, that it
may not be specialized to a set of operations. It must
allow to exibly extend the set of synthesizable mech-
anisms.

Communication channels for synchronized data ex-
change and global memory for unsynchronized data
exchange are also implemented as abstract mecha-
nisms (see [1]). They support 1x1, 1xN, Mx1 and MxN
topologies (see �gure 3) as well as unidirectional, bidi-
rectional and master-slave data exchange directions.
Currently, bu�ered channels are under construction.

1 : 1 1 : n m : 1 m : n

Figure 3: Regular Communication Topology

The implementation of synchronization of all ab-
stract mechanisms is based on an abstract delta delay
handshake3. An implementation example is shown in
the following listing.

procedure send (

constant data : in data_type;

signal channel : inout uni_channel_1x1) i s

begin

channel.source <= sender;

channel.data <= data;

channel.req <= TRUE;

wait unt i l channel.ack;

channel.req <= FALSE;

2It is important to note, that it can be proven, that

semaphores can be used to describe all known synchronization

problems.
3Delta delay is also called micro time. It describes the

amount of time elapsing when executing one simulation cycle

without simulation time advance.

channel.source <= none;

wait for 0 ns;

end send;

3.2 Clock-Related Mechanisms

Simple implementations of clock related synchro-
nization and communication mechanisms use exactly
the same handshake based implementation as abstract
mechanisms. The implementation, however, is no
longer delta delay but clock cycle based. The following
listing shows a possible clock related implementation
of the abstract send operation shown in the listing
above.

procedure send (

constant data : in data_type;

signal ch_data : out data_type;

signal ch_ok : out ok_type;

signal ch_ack : in ack_type;

signal clk : in bit;

signal reset : in bit) i s

begin

ch_data <= data;

ch_ok <= ok;

wait on clk unt i l clk = '1' and ch_ack = ack;

ch_ok <= not_ok;

wait unt i l clk = '1';

end send;

It is important to note, that in this listing the
wait-statements for abstract synchronization of listing
shown in section 3.1

wait unt i l channel.ack;

and

wait for 0 ns;

are replaced by

wait on clk unt i l clk = '1' and ch_ack = ack;

and

wait unt i l clk = '1';

This listing might probably be synthesized from the
abstract description. But an abstract implementation
may generally not be mapped onto its simple clock re-
lated implementation to obtain better results. So, dif-
ferent implementation alternatives like serial=parallel
trade o� [?], early, late or concurrent occurrence of
hand-shake signals or partial removal of hand shake
signals [11] should also be considered.

Implementations of abstract mechanisms can store
values in the signal object by using value repetition in
each write access. RT-level signals, however, are not
able to store values. Thus the mapping of abstract
mechanisms might additionally require the instantia-
tion of a unit4.

4Examples are units storing a semaphore value or the values

of a FIFO.

Especially the need for a separate unit makes the
synthesis of abstract mechanisms topology dependent,
due to the fact that units might be implemented in a
better manner for a special topology5

4 Synchronization and Communica-

tion Synthesis
4.1 Topology Problem

The causal implementation of communication
mechanisms supports several parameterizable imple-
mentations (1x1, 1xN, Mx1, MxN). Special topolo-
gies of implementations, however, need to be handled
to get a good synthesis result.

Moreover, the supported speci�cations are re-
stricted to a topology underlying a channel based com-
munication. Only the number of senders and the
number of receivers can be speci�ed. But in gen-
eral, communication or synchronization mechanisms
should be supported, which probably might be added
later, which consist of operations not named send and
receive and which may support more than two oper-
ations.

Thus a general topology of an instantiation of a
communication or synchronization mechanism speci-
�es a set of operations, a set of processes executing
operations and a relation describing which operation
is executed by which process.

4.2 Synchronous Protocol Description

Language

A special language, called SPDL6, was developed
for the speci�cation of synchronous protocols and their
topology. The language consists of a sequence of spec-
i�ers, each classifying one implementation. An exam-
ple of a classi�er is shown below:

uni_channel_1xn

{

Type: "Work.communicat.all";

Signals: "ch_data", "ch_ok", "ch_ack";

Operations: "send" -> "send1_1x1",

"broadcast" -> "send1_1x1",

"receive" -> "receive1_1x1";

Topology: "(x00)(00x)";

Examples: "topology_1x1";

Unit: "";

}

The name uni channel 1xn speci�es the name, re-
spectively type, of the abstract mechanism, which
should be mapped. The information about one possi-
ble implementation of the abstract mechanism is spec-
i�ed inside the braces. Entry Type speci�es a package

5Eg. a semaphore operation with one up and one down op-

eration only can be implementedmore e�ectively than a general

solution. This is, because that solution requires one line for up

and one line for down only. A general solution requires a pair

of up=down lines for each process, operating on the semaphore.

The special solution allows in this case to save two lines and

some hardware driving this lines.
6Synchonous Protocol Description Language

which contains all required type and subroutine dec-
larations for the implementation. All signals which
need to be declared instead of the signal represent-
ing the abstract mechanism, are enumerated in the
next entry, called Signals. Afterwards, the mapping
of abstract operations to concrete operations is enu-
merated. The connection of operation to signals is
performed by name convention, ie. the signals must
have the same name as the parameters.

