
A High Performance VHDL Simulator for Large Systems Design

Steve Hodgson, Zak Shaar and Andy Smith
Design Automation Centre, High Performance Systems,

ICL, Wenlock Way, Manchester, M12 5DR, U.K.

Abstract

The requirements of large system design place great
demands upon the per formance and d iagnost ic
capabilities of simulation. This paper explains how these
requirements have been satisfied by an internally-
developed simulator using a proprietary language and a
proprietary platform. More significantly, this paper
describes how the strengths of that system have been
developed to create a VHDL simulator under UNIX while
maintaining a performance level that significantly exceeds
the leading commercial VHDL simulators.

1. Introduction

The High Performance Systems division (HPS) of ICL
in the UK is involved in the design and development of
large systems such as mainframe computers, large UNIX
servers and parallel systems. The design methodology
adopted for these complex designs relies heavily on design
tools which support the High Level Design stage of the
development route [1] . The majority of the development
time is spent at this design level. As more automatic tools,
such as synthesis, speed up the latter development stages,
it is at the High Level Design stage that design tools can
have the biggest impact. This has been recognised within
the commercial CAD industry by the introduction of the
term “Electronic Systems Design Automation” (ESDA),
but has been relevant in the large systems arena for many
years.

The most important of all high level design verification
techniques is simulation. Within HPS, simulation has been
the key to many successful hardware developments
resulting in a succession of “right-first-time” chips and
computer systems. Simulation, using a schematic design
tool (SDS) for structural description and a proprietary
language (S3) as the behavioural description, was
introduced in HPS over 12 years ago [2] . This used the
ICL mainframe, with VME as the operating system, as the
simulation environment. Over the following decade the

simulator (called MSIM) was enhanced and optimised to
maintain a competitive advantage to HPS over those
companies using commercial simulators. The most
important of all simulation features to the systems
designer has been, and st i l l is today,simulat ion
performance.

2. Requirements for Large System
Simulation

Modelling and simulating a large system can involve
hundreds of thousands of lines of behavioural description,
many millions of tests, numerous model configurations
and very long runtimes. These considerations place
particular demands on the core simulator:

a Simulation Performance
Because of the need to simulate as many test cases as

possible, simulation performance takes priority over every
other aspect of the simulator design. The quality of the
final hardware depends greatly on the amount of simula-
tion that can be performed during the design phases and so
the efficiency of the simulator at each stage of the develop-
ment route is paramount. Because of the size of the valida-
tion task, the simulation performance also takes priority
over the performance of model compilation - in fact the
compilation phase is extended to ensure that the simula-
tion model is fully optimised prior to simulation.

b Diagnostic Capability
Finding the source of a design error within a large

model can be very time consuming. It is essential that
errors can be located easily and quickly. An interactive
simulation environment, with the ability to apply “what-
if” tests at any time and in any area of the model, provides
the most efficient solution.

c Memory Utilisation
Memory use is also very important with large system

models. To avoid swapping during simulation the memory
allocation must be efficient, though this always has to be
balanced against the (sometimes conflicting) strive for per-
formance.

d Model Re-use
Checkpointing is essential and the user should be able

to quickly reload past simulations to assist error detection.
Also, a single configuration of the system may be the basis
of many simulation tests and be used by different design-
ers exercising different aspects of the system design.

e Design Iteration
Even at the higher levels of description, system mod-

els are inherently very large and compilation times
lengthy. It is very important, therefore, that, having found
a design error, there is a mechanism for fast re-compilation
which does not require a full re-compilation of the whole
system.

3. Benefits of System Simulation

Figure 1 illustrates the impact of simulation on the
number of errors remaining in the design at the
manufacturing and commissioning phase - these figures
are based on actual experience in the development of large
systems in HPS.

In the early 1970s there was little system simulation
and most design errors had to be found after the hardware
had been built. Simulation became a key part of the
development route in the late 1970s, but most simulation
at this stage was at the gate level and, because of the poor
simulation performance, relatively few tests could be
completed prior to manufacture. In the 1980s, as the
complexity of system design increased, higher levels of
modelling were introduced, more powerful hardware was
available to run the simulation and more effort was applied
to the creation of simulation-specific tests.

The first half of the 1990s has seen that trend continue
with more and more dependence on simulation with the
resulting improvement in “right-first-time” chips, boards
and systems.

D
es

ig
n

E
rr

or
s

pe
r

10
00

 g
at

es

1000

100

10

1

0.1

1975 1980 1985 1990

(180)

(0.06)

Figure 1: Improvement in Error Detection

Over the period from 1970 to today, simulation
throughput, with the benefit of better hardware, algorithms
and modelling techniques, has improved 10,000 times.
The increased simulation capacity has helped error
detection to improve 3,000 times. However, the size and
complexity of the design task continues to grow - the
requirement for faster simulation and better design
methodologies is still paramount.

