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Abstract

 The paper presents an approach for performance and
complexity analysis of hardware/software
implementations for real-time systems on every stage of
the partitioning. There are two main features of the
approach. The first one is the rapid performance-
complexity estimations for software based on the set of
introduced stochastic characteristics. The second one is
the systematic exploration of the codesign space, that
enables to determine the partition process direction.
These properties allow the renovation of the code-
segment candidate list for hardware implementation
during the partitioning with internal representation
transformations, and the significant design space
reduction.

1. Introduction

A successful solution of the constrained hardware-
software partitioning problem depends on adequate
estimates of performance characteristics and the
implementation cost (the complexity) of appropriate
HW/SW system parts on all stages of the partitioning. To
reduce the HW/SW codesign space and to control the
partitioning process one could use an appropriate cost
function counting performance-complexity requirements.

Both the HW-oriented [1, 2] and the SW-oriented
[3, 4] approaches allow fine-grain automatic partitioning.
Among the related work, authors in [5] investigate the
partitioning problem from a cospecification.

Despite the similarity of the results for different
initial conditions [4] the efficiency of HW/SW
partitioning in these approaches depends on the initial
solution in the codesign space, and the cost function must
be automatically adapted.

A clustering  approach  [6, 7]  with  using  closeness
criteria [8] to control the partitioning process turns to
account the design space properties. However the user
decides on clustering and partitions the  operations. In
addition, the highly nonmonotonic design space makes
difficulties in introducing the metric (the distance
function) [7]. In [9], an approach is described which uses
a relaxed cost function that enables the partition
algorithm to focus on satisfying performance and to
handle the HW minimization. The parameterized
architecture model [10] is proposed which allows to
consider the number of buses, memory ports, and
connection styles affecting machine parallelism.

Fine-grain partitioning in HW- and SW-oriented
approaches has such serious side effects as
communication time overheads [2, 4].The flexible
paradigm for the problem of communication between
HW and SW subsystems via communication units
(controllers) is proposed in [11, 12]. It is difficult to
predict communication side effects precisely without a
global dataflow analysis and under the fixed set of code-
segment candidates for moving to HW [4].

2. Main goals and features

The main objectives of performance-complexity
analysis are to estimate marginal satisfiability for
performance requirements on every stage of HW/SW
partitioning and to determine the partition process
direction in the HW/SW codesign space for the cost
function minimization. There are several distinctive
features in the proposed approach.

• First,  starting  from  the system specification as a
C  program (as in the software-oriented approach [3, 4])
it allows to extract the Pareto optimal set of system
alternatives in the HW size - system performance
codesign space, to estimate extremely different



implementations as HW [1, 2] or SW [3, 4], and to
choose an optimal HW/SW one.

• Second, profiling the C program and using the
special graph for an internal representation - a
metaoperator net (M-net) [13], this approach enables to
estimate the software complexity on the object code level
and even on the assembly language level with the rapid
performance estimation system. It is important because
using the assembly code based on the details of the
processor selection let us reduce redundancy introduced
by different compilers  in SW timing estimation, and the
estimation is fast due to the special C program profiler
realization.

• Third, using generalized performance-complexity
estimates and the codesign space properties (the Pareto
subsets) it is possible to control the partitioning process
as in [6, 7], but, in constrast with above works, this
approach enables fine-grain automatic partitioning, and
the communication overhead minimization.

Experimental results discussed in Section 6 are
promising and prove the relative insensibility of the
proposed approach to the initial solution.

3. Performance-complexity analysis overview

This section addresses an inner loop of performance-
complexity analysis. After HW/SW partitioning,
assembly (for SW) and VHDL (for HW) code generation,
and high-level synthesis, the stage of global run time
analysis is necessary (an outer analysis loop). The major
steps of the inner loop analysis are the following.

1) Preliminary profiling. The GSSS system [13] was
used as a platform for the performance-complexity
investigation in HW/SW partitioning.

We use the  two-stage investigation of the SW
complexity: on the level of C functions, basic blocks and
statements, and on the assembly code level by building
the SW execution trace. This trace can be built with
using trace interruptions (as an example, the interruption
01 in BIOS for IBM PC) and the frequency counters
method. This method consists of short operations and
instructions automatic  clustering,  gathering statistics,
and using special tables for the calculation of execute
instruction times for different processors.

