
Hardware-Software Co-Synthesis of Fault-Tolerant Real-Time

Distributed Embedded Systems�

Santhanam Srinivasan and Niraj K. Jha

Department of Electrical Engineering

Princeton University

Princeton, NJ 08544

Abstract

Distributed systems are becoming a popular way
of implementing many embedded computing applica-
tions, automotive control being a common and impor-
tant example. Such embedded systems typically have
soft or hard performance constraints. The increasing
complexity of these systems makes them vulnerable to
failures and their use in many safety-critical applica-
tions makes fault tolerance an important requirement.
This paper is the �rst to address the problem of auto-
matic hardware-software co-synthesis of fault-tolerant
embedded distributed real-time systems in a generalized
scenario. We present an algorithm which takes as in-
put the speci�cation of the data-
ow information in
the form of a task graph, the performance constraints,
the fault tolerance requirements and the available hard-
ware resources in the form of processor, ASIC and
link libraries. Our algorithm then synthesizes the re-
quired hardware as a distributed system in terms of
the component processors, ASICs and interconnection
links. The tasks are mapped to this hardware such
that the overall system cost is minimized while still
meeting the performance constraints and the fault tol-
erance requirements. Our algorithm uses clustering
techniques to perform the synthesis. Fault tolerance is
added using CRAFT, a technique we recently proposed
for CRiticAlity based Fault Tolerance in real-time dis-
tributed systems.

1 Introduction

An embedded computing system consists of a hard-
ware engine (typically a distributed architecture) exe-
cuting application software. The processing elements
(PEs) of the hardware engine may be general-purpose
CPUs, DSPs, etc. which execute the application soft-
ware, or they may be application-speci�c ICs (ASICs)
implementing portions of the functionality in cus-
tom hardware. The di�erent PEs are connected to-
gether by an interconnection network of links and/or
buses. The functionality of the system is modeled as
a set of periodically executing modules which we term
tasksets. Each taskset is composed of a number of in-
tercommunicating sequential processes or tasks. The

�Acknowledgments: This work was supported in part by Na-
tional Science Foundation under Grant no. MIP-9423574.

structure of the hardware engine makes up the hard-
ware architecture and the mapping (or allocation) of
the di�erent tasks and the inter-task communication
onto the di�erent components of the hardware engine
results in the software architecture. The design of em-
bedded systems involves the co-synthesis of the hard-
ware and software architectures.

The speci�cation of the embedded system consists
of two parts [1, 2]. The functional aspect of the speci-
�cation describes the tasksets, their component tasks
and the inter-task communication. Also speci�ed are
the characteristics of the di�erent tasks, like the dif-
ferent PEs capable of executing them and the exe-
cution times on these PEs, inter-relationships among
tasks and their communication characteristics, like
the volume of data transferred from one task to an-
other. The non-functional speci�cation includes soft
and hard performance constraints or deadlines on the
tasksets, giving them a certain amount of time to com-
pute the correct output. System failures could occur
either due to missing a deadline or producing an incor-
rect result or both. The increasing use of such systems
in critical applications means that fault tolerance is a
necessity.

In our work, we aim at making the �nally synthe-
sized embedded system fault tolerant. To this end,
we need to introduce some redundancy into the sys-
tem. However, in a real-time scenario, care should be
taken that the overhead due to fault tolerance does
not imperil the meeting of deadlines. For this pur-
pose, we use the concept of CRAFT [3], such that
we can maximize the amount of fault tolerance while
still not violating the performance constraints. We
present a comprehensive scheme to accept a very gen-
eral speci�cation of the embedded system in terms of
the functional and non-functional components with ar-
bitrary resource constraints on the tasks. The avail-
able resources are speci�ed as processor, ASIC and
link libraries. From this description, our algorithm
simultaneously synthesizes the hardware and the soft-
ware architectures such that the overall system has the
speci�ed fault tolerance and meets the performance
constraints while minimizing the system cost.

