
The VHDL Based Design of the MIDA MPEG1 Audio Decoder

Andrea Finotello, Maurizio Paolini
CSELT - Centro Studi E Laboratori Telecomunicazioni S.p.A.

Via Guglielmo Reiss Romoli, 274
I-10148 Torino, Italy

Abstract

This paper describes the features and design
methodology of MIDA, a MPEG1 integrated audio
decoder. MIDA has been almost completely designed
using automatic synthesis of VHDL descriptions, and
has been implemented using a cell based approach and a
0.7 µm, 2 metal layers CMOS technology. The die area
is 95 mm2. Synthesis tools have also been used for
automatic insertion of test structures and automatic test
pattern generation.

 1. Introduction

This paper details the features and the design
methodology of the MIDA1 (MPEG-I Integrated Decoder
of Audio streams) integrated circuit. MIDA is a decoder
of audio sequences, encoded in layer I or II of the ISO
11172 (MPEG1) standard [1]. MIDA receives as input a
MPEG1 packet audio stream, formatted in 8 or 16 bit
words, and outputs the decoded audio stream in serial 16-
bit PCM format. The circuit also handles
synchronization between audio and video frames by a
feedback loop on the audio data presentation frequency.
Finally, MIDA handles audio frame synchronization and
errors in the audio data stream. Several circuit functions
can be programmed by writing into a set of configuration
registers.

The target application for MIDA is the M-BIRD
MPEG1 audio/video decoder board for IBM compatible
PCs, being developed in the framework of the ESPRIT
projects M-PLANAR and MAXI.

MIDA has been implemented using a cell based
approach and a 0.7 µm, 2 metal layers CMOS
technology. The die area is 95 mm2. The circuit test
design has been simplified using design for testability
techniques: full scan for all the registers and BIST for all
the macrocells.

VHDL and synthesis have played a major role in the
MIDA design flow. MIDA has been almost completely
implemented by automatic synthesis of VHDL RTL
descriptions. Besides, an algorithmic VHDL model of the
decoder has been used as reference for verification of both
the RTL and the gate level descriptions of MIDA.

1Patent pending

Finally, synthesis tools have been used for automatic
insertion of test structures and automatic test pattern
generation.

A brief overview on the structure of the MPEG1
audio code is given in section 2. The chip architecture
and the operations performed by each circuit module are
described in section 3. The VHDL based design
methodology of MIDA is discussed in section 4, together
with the relevant design data. Finally, an evaluation of
advantages and limits of the design methodology
followed is given in section 5.

2. MPEG1 audio code overview

The ISO CD 11172 (MPEG1) standard defines a
digital data storage format for moving pictures and
associated audio. The MPEG1 encoding format is
structured in a set of hierarchical layers for system
information, video and audio data.

A MPEG1 system stream consists of one or more
multiplexed elementary streams, and is composed of a
sequence of packs. Each pack consists of a pack layer
header, an optional system header, and a sequence of
packets. The pack layer header is composed of a pack
start code, the system clock reference value and the
specification of the data arrival rate to the decoder; the
system header contains various system-wide limit values
and flags. The pack layer is not directly handled by
MIDA.

An audio packet is a sequence of audio data belonging
to the same elementary audio stream. An audio packet is
composed of an audio packet start code, a stream
identification code, the packet length in bytes, optional
buffer size information, optional presentation and
decoding time stamps, and a sequence of audio frames.
The presentation (decoding) time stamp specifies the time
at which the first frame in the packet has to be output by
(given as input to) the audio decoder. The audio packet
layer is the input format for MIDA; MIDA uses the
presentation time stamp (PTS) to perform the audio-
video synchronization task.

An audio frame contains a fixed number of encoded
audio PCM samples, and is composed of an audio frame
header, an optional error detection checksum for the
header, the encoded audio data and optional user-defined

ANCILLARY
DATA

AUDIO DATAHEADER
PROTECTION CRC

AUDIO FRAME
HEADER

PACKETSYSTEM
HEADER

PACK LAYER
HEADER

PACKET PACKET

AUDIO
FRAME

AUDIO PACKET
HEADER

AUDIO
FRAME

AUDIO
FRAME

AUDIO
FRAME

Figure 1 - MPEG1 audio stream organization

data (ancillary data). Three different audio coding layers
with increasing complexity and performance are defined
by the MPEG1 standard; MIDA handles layers I and II,
that are those most widely used.