4. Conversion to VHDL

The emergence of VHDL and the development of new
EDA tools have given rise to a new set of requirements in
addition to those already mentioned:

• The ability to access external VHDL models;

• The ability to take advantage of alternative platforms
for simulation (i.e. Workstations);

• The increased use of synthesis tools using VHDL as
the source language;

• The increasing acceptance of VHDL as the standard
Hardware Description Language.

These new requ i rements caused the Des ign
Automation group in HPS to take on the task of moving
the simulation environment from S3 and VME to VHDL
and UNIX, while maintaining the very high simulation
performance level of the previous system. Also, all of the
above-mentioned requirements (interactive simulation
environment, low memory usage, fast re-compilation, etc.)
had to be satisfied.

There were numerous issues to be tackled:

a Language Incompatibility
The S3 language used for behavioural descriptions on

VME was designed as a standard programming language.
Hence it has no concept of “signals”, “delayed assign-
ments”, “delta delays”, concurrency or sensitivity lists.
Although some of these features had been emulated in the
MSIM/S3 system they had to be re-designed to conform
accurately to the VHDL standard - and this had to be
achieved without impacting performance.

b VHDL Performance
We examined the VHDL language as a whole in great

detail, to determine which constructs enabled efficient
simulation and which impacted it. As a result we have pro-
duced a subset which is tailored for performance by elimi-
nation of inefficient VHDL, while maintaining support for
most of the language. (see 5.3)

c Model Incompatibility
The processes of compilation and simulation model

building had to be completely rewritten for UNIX; again,
of course, without affecting the performance of the gener-

ated model. The lessons of the last decade have been car-
ried over to create a VHDL-based model optimised for
both simulation performance and memory utilisation.

d User Interface Standard
Coming from a mainframe environment to a worksta-

tion we needed to introduce a Motif GUI for the system.

The interactive simulation environment has been
ported almost transparently, allowing designers to use the
new system without any need to learn a new simulation
control language. In addition, we also now have the
capability to run VHDL test benches, allowing us, for the
first time, to measure the MSIM performance against the
best commercial products.

We have now successfully achieved the conversion to
a high performance, UNIX-based VHDL simulator;
detailed in the next section.

5. The MSIM Simulation System using
VHDL

5.1 The Overall System

Figure 2 illustrates the overall structure of the MSIM
simulation system:

The VHDL source is analysed using the VTIP
Analyser [3] and is partitioned into Networks and
Behaviours. The Networks describe the structure and
hierarchy of the model in terms of instances and the
connectivity between instances. The Behaviours describe
the functional behaviour of each instance type. Behaviours
are compiled into object code and the network description,

ModelNetworkBehaviour

TAP

Frames Monitor Waveform
111000111

111000111

Network(VHDL)

MSIM simulator

Figure 2: The MSIM Simulation System

(VHDL)

or descriptions, are compiled into an internal structure
(“the model”).

5.2 Interactive Simulation Environment

TAP (Tests And Patterns) is the MSIM interactive
simulation control language. It has been developed over
more than 10 years to provide the full range of commands
for interrogating, exercising and controlling the simulation
model. There are 80 commands covering a whole range of
facilities for the hardware designer.

The TAP environment provides an interactive editor
which allows the user to build up a TAP programme
within the simulation environment - executing individual
commands or groups of commands dynamically, analysing
the results of each execution, editing the TAP as necessary
and finally saving the complete TAP programme for future
re-use. This environment provides the capability of an
“Interactive Test Harness” and can be used on any
simulation model - large or small.

The key TAP facilities include:

• The ability toSet any signal value in the model and to
Compare a signal value with a defined value or another
signal.

• A set of user-definedPulse shapes, which can be allo-
cated to any single-bit signal. TheClock command
then activates all or selected clock signals.

• The ability to quicklySave a model orRestore a previ-
ously saved model, which is vital when simulating
large models.

• Any signal within the system can be interactively
Forced to a value and that value thenReleased.This
allows the user to partition the design and investigate
what/if experiments on isolated areas.

• The Declare command provides a common aliasing
feature - very important in large hierarchical models
where signal names can be very long - for use in all
TAP commands.

In addition, the model can be interrogated for details of
model and event activity. This information can be used to
highlight performance-critical areas of the model.

The TAP language has proved very popular with the
hardware designers and is generally the method used for
the initial testing of a new model. For more extensive
testing a VHDL Test Harness is often used.