Traditional work in real-time and distributed sys-
tems [3, 4] assumes that the hardware con�guration
is speci�ed and tries to �nd a mapping of the tasks



to the hardware and assign time slots to the tasks
and inter-task communication in order to meet the
deadlines. Since the hardware engine is yet unspec-
i�ed, compared to these approaches, the problem of
co-synthesis is much more di�cult. Related work in
hardware-software partitioning has generally assumed
a one-CPU-one-ASIC architecture and tried to move
operations from hardware to software to minimize cost
[5], or vice versa to satisfy performance goals [6]. In
[2], work which is most relevant to ours, the authors
have given an iterative procedure to synthesize an ar-
bitrary distributed embedded system from the speci-
�cation. However, they assume the PEs to be o�-the-
shelf processors and do not allow ASICs. Also, they
do not consider communication scheduling. They also
do not allow resource constraints on the tasks. Fi-
nally, they do not address the issue of fault tolerance.
To the best of our knowledge, there has been no work
in solving the co-synthesis problem in the generalized
scenario considered by our algorithm.

2 De�nitions and Basic Concepts

In this section we explain the basic terminology and
concepts needed to understand the rest of the paper.
Hardware Resource Speci�cation: The �nal
hardware architecture is assumed to be made up a
collection of processing elements (PEs) interconnected
via a network of arbitrary topology. Pairs of commu-
nicating PEs are assumed to do so via dedicated links.
The PEs themselves may be o�-the-shelf processors or
DSPs or may be one of many types of custom designed
ASICs. The di�erent types of links available to build
the interconnection network are speci�ed in the form
of a link library. The link library de�nes the proper-
ties of the set � = f�1; � � � ; �vg of available types of
links. An entry in the link library speci�es: (a) the
type of the link (RS232 or I2C, for example) (b) the
cost of such a link, and (c) delay to transmit a unit
piece of data along the link (unit link delay). The set
� = f�1; � � � ; �kg of available PE types is speci�ed in
a PE library. This library contains an entry for each
available type of processor or ASIC which speci�es
(a) the type of the PE (e.g. Pentium, Xilinx etc.) (b)
whether the PE is a processor or an ASIC (c) the cost
of each PE (d) the number of ports the PE is capable
of supporting, and (e) the types of links supported by
each available port of the PE.

The main di�erence between a processor and an
ASIC from the point of view of our co-synthesis al-
gorithm is in the model for their costs and for the
execution of tasks that are allocated to them. Con-
sider tasks t1 and t2 that have been allocated to PE
p. Assume that t1 and t2 do not have any precedence
constraints between them. If p were a processor, its
cost would be independent of the tasks that are allo-
cated to it. Also, if we consider only uniprocessors,
the execution of the two tasks cannot go on simulta-
neously and only one of them can execute at a given
moment on p. In contrast, if p were an ASIC repre-
senting a custom hardware implementation of the two
tasks, then the cost of each ASIC would be dependent
on the total functionality implemented and hence a

function of all the tasks allocated to it. Besides, the
ASIC can be implemented such that the execution of
the two tasks can proceed in parallel.

In view of the above distinctions, for the ASIC en-
tries, the PE library also has to specify the variation
of the cost of the ASIC as a function of the functional-
ity implemented, i.e. the tasks allocated to the ASIC.
In our experiments, as a �rst order approximation, we
assume the cost of the ASIC to be proportional to the
sum of the execution times of all the tasks allocated to
the ASIC. Hence, the PE library can specify the cost
function by supplying the appropriate proportionality
constant for the di�erent ASICs. Note, however, that
our co-synthesis algorithm itself does not depend on
this assumption.