In the presence of nondeterministic operations in the
system specification (data-dependent operations, loops
and waiting for external events [2]) we use stochastic
estimates for the SW complexity (the number of
processor cycles) and the maximal CPU cycle time.

2) SW run modelling. Those SW (code) segments are
selected for HW moving, where timing constraints are
violated. For multiprocessor systems the partition task is
complicated by global scheduling and allocation. The

selected code segments are belonging to the critical path,
and the partition task is solved for these segments. For
those code segments which are not critical, D.R.
Fulkerson task is solved. That is an optimal delay
distribution for a cost function minimization under
minimum/maximum timing constraints.

3) The SW-segment candidate list renovation. After
the HW evaluation of the selected code segment the
internal representation transformations may be possible
(as an example, concurrent operations in SW and HW).
In consequence of these transformations the renovation of
timing constraints is probable, and the candidate list may
be reduced significantly. In the multiprocessor case only
those transformations are possible which do not violate
minimum/maximum timing constraints for noncritical
path SW-segments. Above properties define the proposed
approach as an adaptive one.

After the Pareto optimal variant extraction and the
systematic HW/SW codesign space exploration the
constrained partition optimization is realized.

4. Performance-complexity estimates in
      HW/SW partitioning

4.1. Processing model

In this section, the software running model for a
general-purpose processor is discussed. The main goal is
to use it in performance-complexity analysis.

A central processor unit (CPU) model for dedicated
real-time embedded systems captures the following
function units: a general-purpose L -bit processor (it may
be a single chip one or a bit-slice one); an internal
random-access memory (RAM); the direct memory
access (DMA) logic to avoid K L/  processor
interruptions, where K  is a length of an input/output
words, and K L≥ . The average value of K -bit
processing time is defined with counting an average
number ap of operations for L -bit processing with a

basic set of processor operations, an average number
∆ ap of operations for L -bit preprocessing and

postprocessing (the internal RAM accesses and respective
operations), an average value τ p of the CPU cycle

time, and the coefficient p determined by the processing
manner:

( ) ( ) ( )[ ] ( )T K K L a p K L ap p p p= ∗ + ∗ − ∗ ∗/ / .1 1∆ τ
Figure 1 (see the next page) shows a purely serial (a)

and an internal pipelined (b) processing, when K L> .
For cases (a) and (b) correspondent values of p are

ps = 4 and pp = 2.



We are given an input data block consisting of d bits,

the time constraint ( )T dp  for d-bit processing by using

software ( )S dp , which requires not more than ( )S dp

processor  cycles  under  a  given value of  L .
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Figure 1: A purely serial (a) and an internal pipelined
(b) processing models

The value of K  is determined by a target architecture
and system parameters during HW/SW partitioning. On
the initial stage of the SW complexity estimation (section
4.3) it is supposed K L= . The estimation of ap is

defined as  ( )( )a S d d Lp p= ∗/ , and the value of ∆ ap

depends on a basic set of processor operations.
The maximal acceptable value of the CPU cycle time

is
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where ∆$ap   is the maximum of ∆ap.

If we suppose in (1), that  1≤ ≤∆a ap p ,then we can

obtain from (2) coarse-grain estimates for examples (a)
and (b) in Figure 1:

a)       ( ) ( ) ( )[ ]$ / / ,τ ps p pT d K K L S d L= ∗ − ∗ ∗5 4

b)       ( ) ( ) ( )[ ]$ / / .τ pp p pT d K K L S d L= ∗ − ∗ ∗3 2

It is obvious, that  $ $τ τps pp=  , if  K L= .

In all cases for all feasible values of ( )S dp  in

HW/SW partitioning (under system parameters variations
including K L p, , ) the real value of τ p must be

constrained as 
(τ τ τp p p≤ ≤ $ , where 

(τ p is the minimal

CPU cycle time which can be obtained by the well-known
methods.

Upper indices "-" and "+" in the following notations
designate the minimum and the maximum values.

So, global timing constraints for a single processor

system are satisfiable, if ( )T d Tp
+ ∗≤   (T ∗  is an upper

bound of the execution time) and $τ τp p
− +> (

 in accordance

with (2) for ( )T dp
− ,   ( )S dp

+ .