The topology of the Implementation is speci�ed in
the entry Topology. The topology is speci�ed by a
sequence of regular expressions. Each expression is
included in brackets, describing how often an expres-
sion can be repeated.

()-Brackets require exactly one occurrence of the
expression.

[]-Brackets allow that the expression can occur
once or that the expression may be removed.

fg-Brackets allow that the expression may be re-
peated on occasion.

hi-Brackets have the same semantics as fg-
Brackets with the di�erence that hi-Brackets re-
quire the occurrence of the expression at least
once.

Each expression describes a possible execution of one
or a set of operations inside a process. The expression
x00 describes that inside one process the operation
send is executed only. With a combination of brack-
ets with the same expression inside, there can be de-
scribed a �xed number or a �xed range of processes.
The complete topology speci�cation in the example
allows a topology consisting of two processes, where
one process executes a send operation and the other
process executes a receive operation.

Examples and Unit specify an example of the map-
ping and the name of a unit, which is additionally
required for the clock related implementation. The
empty string in this case signals, that no additional
unit is needed.

We currently add the entries Timing, Time and
Area. The last two entries should contain a value
representing an abstract time and area value. This
value should be used by a simple heuristic for time
and area driven protocol synthesis. The entry Timing
is reserved for later extensions, considering causal time
relations in the execution of di�erent operations.

4.3 Synthesis Steps

Communication and synchronization synthesis is
performed in several steps. First, an SPDL-File and a
VHDL design entity to be synthesized are read. The
second step identi�es all processes together with their
process identi�cation, which must be speci�ed by the
user via a VHDL attribute.

The next step looks for all signals repre-
senting abstract communication or synchronization
mechanisms7. The topology of each identi�ed signal is

7The signal types, which correlate with an abstract mecha-

nism can be extracted from the SPDL-File.

then extracted. A possible implementation is selected
according the SPDL-File and extracted topology. The
user is interactively asked for resolution, if more than
one implementation is possible. This will be replaced
in the next version of the tool by a simple heuristic
considering area and timing.

The major transformation is then performed ac-
cording to the selection. First all signals representing
the abstract mechanism are replaced by a number of
signals, required for the selected implementation. In
this step, the type of the signals must meet the re-
quirements of the protocol8.

The implementation of a protocol can be sensitive
to the order of signals assigned to a composite type
parameter of an operation. Moreover, signals are gen-
erated only for that number of processes, that par-
ticipate in communication or synchronization. Thus
a mapping of the process identi�cation (in �gure 4:
Pid) of a process to the index of the vector signal as-
signed to an operation executed by that process must
be established. This mapping is not performed by the
synthesis algorithm directly. A VHDL mapping table
is generated for this reason and included as constant
(in �gure 4: AVM) in the design entity. Using this table,
the processes do not index their line directly. The in-
dex is transformed by an array access to the generated
mapping table (in �gure 4: AL(AVM(Pid))).

 signal AL : AckVector(1 downto 0)

Process(Pid=1) Process(Pid=2) Process(Pid=3)

Process(Pid=4) Process(Pid=5)

constant AVM : PidMapVector(1 to 5) := (-1, -1, 1, 0, -1)

AL(AVM(Pid))

Figure 4: Mapping to an Acknowledge Vector

To allow for clock related implementations of com-
munication and synchronization mechanisms a clock
signal must be visible. A reset signal is mostly also
required for initialization of hardware. Both a clock
and a reset signal are included in the interface of the
design entity in the subsequent step.

Afterwards all subroutine calls activating abstract
protocol operations are replaced by subroutine calls
activating an implementation of the abstract proto-
col. The mapping of the subroutines is taken from the
SPDL-File, too. The replacement includes also the
re-mapping of the interface signals.

If a unit is required to satisfy the behavior of the
RT-implementation, A unit is included also in the syn-
thesis step before last.

8Eg. The acknowledge signal of a communicationmechanism

allowingmore than one receivermust be a one dimensional array

type of the basic acknowledge type.

Finally the name(s) of the synthesized design en-
tity is (are) modi�ed, Use-clauses referring to VHDL
implementations of protocols are replaced or added,
and the modi�ed VHDL design entity is written to
the database.

4.4 Software Implementation

The implementation of the synthesis tool is based
on the VTIP of COMPASS. The general design ow
is shown in �gure 5.

Analyzer

causal
VHDL-
code

intermediate
format

Synthesis
Tool

VHDL-
Generator

RT
VHDL-code

SPDL-
file

intermediate
format

Figure 5: Software Implementation

First, a causal level VHDL description is compiled
by the analyzer in a tool speci�c intermediate format.
The synthesis tool, which consists of 1685 lines of C-
code, modi�es the intermediate via a procedural in-
terface called SPI, based on the protocol speci�cations
read from the SPDL �le. Finally, a VHDL generator
writes the modi�ed intermediate and generates in this
way RT-level VHDL code.