The audio frame header contains a 12-bit
synchronization word and frame related information such
as encoding layer, header protection, encoded stream bit
rate, output sampling frequency, output mode (mono,
stereo, dual channel, intensity stereo) and others. The
format of the audio data depends on the selected coding
layers and on the output mode.

3. Chip architecture

The internal architecture of MIDA is shown in Figure
2. In this section, the operations performed by each
module are detailed.

3.1. External clocks

The MIDA master clock frequency is 24.576 MHz.
The master clock is also used to synthesize audio data
output frequencies related with 32 KHz and 48 KHz
sampling frequencies. A second clock frequency of
22.5958 MHz is used to synthesize audio data output
frequencies related with the 44.1 KHz sampling
frequency.

3.2. Input data buffer

The input data buffer absorbs the variations in the
frequency of the input data. It holds up to 32 8-bit data,
and outputs data in a variable format (from 1 to 8 bits),
set by the packet audio parser .

3.3. Packet audio parser

The packet audio parser identifies the packet audio level
codes in the input streams and extracts from the packet
header all the information needed for decoding and
synchronization. In detail:

• the packet start code prefix is recognized and used for
packet level stream synchronization;

• the stream id value is extracted and compared against
the target id set by the user, to verify whether the
incoming packet belongs to the selected stream;

• the packet length field is extracted and saved for a
later packet consistency check;

• the presentation time stamp PTS is extracted and
saved; a PTS found flag is then propagated through the
decoder stages, together with the audio data to which the
PTS is associated;

• any other information in the packet header is parsed,
but is neither used nor saved.

The occurrence of errors in the packet size and
structure or in the stream id cause the interruption of the
decoder output and the restart of the packet
synchronization procedure.

Audio data in the packet are transferred to the audio
stream decoder only after a PTS has been found. If no
PTS has been found yet, data are discarded because no
presentation time can be determined for them.

3.4. Audio stream decoder

The audio stream decoder parses and decodes the audio
stream level information. In detail:

Packet
audio
parser

Input data
buffer
32x8

System
controller
interface

Audio stream
decoder

and buffer

Presentation
unit

Output
frequency
correction

filter

SCR

PTS

Control

Data

Data Data

SDO
BCLK
WS

VF(7:0)
VFCSN
VFWRN
VFSEL

Frame
sync
unit

AD
AADR

ACS
IOR
IOW

ADRQ
ADACK

ARDY
ADMAE

INTR

CLK22
CLK24
SCLK

RST
TEST

TSE

SYNCO

Presentation
unit

buffer
128x16

Parallel
multiplier

Synthesis
subband

filter

Work
memory
2048x24

Figure 2 - MIDA internal architecture

• the audio sync word at the beginning of each
frame is recognized;

• the frame header is read and the information useful
to the decoding process (control word, allocation tables,
sample scale factor tables) is saved;

• if the frame header is protected by a CRC, the
header consistency is checked;

• the audio subband samples in the frame are
uncompressed, dequantized, rescaled and stored into the
audio decoder buffer.

Any ancillary data in the frame are discarded.

 3.5. Audio decoder buffer

The audio decoder buffer is a paged memory that can
store up to 384 23-bit words. The buffer control logic
handles the memory paging and the reordering of the data
to be transferred to the subband synthesis filter. Both
page size and data order depend on the audio stream

encoding layer - I or II - and mode - mono, stereo, dual
channel or joint stereo. Each memory page is read as a
circular buffer.

3.6. Synthesis subband filter

The synthesis subband filter rebuilds the audio data
samples from the subband samples, performing the
matrixing, windowing and sample reconstruction defined
by the standard through a multiply and accumulation
algorithm. The filter uses a 24x24 parallel multiplier
(shared with the audio stream decoder) and a 2048 word,
24-bit internal work memory. The computed audio
samples are stored in the presentation unit buffer.

3.7. Presentation unit buffer

The presentation unit buffer holds up to 128 16-bit
audio data samples, organized in pages of 64 samples.

MIDA

dual
DAC

VCO #1

VCO #2

VF

VFCSN

VFWRN

VFSEL

CLK22
CLK24

PLL #1

PLL #2

Figure 3- Audio-video synchronization feedback loops

The buffer control logic handles paging and reordering
of the audio samples; the sample ordering depends on the
audio stream mode .