Further, it is supposed that software ( )S dp  is devided

into n program threads (code segments) ( )S dpi ,
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such, that $τ τpi p
− +≤ (

, is the candidate for the HW

implementation. In (4) Ki is the value of K  for the SW
segment with the index i .

After partitioning $τ p is defined as { }$ min $τ τp
t

pt= −

where t n≤ , t  is the number of the code segments in
the HW/SW system.

4.2. Multiprocessing model

For multiprocessor systems with m processors the
expression (3) is modified as

( ) ( )S d S dpm pl
l

C

=
=
∑

1

     ,                                  (5)

( ) ( )S d S d l Cpl Cm⊆ ∈, ...1  ,  where SCm is the critical

path set of C  segments, C n≤ , n m≥ .

If ( )T dpC  is the execution time of the critical path

segments, then global timing constraints for a m-

processor system are satisfiable, when  ( )∀ ∈i n1...



( )∃ ∈j m1...  ( )( ) ( )[ ]T d TpC pij pj
+ ∗ − +≤ >& $τ τ(  , that is

respective scheduling and allocation are found such, that
the code segment i  might be executed on the processor
j .

The selection of code segments of the critical path as
candidates for the HW implementation is defined in

accordance with the violation $τ τpij pj
− +≤ (

, where $τ pij
−  is

estimated similarly to (4).
Expressions in (3), (5) are additive measures. So, we

can use them in high-level transformations of the internal
representation (as an example, in unrolling), in
scheduling based on the critical path method and D.R.
Fulkerson model, and in partitioning by M-net approach
[13].

Thereby, on every HW/SW  partitioning stage we can

estimate ( )S dp  or ( )S dpm  in accordance with (3), (5).

We call these parameters as SW complexity.

4.3. The SW performance-complexity stochastic
analysis

After r software  ( )S dp  runs  (profiling and the

program execution) with complexities

( ) ( )S d S dp p
r1 ,...,  we can obtain the estimators of the

mathematical expectation

( ) ( )~
/S d S d rp p

k

k

r
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r

r=
=
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and the unbiassed estimators of the dispersion
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For every SW run $τ p
k  is defined in accordance with

(2) for the given processor type and the processing
coefficient p.

Then the classical estimators for the confidence
interval are

( ) ( )( )I S d t D r S d t D rp s p sβ β β= − +~ ~
/ ;

~ ~
/ ,

  ( )I t D r t D rp pγ γ τ γ ττ τ= − +~ ~
/ ; ~ ~

/ ,

where β , γ  are the values of the confidence probability;

tβ , tγ - the roots of the equations ( )2 1Φ tβ β− =  ,

( )2 1Φ tγ γ− =  with the Laplace function  ( )Φ β ,

( )Φ γ .

Therefore, we must operate with the statistic values of

( )~
S dp  and  %τ p, so that   

(τ τ τp p p
+ −≤ ≤ $ , where

$ % %/τ τ γ τp p t D r− = − , 
(τ p

+  is the maximum of minimal

CPU cycle times for different operation types.
4.4. Communication overhead cost estimation

Communication overhead minimization is a
challenge in fine-grain HW/SW partitioning. The main
goal of the communication cost estimation is to obtain an
upper bound of the number of variables to be
communicated if the SW segment (a M-net node) or the
segment set (several nodes) are moved to hardware and
the number of processor cycles for variable transfering. A
global data flow analysis is computation-time-intensive,
but an analysis only of adjacent blocks (nodes) may be
coarse-grain for real embedded systems [4].

Effective relaxation algorithms for M-net marking
based on the Least Common Multiple (LCM)-method
were developed. They enables a rapid global data flow
analysis.

For implementation details, see [13]. The basic idea
of the LCM-method is the following: each node i  (a SW
segment) has a set of input and a set of output variables.

The variable sizes ( ){ }in i  and ( ){ }out i  may be different,

but the number of variables for every input and every
output of the node i  is the same. Each node obtains the
input variables from its predecessors with variable sizes

( ){ }out pr  and transmits the output variables to its

successors with variable sizes ( ){ }in suc .

5. The formal definition of the constrained 
partition optimization problem

As mentioned in section 4.1, the CPU model captures
not only a processor. So, we shall not neglect CPU
hardware.