Software Speci�cation: The functional speci�ca-
tion of an embedded system consists of a set of mod-
ules called tasksets. All the tasksets are collectively
referred to as the job. Each taskset is composed of
a number of communicating tasks. The communica-
tion pattern among the tasks imposes a precedence
constraint on the tasks. In this work, the division
of the tasksets into their component tasks is assumed
to have been completed in the task partitioning step.
Partitioning is done to expose the parallelism inside
a taskset. Each taskset is assumed to execute peri-
odically. The tasks and their intercommunication are
represented by a task graph [7, 3], with nodes rep-
resenting tasks and directed edges representing inter-
communication. The task graph supplies the worst
case execution time Eti;�j of each task ti on PE type
�j in the PE library. Allocation constraints on the
di�erent tasks are represented using task preference
and task exclusion matrices, Pr and Ex, respectively
[7]. Ex[ti; tj] is `1' if task ti cannot be allocated to
the same PE as task tj (`0' otherwise) and Pr[ti; tj]
is `0' if task ti cannot be allocated to PE type �j (`1'
otherwise). The comp cost of a task is the average ex-
ecution time of the task on all the PE types it can
be allocated to. We consider only periodic tasksets in
this paper. Each taskset has a number of parameters
associated with it. The earliest start time (est) is the
time before which the taskset is not allowed to start,
the period is the length of time after which the taskset
repeats execution, and the deadline is the latest time
by which the taskset has to complete execution for the
system to perform correctly. All tasks inherit the pe-
riod and the deadline from the taskset to which they
belong. The est of a task t is the earliest time at which
all the fanins of t can complete and t can start. The
latest start time (lst) of t is the latest time when t can
start and still enable all succeeding tasks in its parent
taskset to �nish before their deadline. lst is a function
of all the tasks that depend, directly or indirectly, on
t to complete before they can start executing. Note
that both est and lst of a task are a function of the
particular allocation since the actual execution time of
each task and the cost of all inter-task communication
are known only after the allocation is done. However,
using best, average and worst case values for task ex-
ecution times and communication costs, we can get a
range of values for est and lst which are useful to the



a b

c

d

e

safety−critical essential
taskset − 0

est = 0

taskset − 1

est = 0

10 2010

3010

10 10 10

10

period = deadline = 70

period = deadline = 140

c

d

e

taskset − 1

est = 0

a b

safety−critical essential

taskset − 0

est = 0

safety−critical essential

a.1 b.1

taskset − 0.1

10
10 20

period = deadline = 70

1010

10 10

period = deadline = 140

201010

period = 70, deadline = 140
est = 70

30

10

(a)

(b)

(c)

c

d

e

a b

bd

bc
a.1

b.1
d

b.1
c

b.1

12 −29
−69

−29
−60

−130

−100

−58 −99
−139

taskset − 0

taskset − 1

taskset − 0.1

−99

Figure 1: Example: (a) software speci�cation (b) CTG formation (c) Fault tolerant CTG and clustering

co-synthesis algorithm, as described later. To obtain
best-case values, for each task, the best computation
time from among all the PE types in the system is
used. All inter-task communication is ignored, as if
every pair of communicating tasks were assigned to
the same PE. For computing the average-case est and
lst we use average task computation times and an av-
erage value for the link delay, considering all possible
link types in the link library for the inter-task com-
munication. For determining the worst-case values,
worst-case task execution times and the worst link de-
lay from the link library are used. Both lst and est are
computed using a depth-�rst search on the task graph
of each taskset.
Example 1 Figure 1(a) shows an example software
speci�cation. Taskset 0 has tasks a and b, and a
deadline, period and est of 70, 70 and 0 respectively.
Taskset 1 has tasks c, d and e, and a deadline, period
and est of 140, 140 and 0 respectively. 2
PE Graph: The PE graph is a convenient abstrac-
tion of a snapshot of the hardware architecture as it
is being synthesized, with nodes representing the PEs
already in the system and edges representing inter-PE
links. The weight on the edge eij between PEs pi and
pj, wij, is the delay of link eij represents. We assume
that a PE can perform either a send or a receive to or
from its neighbor at any one time, but not both. We
assume that tasks co-allocated to the same processor
do not incur any overhead when they communicate
with each other. Given this scenario, in order to min-
imize inter-PE communication (IPC), we would like
to ensure that heavily communicating tasks are allo-
cated to the same PE. Our synthesis algorithm tries to
do this by forming clusters of heavily communicating
tasks and ensuring that all the tasks of a cluster are
allocated to the same PE.
Assertions: We assume that a fault in a PE will re-
sult in an error in at least one task computation and
that the failure of a link will corrupt at least one data
item being sent along that link. In order to intro-
duce safety in the system, each task in the task graph
is either checked, whenever possible, by an assertion
task or else is subject to duplication and comparison.
For assertion checking, the original task is modi�ed by