3.8. Presentation unit

The presentation unit handles the serialization and the
output of the decoded audio samples. Samples can be
output in two's complement or offset binary format,
either in baseband or with a 2x, 4x, 8x oversampling
factor. The presentation unit also supplies the output data
sampling clock. The audio output can be muted.

3.9. Frame synchronization unit

The frame synchronization unit handles
synchronization detection in the input stream, and
synchronization recovery in case of decoding errors. This
unit also determines the frame length for audio streams
encoded in free format. Detected synchronization errors
may trigger an interrupt to the external controller.

3.10. Output frequency correction filter

The output frequency correction filter performs two
related tasks:

• it controls the timing of the audio output start, by
comparing the current value of the System Clock
Reference SCR to the PTS value associated to the current
decoded audio frame;

• it handles the audio-video synchronization by
adapting the frequency of the clock controlling audio
output presentation rate so as to minimize the difference
between SCR and MIDA internal time.

The MIDA internal time can be determined whenever
the first sample of an audio frame with an associated PTS
is output and is adapted by a feedback loop on the clock

frequency of the external clock controlling the output data
presentation. The two feedback loops - one for each clock
- are composed of a DAC/VCO/PLL chain controlled by
an internal digital filter. The filter outputs 8-bit words in
two's complement or offset binary format. If the
difference between SCR and internal time falls out of the
filter operation range, filtering is suspended and an
interrupt is sent to the system controller.

3.11. System controller interface

The system controller interface handles the
communication with the system controller and the device
programming. The MIDA programming registers allow
the user to configure and control the following
parameters:
• input data width (8 or 16 bits);
• output data format (offset binary or two's

complement);
• output data oversampling factor (1x, 2x, 4x, 8x);
• input data stream id selection;
• audio output mute;
• gain, pole and zero of the output frequency correction

filter;
• data format (offset binary or two's complement) of the

output frequency correction filter.
Audio data are transferred to MIDA using a DMA-like

communication protocol. Data transfer activation and
deactivation are controlled by writing command words
into the device.

 The interface may generate interrupts on occurring
events, such as:
• individuation of a PTS in the input stream;
• frame synchronization lock;
• frame synchronization errors;
• start of the output data presentation ;

• other errors in the output frequency correction filter,
in the presentation unit or in the synchronization
unit.

Each interrupt cause can be masked.
Some status information can be read from the

interface: the control word of the last decoded audio
frame, the last PTS value found, and information on the
activity of some internal modules.

The interface also computes the SCR value using an
internal counter externally loadable and driven by the
system clock.

4. Circuit design methodology

The MIDA circuit has been designed using a
methodology based on automatic synthesis of circuit
modules from VHDL RTL descriptions.

At first, a behavioral VHDL description of the audio
decoder has been written and simulated. The behavioral
simulation results have been used as reference throughout
the design process. This model uses floating point
arithmetic for internal computations, thus allowing for
high simulation throughput. The code size of the
algorithmic model is about 7000 lines.

The circuit architecture has then been defined and a
synthesizeable VHDL description of every circuit module
- excluding the system controller interface, because of the
presence of asynchronous parts in it - has been written
and verified by simulation. The synthesizeable
description size is of about 17000 VHDL lines. The
system controller interface has been separately designed
using more traditional design methods, i.e. gate level
schematic capture and simulation.

A simulation of the complete description has been
run and the simulation results have been compared
against those obtained from the behavioral simulation.
The same set of patterns has been used for both
behavioural and RTL simulation; the input packet audio
streams have been read from an ASCII file and fed to the
model under test by pattern generators written in
behavioral VHDL. A format converter – still coded in
behavioral VHDL – has been used for translating the
floating point output of the behavioral circuit model into
16 bit fixed point integers, to be compared with the RTL
model output.

The circuit netlist has then been generated by a
bottom-up synthesis process; each module has been
separately synthesized with an appropriate set of physical
constraints, and an incremental synthesis step has been
performed on the complete circuit. The synthesis was
performed using the Synopsys VHDL compiler ™ and
Design compiler™ software, and the ES2 ECPD07
standard cell library (0.7 µm, 2 metal layers). Macrocells
(single and dual port RAMS, parallel multiplier) have
been modeled in behavioral VHDL for simulation
purposes, and implemented by ES2 module generators. A
characterized “black box” model of each macroblock has
also been supplied to the synthesis tools so as to ensure
the correctness of synthesis constraints (loads, delays)
imposed by each block.