5 Conclusion and Outlook
The implementation of a tool which performs

VHDL based communicationand synchronization syn-
thesis was presented in this paper. The tool shows that
the automatic transformation of system level VHDL
to RT-level VHDL is possible. We generated a set of
VHDL models (a small test example is shown in �g-
ures 6 and 7) by the tool and synthesized the result
with commercial available RT-level synthesis tools to
demonstrate that an automatic way from system level
VHDL downto netlist exists.

use work.communicat.all;

entity ent is
port (Kanal_data: in data_type := -2147483648;

Kanal_ok: in ok_type;
Kanal_ack: out ack_type;
clk: BIT;
reset: BIT);

end ent;

use work.communication.all;

entity chan1 is
port (Kanal : inout uni_channel_1x1);

end chan1;

Figure 6: Synthesis Example (1)

Future work will concentrate on the insertion of
wait-statements for the clock related speci�cation of

architecture senden of chan1 is
signal channel : uni_channel_1x1;

begin
process

variable daten : data_type := 10;
begin

receive (daten, Kanal);
send (daten, channel);
wait;

end process prozess1;
end senden;

architecture arch of ent is
signal data: data_type := 0;
signal channel_data: data_type := -2147483648;
signal channel_ok: ok_type;
signal channel_ack: ack_type;

begin
process

variable daten: data_type := 10;
begin

receive_1x1(daten, Kanal_data, Kanal_ok, Kanal_ack, clk, reset);
send_1x1(daten, channel_data, channel_ok, channel_ack, clk, reset);
wait;

end process;
end arch;

Figure 7: Synthesis Example (2)

time between the communication and synchroniza-
tion mechanisms and on automatic insertion of a reset
mechanism. Further research will lie on causal level
optimization like channel sharing or causal level oper-
ation optimization.

Acknowledgements

We would like to thank Michael M�unch, Sabine
R�ossel and Bernd Wurth, for their support and for
helpful discussions.

References
[1] M. Bauer andW. Ecker. CommunicationMechanisms for the Specification

and Design of Hardware starting at Higher Levels. In Proceedings of the
Spring '93 Meeting of the VHDL-Forum for CAD in Europe, 1993.

[2] CCITT. Functional Specification and Description Language (SDL), Rec-
ommendations Z.100-Z.103, Blue Book, October 1989.

[3] L.A. Cherkasova and V.E. Kotov. Structured Nets. In Proceedings of
MCSF. Springer LNCS 118, 1981.

[4] W. Ecker. Specification of Timing Constraints in the Design Process. In
Proceedings of the Spring '92 Meeting of the VHDL-Forum for CAD in
Europe, pages 175{183, 1992.

[5] W. Ecker and M. Hofmeister. The Design Cube{A New Model for VHDL
Designflow Representation. In Proceedings of the EURO-VHDL, pages
752{757, 1992.

[6] W. Ecker and S. M�arz. System-Level Specification & Design Using VHDL:
A Case Study. In CHDL 93 - Computer Hardware Description Languages
and their Application, pages 505{522, Ottawa, Canada, April 1993.

[7] W. Ecker and A. Scheuer. Semaphores in HW-Design. In Proceedings of
the Spring '92 Meeting of the VHDL-Forum for CAD in Europe, pages
137{153, 1992.

[8] D. Harel. StateCharts: A Visual Formalism for Complex Systems. Science
of Computer Programming, 8:231{273, 1987.

[9] D. Harel. On Visual Formalisms. Communications of the ACM, 31(5),
May 1988.

[10] G. Held. Sprachbeschreibung GRAPES. Siemens AG, 1990.

[11] D.C. Ku, C. Coelho, and G. De Micheli. Interface Optimization for Con-
current Systems under Timing Constraints using Interface Matching. In
High Level Synthesis Workshop 92, pages 202{213, 1992.

[12] B. Lutter, W. Glunz, and F.J. Rammig. Using VHDL for Simulation of
SDL Specifications. In Proceedings of the EURO-VHDL, 1992.

[13] S. Narayan and D.D. Gajski. Synthesis of System-Level Bus Interfaces.
In Proceedings of the European Design Automation Conference (EDAC),
1993.

[14] S. Narayan, F. Vahid, and D.D. Gajski. Translating SystemSpecifications
to VHDL. In Proceedings of the European Design Automation Conference
(EDAC), pages 390{393, February 1991.

[15] O. Pulkkinen and K. Kronl�of. Integration of SDL and VHDL for High-
Level Digital Design. In Proceedings of the EURO-VHDL, 1992.

[16] M.T.L. Sch�afer. Architekturentwurf f�ur nebenl�aufige Systeme mit Veri-
fikation der Funktionssicherheit. Siemens internal Report.

[17] M.T.L. Sch�afer and W.U. Klein. Correctness Verification of Concurrent
Controller Specifications. In Proceedings of the EURO-DAC'92=EURO-
VHDL'92, pages 706{712, 1992.

[18] F. Vahid, S. Narayan, and D.D. Gajski. SpecCharts : A Language for
System Level Synthesis. In Proceedings of the IFIP Tenth International
Symposium on Computer Hardware Description Languages and their Ap-
plications, pages 135{153, April 1991.

	EURO-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