encoding its data elements using a system-level code.
The encoded output data elements are given to the
assertion task which checks their encoding. If the en-
coding is not satis�ed, it indicates the existence of an
error and correspondingly, a faulty PE or link. The
advantage in using assertions over full duplication is
that assertion checking is usually much less expensive
than duplication [7].
Clusters: A cluster is a collection of tasks, typically
grouped together because they communicate heavily
with one another. Our algorithm forms a cluster of
tasks in order to reduce IPC by allocating all the tasks
of a cluster to the same PE. The number of clusters
can be an order of magnitude smaller than the number
of tasks in the system. Using clusters, therefore, may
drastically reduce the size of the search space to be
explored by the co-synthesis algorithm.

3 Hardware-Software Co-synthesis

The steps of our co-synthesis algorithm are described
next.
Feasibility Check: First the best case lst's and est's
for all tasks are determined. Denoting the best case
lst and est of task t by lt

b
and e

t

b
, respectively, if for any

task t, et
b
> l

t

b
, then the job is declared to be infeasible.

Compound Task Graph (CTG) Formation: In
[8], it is shown that there exists a feasible schedule
for a job if and only if there exists a feasible schedule
for the least common multiple (LCM), or hyperperiod,
of the taskset periods. So, each taskset is replicated
as many times as is required to �ll up the hyperpe-
riod. Let taskset s be a copy of taskset r. Let ts

i
and

t
s

j
correspond to tasks t

r

i
and t

r

j
of taskset r. Then

Ex[ts
i
; t

s

j
] = Ex[tr

i
; t

r

j
]. Also, Pr[ts

i
; �] = Pr[tr

i
; �] for

every PE type �. In addition, ts
i
and t

s

j
have the same

criticality as tr
i
and t

r

j
, respectively, as de�ned next.

Fault-Tolerant CTG: Tasks in real-time system
are categorizable as safety-critical, essential and non-
essential depending on the importance of the function
they perform [4]. Failure of safety-critical tasks can
be catastrophic and of essential tasks leads to perfor-
mance degradation. Failure of non-essential tasks has



t

ta

(a) (b)

t t
d

tc

Figure 2: Recovery block using (a) assertion check (b)
duplication and comparison
no immediate e�ect but has a long term impact.

For the safety-critical tasks we target transient
faults and apply backward error recovery as follows.
If an assertion ta exists for the safety-critical task t

then we modify t to produce encoded output [7]. As-
sertion task ta is introduced into the system to verify
the correctness of the encoding. If the assertion fails, t
and ta are re-executed. The number of such retries, r,
is speci�ed by the user. If the task is not assertible, a
duplicate td and a comparison task tc which checks the
output of t and td for equality are introduced into a
similar backward recovery loop. This is depicted in Fig-
ure 2. In order to avoid communication delays as part
of the loop, to be able to derive a worst case bound
on the execution time of the loop, we constrain all the
tasks belonging to the recovery block to be allocated
to the same PE. Under this constraint, if the tasks are
scheduled preemptively, the recovery block is equiva-
lent to a compound task tr with a worst case execution
cost equal to Etr;� = Et;�� (r+1)+Eta;� � r, on a PE
of type �, when t is assertible. If not, the worst case
bound becomes Etr;� = Et;� � (2r+1)+ Etc;� � r. For
r equal to 1, these expressions reduce to 2Et;� + Eta;�
and 3Et;� + Etc;�. So, for each safety-critical task t,
our algorithm modi�es the execution costs to the ap-
propriate value. Note that these are worst case execu-
tion times, and since failures occur only infrequently,
the actual execution times in most cases would be
Et;� + Eta;� or 2Et;� + Etc;�.