The synthesized implementation contains 15428
standard cells, four 1024x12 single port RAMs, three
dual port RAMs (128x16, 384x23 and 32x8) and a 24x24
parallel multiplier for a total amount of about 325000
transistors.

The logic level netlist of the circuit has been
simulated before and after the layout using the Cadence
Verilog™ simulator.

The circuit layout has been realized using the Cadence
Preview™ floorplanner and the Cadence CellEnsemble™
placement & routing software. The chip die size is 9,7
mm x 9,7 mm, corresponding to a die area of 95 mm2.

The circuit test strategy is based on the direct
accessibility of internal registers through 29 scan chains,
and on BIST of macrocells. The scan chains have been
automatically inserted by the Synopsys Test compiler™
software, that has also been used for test pattern
generation. The macrocell BIST structures have been
supplied by ES2.

MIDA is available in an 84-pin ceramic PGA
package.

5. Design methodology evaluation

As stated earlier in this paper, the MIDA design
methodology is based on the automatic synthesis of
VHDL RTL descriptions. Circuit modules have been
described as finite state machines, that have been
translated into multilevel logic equations and mapped
onto a target cell library by a synthesis tool. Besides, the
global chip architecture has been implemented using a
schematic editor which gives as output a structural
VHDL description of the defined schematic, thus limiting
the code writing effort and the possibility of introducing
design errors.
This methodology provides many advantages to the
design group. The use of both a standard language and a
common methodology make communication and
information exchange among different designers or
partners easier. VHDL also allows to include in the same
description and to simulate modules at different
abstraction levels (behavioral, RTL, gate), facilitating the
top-down design procedure; besides, VHDL descriptions
at different abstraction levels can easily share the same
test bench. Automatic synthesis allows a fast translation
of specifications into logic, increasing the time available
for evaluating different design solutions; it also reduces
the design dependency from the target technology.
Finally, the separation between functionality (described
in the VHDL source code) and implementation
constraints (separately supplied to the synthesis software)
allows an easier circuit debugging and the reuse of
modules in different designs.

Beside these advantages, this methodology still has
some drawbacks. Firstly, the VHDL simulators available
during the development of this design showed out to be
not suitable for gate level simulation, and a VHDL
model of the gate level library was not available. This
forced us to use different simulation environments for
RTL and gate level simulations, and to develop a specific
set of scripts for translating the patterns into the gate

Figure 4 - MIDA die photo

level format. It has to be said that this situation is now
changing, because both CAD and silicon vendors are
proposing a wide spectrum of solutions to these
problems (gate level oriented VHDL simulators, mixed
VHDL-gate level simulators, VHDL libraries).

Secondly, the integration of macrocells in the
synthesis environment leaves much to be desired.
Macrocells could not be inferenced from RTL
descriptions, so structural macrocell instances had to be
added to the global structural code; that made the code of
the modules interfaced with macrocells more complicated.
Besides, the module generators did not supply any
synthesis model for the generated macrocells; synthesis
models had to be developed by hand.

Finally, no automatic feedback from the layout tools
to the synthesis tools was possible when this design was
completed. That caused an undesirable amount of
synthesis and place/route cycles, mostly caused by
discrepancies between the actual capacitive load of some
connections and the corresponding estimates computed by
the synthesis tool. However, synthesis-layout interaction
tools that specifically target this class of problems are
now becoming available on the market.

6. Conclusions

This paper described the characteristics and the design
methodology of the MIDA circuit, an integrated MPEG1
audio decoder.

MIDA has been almost completely designed using
automatic synthesis of VHDL descriptions. The
synthesis tools have also been used for the automatic
insertion of test structures and the automatic test pattern
generation.

The VHDL based design methodology used has given
good results in terms of both design consistency and
productivity, and is currently being extended towards the
design and management of a library of parametric
synthesizable modules for telecom applications [2]. The
ongoing evolution of the synthesis tools, together with
the improvement of the support given to VHDL and
synthesis users by the silicon foundries, should lead to a
rapid increase in popularity of this design methodology.

References

[1] “Information technology - Coding of moving
pictures and associated audio for digital storage media up to
about 1,5 Mbit/s”, ISO/IEC DIS 11172, 1992

[2] Enrico Domenis, Enrica Filippi, Luigi Licciardi,
Maurizio Paolini, Maura Turolla, Denis Rouquier, “Fast
Prototyping for Telecom Components Using a
Synthesizable VHDL Flexible Library”, VLSI '95, Makuhari
Messe, Japan, August 1995

	EURO-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