Frames, Monitor and Waveform are optional viewing
windows which display signal and variable values during
simulation. The Frame facility provides the user with a set
of graphical objects which can be used to create a
customised presentation of simulation results.

The simulation is controlled by a Simulation Control
Panel which provides interrupt facilities, switching of
viewing windows and model save/restore facilities.

5.3 The VHDL subset

The simulator does not currently support all of the
VHDL language. The target use of the simulator is at the
“pre-synthesis” stage and it does support 100% of the
subsets supported by the leading synthesis products.
However, the other target of the simulator is efficiency and
so “simulator-inefficient” aspects of VHDL have been
avoided - these include:

• some pre-defined attributes such as DELAYED,
LAST_EVENT, LAST_ACTIVE, LAST_VALUE,
QUIET.

• GUARDED signal assignment statements and blocks.

• User-defined attributes.

• User-defined resolution functions.

To fur ther improve effic iency the fo l lowing
functionality is built-in to the simulator software:

• Arithmetic and Boolean operations on BIT and
BIT_VECTOR types.

• Arithmetic and Boolean operations on the intrinsic
types MBIT (a 4-value type (0,1,X,Z)) and MBITS
(array of MBIT).

• The commonly used resolutions functions (wired-OR,
wired-AND and Bus) for BIT, BIT_VECTOR, MBIT
and MBITS.

• Conversion functions, including those between INTE-
GER, MBITS and BIT_VECTOR types.

Only a few, non-synthesisable, aspects of VHDL are
unsupported. Overall the simulator supports >95% of the
1987 language syntax and there are plans to upgrade to the
1993 standard [4] .

5.4 The Simulator Kernel

5.4.1 Event Paths
The kernel structure is shown in Figure 3. The

efficiency of the kernel is gained through the use of a
number of parallel “event paths”. Each event is allocated
an “event type”, according to the format of the event data,
and takes a specific path through the kernel, customised
and optimised for that data type. There is a single Event
Manager which treats each event as a data/time item, but
there are separate Event Processors for each of the Event
Types. The role of an Event Processor is to update state

values, propagate the values and form a list of Behaviour
Instances to be called for this set of events.

The different Event Types are:

Single2: This is used where the event data represents a
single-bit, 2-value data item.

Single4: Single-bit, 4-value data item.

Single: Single-bit, multi-value data item.

Word2, Word4, Word: for multi-bit 2,4 and multi-value
data items- but where the number of bits is 32 or less.

Multi2, Multi4, Multi: for Hmulti-bit 2,4 and multi-value
events - but where the number of bits is greater than 32.

Composite2,Composite4, Composite: for all Record and
multi-dimensional Array data items.

Time: Used for events which have no data - e.g.
events created as a result of a WAIT FOR <time>.

Clock: A special event type used for signals which
have been defined to the simulator (via TAP) as clock
signals. These events are self-generating - as one clock is
completed it generates another clock cycle on that signal.

5.4.2 The Event Manager
Since the introduction of event-driven simulation [5]

a series of algorithms for event management have been
implemented within the MSIM kernel. The types of
mechanisms investigated include:

• a single time loop,

• a time loop with extension loops,

• multiple loops,

Behaviours

Single Word Multi

Single Word Multi

Event Manager

Single Word Multi

Figure 3. The MSIM Simulation Kernel

Events

Events

Event Processors

Behaviour Instance List

• a self-optimising loop system which altered according
to the model.

Experiments have shown that, at least for the type of
multi-level system simulation used in ICL, the single time
loop has performance advantages over the others. It has
also been found that keeping the size of the loop small
gives optimum performance for models which are
predominantly clocked designs.

The use of this type of event manager, together with
the use of Event Paths, allows the simulator to be very
efficient for clocked designs, but without being restricted,
as with pure cycle-based simulators, to synchronous-only
designs.

6. Simulation Performance

Two sets of benchmarks were used to demonstrate and
compare the simulation performance of MSIM with
commercial VHDL simulators. The performance of MSIM

was compared with a leading “direct-compiled” simulator.
Other types of simulator were also benchmarked, but were
generally slower.

Table 1 shows the results of four different architectures
describing a 1000-bit LFSR. The first model (lfsr-1) is at
gate level, the next describes 100 instances of a
behavioural description of a 10-bit lfsr, the third 10
instances of a 100-bit lfsr behaviour and the last a single
behaviour of a 1000-bit lfsr. Each run is for 10,000 clock
cycles. Even this simple example demonstrates the effect
of building high level features into the simulation kernel.
The performance of MSIM continues to improve
significantly as the level of description rises - taking
advantage of the more abstract nature of the description.