We aim to make the execution of the essential tasks
fault-secure. We do this by considering them in the
order of a user de�ned priority and for each task t

we introduce an assertion ta or duplicate td and com-
parison task tc, as shown in Figure 2, but without
the backward error recovery loop, and allocate t to a
di�erent PE than ta, or tc and td. Under these circum-
stances, it can be shown that t's computation is fault-
secure [7]. The cost of fault tolerance, ft cost(t),
is de�ned to be the sum of all the extra computa-
tion and communication to be added to the system
to make task t fault-secure [3]. The user speci�es a
parameter, frac ft, that controls the amount of fault
tolerance added. Let us de�ne total ft cost to beP
essential tasks t

ft cost(t). Those essential tasks
t are made fault-secure, such that

P
t
ft cost(t) �

frac ft� total ft cost.
Deadline Based Cluster Formation: Each task
is assigned a deadline based static level which is the
length of the longest path (in terms of average execu-
tion costs of the tasks along the path and the commu-
nication) from the task to a sink task in its taskset mi-
nus the deadline. To start with, all tasks are marked
UNCLUSTERED and repeatedly tasks which are exclu-
sion and preference compatible with each other and
lying on the longest unclustered path in the task graph

(identi�ed using static levels) are grouped into a clus-
ter and marked CLUSTERED. The process terminates
when all tasks are marked CLUSTERED.
Example 2 Figure 1(b) shows the result of CTG for-
mation, which results in a new taskset 0:1 with est,
period and deadline equal to 70, 70 and 140 respec-
tively. Tasks a:1 and b:1 are safety-critical and essen-
tial respectively. After the application of backward er-
ror recovery, the execution cost of tasks a and a:1 are
modi�ed to 21 (assuming that the cost of the assertion
task is 1). For tasks b and b:1 duplicate and compari-
son tasks are added. (10 units of data are assumed to
be transferred from b and bd to bc.) The deadline based
static levels are computed and the tasks are grouped
into clusters. The result of static level assignment and
clustering in shown in Figure 1(c). 2
Preemption Priority Assignment: We adopt a
�xed priority scheduling strategy [9]. Since the prob-
lem of determining the optimal priorities is hard for
distributed systems, we use heuristics to assign prior-
ities. Deadline based static levels, as de�ned earlier,
are also an indication as to how early a task needs to
be scheduled. So, we sort the tasks in the decreasing
order of static levels and tasks earlier in the list are
assigned a higher priority than later ones.
Worst Case Finish Time Estimation after Par-
tial Synthesis: Suppose during the co-synthesis pro-
cess we are trying to determine the best allocation
for a cluster c. We would like to allocate c to
that PE p that maximizes the probability of meet-
ing the deadlines of all the tasksets. For this pur-
pose, we make some pessimistic assumptions about
the unallocated clusters and estimate the �nish times
of all the tasks as follows. We assume that each
unallocated cluster c is allocated to that PE type
�, denoted by worst PE type(c), which maximizesP

t2c
Et;�. Also, all unallocated inter-cluster com-

munication is assumed to be done over the slowest
link in the link library. Under these assumptions we
can compute worst case static levels and hence pri-
orities for all the tasks. Then the worst case re-
lease time (the time at which t is ready to execute)
�
T

r
(t) can be expressed as: �

T

r
(t) = maxei;tj (�

E

f
(ei 2

fanin edge(t)); �T
f
(tj)), where �

T

f
(tj) is the �nish time

of task tj , which is of higher priority than t and is
allocated to the same PE as t, and �

E

f
(ei) is the �n-

ish time of the send of edge ei which is computed as
maxej (�

E

f
(ej))+send(ei)+recv(ei), where ej is an edge

which may delay the scheduling of ei. Finally, we can
write �

T

f
(t) = �

T

r
(t) + Et;�t . where �t is either the

PE type of the PE to which the cluster ct, to which t

belongs to, is allocated or is worst PE type(ct).
Delay Penalty Calculation: We use the concept
of penalties [2] to handle soft and hard deadlines in
our co-synthesis algorithm. Consider a task t with
an est of �e, a soft deadline of �s � �e and a hard
deadline of �h � �s. Assume that t completes at
time �f . Every task t has an associated penalty func-

tion, �t(�f ; �e; �s; �h) which is a measure of the \good-
ness" of the �nish time �f . Typically, �t(:) is 0 for
�e � �f � �s, as there is no penalty if the task meets its



soft deadline. Its value is positive and non-decreasing
for �s � �f � �h (usually increasing moderately).
Since �nish times which fail to meet the hard dead-
lines are unacceptable, in this work, we set �t(:) to
1 for �h < �f < 1, but a function which rises very
steeply beyond the hard deadline may be used.

Given the �nish time �f (t), the delay functions
�t(:), and the soft and hard deadlines, �s(t) and �h(t),
of all tasks t in the system, the delay penalty of the
system, delay cost, is computed as delay cost =P

t
�t(�f (t); �e(t); �s(t); �h(t)).

Co-synthesis Procedure: Our co-synthesis proce-
dure Co-Syn() takes as input the clustered CTG, the
preference and exclusion constraints of all the tasks
and the PE and link libraries and synthesizes the hard-
ware architecture as a PE graph and the software ar-
chitecture as a mapping of the tasks in the CTG to
the PEs in the system.

Suppose the CTG consists of the set C =
fc1; � � � ; ckg of k clusters. At any given point, the
algorithm maintains a partial view of the system in
terms of a PE graph with nodes representing the set
P = fp1; � � � ; pmg of the m PEs selected so far and a
mapping to these PEs of a subset C0 � C of allocated
clusters. Initially, both P and C

0 are set to ;. Then
for each unallocated cluster c 2 C, Co-Syn() consid-
ers each of the existing PEs p 2 P as a potential choice
for allocating c. PE p is examined for compatibility
with c as follows.

� First p is examined for link compatibility. Let
Pi be the set of PEs, Pi � P , p 62 Pi, which
communicate with p, i.e., 8pi 2 Pi, there exists
a link between p and pi in the PE graph. Let Pj

be the set of PEs not including p to which have
been allocated tasks communicating with tasks in
c. We de�ne c to be link compatible with p i� for
each pk 2 (Pj � Pi)1, there exist free ports on p

and pk which can support a common link type.

� Next Co-Syn() veri�es that all tasks in c are pref-
erence compatible with p and exclusion compati-
ble with all tasks allocated to p.

If p passes both of the above tests, Co-Syn() proceeds
to the next step; otherwise it examines the next PE
in the system. Let the dollar cost of the partially
synthesized system at this point be cost so far. The
increase in cost so far, cost(c; p), if c is allocated to
p, is 0 if p is a processor. Otherwise, it is the cost of
the cluster c (sum of execution costs of all the tasks
in c on p) times the unit cost of the ASIC type of p.

Assume that pc
best

is the best choice so far of a PE
to allocate c to. Let cost(c; pc

best
) be the increase in

cost so far if c is allocated to p
c

best
. As long as no

PE p
c

best
has been found, cost(c; pc

best
) is 1. The

algorithm considers a new PE p for allocating c, only
if cost(c; p) � cost(c; pc

best
). If this is so, the worst

case �nish times of all the tasks in the system are
estimated as explained earlier. The delay cost of the
system, delay cost, is computed. If delay cost is
less than 1 (all hard deadlines are met), then, �rst

1For sets A and B, (A� B)
:
= fx : x 2 A; x 62 Bg:

Co-Syn() compares p and p
c

best
based on the dollar

costs and if they are tied in this respect, it compares
them on the basis of the corresponding delay costs.
This procedure is repeated for all already existing PEs
in the system.