The experimental results presented in the Section 6
base on the target architectures consisting of the
following functional units: CPU with the HW size HP ;
formatting conversion units (FCU) with the HW size
HF ; communication units (CU) with the HW size HC

(that is buses, multiplexers etc.); memory (it is distinct
from RAM in CPU) with the HW size HM   .

For every functional unit the HW size is estimated as
following



                H HIJ
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where A is the number of VLSI families; B   is the
number of circuit types in the family CI  ; HIJ    is the

number of circuits in the family  CI ; αIJ  is the
transition coefficient for the stated metrics.

Generally, for the multiprocessor architecture the cost
function CF  is defined as follows
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where:  α α α αP F C M, , ,    are the weights of the

respective functional units. They are chosen during
HW/SW codesign space exploration (section 6.2); in m-
processor architectures  α p pH∗    includes the total HW

size; ( )~
S dpl

−  is the SW complexity of the segment l  for

the CPUj  with the maximal CPUj  cycle time $τ pj
− ; T  is

the total time for realizing of algorithms ( )S dpl  in

HW/SW implementations.
The task is defined as: for the given system software

specification ( )S dp  to minimize the function CF under

the timing constraint T T≤ ∗ .

6. Experimental results

6.1 .Target architectures

As an examples three target architectures of
controllers for a solid-state emulator of the floppy-disk
were used in experiments with the GSSS system [13].
The first architecture A1 realizes data formatting,
processing and transfering without intermediate
buffering (HM = 0). The second one A2  realizes
processing before writing to and after reading from the
memory (buffering). In architectures A1, A2  a single

processor  is used. In the third architecture A3  a distinct
processor is used for transfering with a standard
communication protocol.

Am 2900 processor family was used in all examples

for CPU building. The SW complexity varied from 103

to 105  processor cycles with the minimal CPU cycle time
200 ns. The maximal data block was 512 byte with the
hypergeometric distribution   of data arrivals from 10µ s
to 230 µ s  and the confidence probability 0,95. The

maximal delay coefficient for CPU with DMA logic was
not more than 1,04.

6.2. The HW/SW codesign space exploration

The codesign space exploration is the first stage of
performance-complexity estimation in HW/SW
partitioning.

During this stage the Pareto optimal sets of system
alternatives in hardware size (H ) - system performance
(T ) space are extracted. The next step is variant

clustering in accordance to the timing constraint T ∗ .
Figure 2 shows the HW/SW codesign space for target

architectures A1  , A2    ,A3   after clustering with

different values of   T ∗ .
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Figure 2: The HW/SW codesign space

One could account that for every feasible value of the
SW complexity there are one or more (the Pareto optimal
set) variants of the designed system in H -T   space.

6.3. The determination of the partitioning
direction



This is the second stage of performance-complexity
estimation. In experiments we supposed the weights
α αP F= = α αC M= =1 for the explicit extraction of
the SW complexity and performance variation during
HW/SW partitioning. As Figure 2 shows, under the fixed
time constraint T1, if the SW complexity increases, HW
size must be increased for preserving time constraint
satisfiability.

Figure 3 (see the next page) shows the HW size
portion of different units in the total HW dependence
upon the SW run time portion in the total execution time

T  (that is       ( )~
$ /S d Tpl pj

l

C
− −

=
∗∑ τ

1
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Figure 3: Functional unit portion vs. software
run time portion

Coefficients α α α αP F C M, , ,  must be adapted

during this stage for the CF  minimization in (6).
As any acceptable partitioning the supposed approach

minimizes the HW-SW communication (the CU portion
decreases under software run time portion increasing).

7. Conclusions and future work

The major result of this work is the following. The
method of performance-complexity analysis in HW/SW
patitioning for real-time systems under timing constraints
is suggested.

The distinct features of the method are (a) the rapid
performance-complexity estimation for SW based on the
set of introduced stochactic characteristics and the SW
experimental investigation; (b) the exploration of
HW/SW codesign space by the Pareto optimal sets of
system variants extraction, that enables to define the
partition process direction for the cost function
minimization. These features define the adaptive
HW/SW partitioning.

The proposed approach will be extended by the RISC
processors inclusion (Intel i860, Motorola M88000, Sun
SPARC) and the DLX RISC core using for the
processing model generalization.

Now the GSSS system is integrated with Vantage
Optium , version 5.100 containing Styx for adequate
performance analysis of total execution time accounting
real HW delays.
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