The second set of VHDL data were collected from a
variety of sources and each example attempts to exercise
different aspects of VHDL:

Mixed-1 is a simple network of relatively small VHDL
behaviours using multi-bit signals, arrays, functions,

Model
No. of

Instances
Direct MSIM

lfsr-1 1100 170 200

lfsr-2 100 62 40

lfsr-3 10 62 14

lfsr-4 1 60 10

Table 1: Performance for Different Levels of
Description

procedures and TextIO. The model is driven by two,
independent, clocks.

Mixed-2is part of a real system design again involving
a mixture of structural VHDL and RTL descriptions. The
whole design is synchronous with a single clock.

Behaviour represents a behavioural model of a
microprocessor. This example is above RTL and makes
good use of multi-bit values, arrays, functions, procedures
etc.

Propaga te i s a purpose-made example fo r
demonstrating simulation performance in the propagation
of multi-bit, multivalue states. There are over 3000
instances of a very simple behaviour with complex multi-
bit port-to-port connections.

Arithmetic is an example which performs many
arithmetic operations and collects a “signature” of the
resu l t s . The types used inc lude INTEGER,
BIT_VECTOR, SIGNED and UNSIGNED.

.

This set of results highlights the importance of the
MSIM optimisations for propagation of large state values
and for arithmetic operations. Within a large system
model, such operations will be common and without
special handling can impact the overall simulation
performance significantly.

NB: All simulation runs were performed on the same
Sparc10 machine and all times are in seconds.

7. Conclusion

This paper has described the successful transition from
a proprietary simulator to a standard VHDL simulator. The
benefits of over 12 years experience in large systems
simulation have been transferred to the new environment
with excellent results in terms of performance and
usability. The comparison with commercial simulators
illustrates the need for simulation technology to consider

Model
Lines

of
VHDL

No. of
Clocks

Direct MSIM

Mixed-1 1000 30k 54 30

Mixed-2 3000 50k 365 130

Behaviour 1400 25k 115 10

Propagate 200 1k 1800 90

Arithmetic 150 100k 350 32

Table 2: Performance Comparison over a
range of VHDL styles

the requirements demanded when modelling large
systems.

Figure 4 summarises the strengths of our VHDL
simulator when compared with both commercial direct-
compiled simulators and “other” types of simulator (where
other covers interpreted and conventional compiled-code
simulators). Assuming all simulators are, more or less, on
a par at the gate level, the graph illustrates how MSIM,
with the built-in features and algorithms for high level
descriptions, provides significant benefits for “pre-
synthesis” simulation. For some examples this benefit can
amount to greater than 100 times simulation performance
improvement compared to commercial simulators.

The use of a simulator designed for performance has
already provided a significant advantage to ICL in design
productivity and design correctness and, as the higher
levels of modelling become more prevalent, this attribute
will maintain its importance for many years.

Gate RTL Behaviour Specification

P
er

fo
rm

an
ce

(e
.g

. c
lo

ck
s/

se
c.

)

MSIM

Other

Direct-Compile

(Level of Description)

Figure 4. Simulation Performance at different
levels of VHDL

8. Future Enhancements

Figure 4 deliberately shows the performance of MSIM
improving beyond the Behavioural level. This is to
illustrate the expected performance at Specification level -
a level of description not currently supported by VHDL.
Use of System Specification descriptions has already
proved successful at ICL [6] using the MSIM/S3
simulator and we confidently predict that these results will
be transferred to MSIM/VHDL [7] .

9. References

[1] G.P.Abraham, D.C. Freeth and H.Vosper, “SX Design
Processes”, ICL Technical Journal Vol. 7, 1990.

[2] S.Hodgson, “A Multi-Level, Mixed State Simulator for
Hierarchical Design Verification”,IEEE European
Design Automation Conference 1984.

[3] VHDL Tool Integration Platform, COMPASS Design
Automation.

[4] IEEE Standard VHDL Language Reference Manual.
IEEE Std 1076-1993. The Institute of Electrical and
Electronic Engineers, New York, USA, 1994.

[5] E.G.Ulrich, “Event Manipulation for Discrete Simulation
Requiring Large Number of Events”, Communications of
the ACM, September 1978.

[6] A.Jebson, C.Jones and H.Vosper, “CHISLE: An
Engineer’s tool for hardware system design”,ICL
Technical Journal May 1993.

[7] M.M.K.Hashmi and A.C.Bruce, “Design and Use of a
Sys tem-Leve l Spec i fi ca t ion and Ver i fi ca t ion
Methodology“,IEEE Euro-DAC 1995

	EURO-DAC95
	Front Matter
	Table of Contents
	Session Index
	Author Index