At this point, if a PE has been found to allocate
c to at no extra dollar cost (i.e. c can be allocated
to some existing processor and still meet the system
deadlines), then c is allocated to this PE, the system
cost is updated and Co-Syn() moves on to the next
unallocated cluster. Otherwise, it goes through all ex-
isting PEs and tries to upgrade their PE types and
their link con�guration and attempts to allocate c to
this upgraded PE. This is done as follows. For each ex-
isting PE, Co-Syn() upgrades the PE type. Then, for
each possible combination of link settings it examines
to see if the current settings are link, exclusion and
preference compatible. If so, the dollar cost change
and the delay cost of the system are computed. It
keeps track of the best solution seen so far.

Finally, Co-Syn() tries to examine the possibility
of adding a new PE to the system to allocate c to. It
again examines each di�erent type of PE and creates
a dummy PE pd of that type. Then for each possible
combination of link settings, it marks c as temporarily
allocated to pd and again runs these settings through
the link, exclusion and preference tests. Then based
on the dollar and delay costs, it compares the current
setting with the best choice see so far, and updates
the best solution if necessary.

At this point, if a PE and its corresponding link
settings have been found such that c is compatible
with it, then c is allocated to that PE which is best in
terms of dollar and delay costs. Then Co-Syn() moves
on to the next unallocated cluster. If no suitable PE
can been found, Co-Syn() declares failure.

4 Experimental Results

We generated random examples, each with 3
tasksets containing 3, 6 and 9 tasks respectively. The
task graph connectivity (the probability of an edge in
the task graph) was �xed at 0.4. In each task graph,
50% of the tasks were chosen to be assertible. Of the
assertible tasks, 10% were chosen to be costly (where
the assertion task requires all the inputs of the orig-
inal task). The execution cost of the tasks was cho-
sen uniformly in the range [5; 195] (an average value
of 100) and the communication weights in the task
graph were chosen uniformly in the range [1; 10]. The
deadline of each taskset was chosen as a multiple of
the sum of the average execution time of the tasks in
the taskset, an approach that has been taken earlier
[4]. The amount of slack in the system can be var-
ied by adjusting this multiplying factor. Note that in
our case, since the fault tolerance tasks are not part
of the initial speci�cation of the task graph, they do
not �gure in the computation of the deadlines. In
contrast, in [4], these tasks are part of the users spec-
i�cation and contribute in deciding the deadline. Due
to this key di�erence, the multiplying factors used in
the two cases are not comparable. We used a fac-
tor of 5 in our experiments. The task graphs were
chosen from (a) binary trees (BTREE), (b) randomly



A B C D E F G

X-Axis Legend:

A: No Fault Tolerance
B: 100% Safety Critical, 0% Essential
C: 100% Safety Critical, 20% Essential
D: 100% Safety Critical, 40% Essential
E: 100% Safety Critical, 60% Essential
F: 100% Safety Critical, 80% Essential
G: 100% Safety Critical, 100% Essential

0

2

4

6

8

10

12

Fault Tolerance

%
-O

ve
rh

ea
d 

in
 S

ys
te

m
 C

os
t

SERVERCLIENT: %-Overhead in System Cost vs Fault-tolerance

Figure 3: Variation of %-overhead in system cost
versus fault tolerance for SERVERCLIENT graphs

A B C D E F G

X-Axis Legend:

A: No Fault Tolerance
B: 100% Safety Critical, 0% Essential
C: 100% Safety Critical, 20% Essential
D: 100% Safety Critical, 40% Essential
E: 100% Safety Critical, 60% Essential
F: 100% Safety Critical, 80% Essential
G: 100% Safety Critical, 100% Essential

0

10

20

30

40

50

60

70

Fault Tolerance

%
-o

ve
rh

ea
d 

in
 D

el
ay

 C
os

t

SERVERCLIENT: %-overhead in Delay Cost versus Fault Tolerance

Figure 4: Variation of %-overhead in delay cost
versus fault tolerance for SERVERCLIENT graphs

interconnected chains (CHAIN), (c) server-client for-
mations (SERVERCLIENT), (d) graphs formed by in-
terconnecting structures of types (a), (b) and (c) (BA-
SIS), and (e) fully random graphs (BRAID). 200 ran-
dom graphs were generated for each category. For each
random example, a PE library consisting of two pro-
cessors and two ASICs was randomly generated. For
the purpose of experimentation, a simple link library
with one link was chosen. Note, however, that the
algorithm can handle a link library of arbitrary size.
10% of the tasks were chosen to be safety-critical and
another 10% to be essential.

On an average, over all categories of task graphs,
our algorithm found a solution with fault tolerance
for 100% of the safety-critical and essential tasks for
around 97:5% of the examples. For the cases in which
it declared failure, due to the size of the examples
(with 54 tasks in the CTG, not including the tasks
added for fault tolerance), it was not possible to verify
if there did actually exist a solution which was missed
by our algorithm or whether it was an inherently in-
feasible system.

Figures 3 and 4 show the variation of the %-
overhead in system and delay costs with respect to
various levels of fault tolerance, for SERVERCLIENT
graphs.2 From these and other results, the following
was observed.

� For every type of task graph, the system cost over-
head for 100% fault tolerance (i.e. for 100% of the
safety-critical and essential tasks) is marginal {
around 24% in the worst case and less than 20%
on an average. This reasonable penalty makes
our technique for introducing fault tolerance in
the system an attractive solution.

� It is not necessary that we have to pay a penalty
in terms of system cost or delay cost for achiev-
ing fault tolerance. In some cases, the available
slack in the system can be exploited at no extra
cost to introduce fault tolerance and to maintain
the performance (measured in terms of the delay

2Other results are omitted due to lack of space.

cost) simultaneously. For example, in the case of
SERVERCLIENT graphs, we can handle 100% of
the safety-critical tasks and 20% of the essential
tasks for no extra system or delay cost.

5 Conclusions
In this work we have presented the �rst algorithm

capable of synthesizing generalized fault tolerant dis-
tributed hardware and software architectures from a
real-time system speci�cation. We have experimen-
tally shown the e�cacy of our scheme.

References

[1] W. Wolf, \Hardware-software co-design of embedded sys-
tems," Proc. IEEE, pp. 967{989, 1994.

[2] T.-Y. Yen and W. Wolf, \Sensitivity driven co-synthesis
of distributed embedded systems," to be presented at Int.

Symp. System Synthesis, Sept. 1995.

[3] S. Srinivasan and N. K. Jha, \CRAFT: CRiticAlity based
Fault Tolerance for distributed systems," tech. rep., CE-

J95-02, Dept. of Electrical Engg., Princeton University,
Princeton, NJ 08544, 1995.

[4] K. Ramamritham, \Allocation and scheduling of complex

periodic tasks," in Proc. Int. Conf. Distr. Comput. Syst.,
pp. 108{115, June 1990.

[5] R. Ernst, J. Henkel, and T. Benner, \Hardware-software
co-synthesis for microcontrollers," IEEE Design & Test of

Computers, pp. 64{75, Dec. 1993.

[6] R. Gupta and G. De Micheli, \Hardware-software co-
synthesis for digital systems," IEEE Design & Test of Com-

puters, pp. 29{41, Sept. 1993.

[7] S. Yajnik, S. Srinivasan, and N. K. Jha, \TBFT: A task
based fault tolerance scheme for distributed systems," in

Proc. ISCA Int. Conf. Parallel & Distr. Comput. Syst.,
pp. 483{489, Oct. 1994.

[8] E. Lawler and C. Martel, \Scheduling periodically occurring
tasks on multiple processors," Information Processing Lett.,
vol. 12, no. 1, Feb. 1981.

[9] C. Liu and J. Layland, \Scheduling algorithms for multi-
programming in a hard real-time environment," J. ACM,
vol. 20, Jan. 1973.


	EURO-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index


