
Closeness metrics for system-level functional partitioning

Frank Vahid Daniel D. Gajski
Department of Computer Science Department of Information and Computer Science

University of California, Riverside, CA 92521 University of California, Irvine, CA 92717

Abstract

An important system design task is the partitioning of
system functionality for implementation among multiple
system components, including partitions among hardware
and software components. We present a set of closeness
metrics to aid such partitioning. These metrics can be
used by a designer or by automated algorithms, to clus-
ter together functional objects that should be implemented
on the same component. We summarize experiments for
determining the best combination of metrics for particu-
lar uses, and we demonstrate the advantages of cluster-
ing with the closeness metrics before applying hardware or
hardware/software partitioning.

1 Introduction

A system's functionality must be implemented on sys-
tem components, such as standard or custom processors,
memories, and buses. For example, consider the design of
an ATM switching system, whose functionality is that of
capturing incoming packets of data, and transmitting that
data to other destinations. Such a system may consist of
multiple ASICs, where an ASIC may contain a processor
core and numerous memories and custom processor blocks.
Time-critical behaviors such as data capture may be imple-
mented using custom hardware blocks, while less critical
behaviors, such as framing data for transmission, or behav-
iors likely to change in the future, may be implemented as
software on the processor core.

To achieve such an implementation, a system designer
must partition the system's functionality for implemen-
tation among the various system components such that
design constraints are satis�ed. Although there are an
enormous number of possible partitions to choose from,
only a small number of possibilities are explored in cur-
rent practice. In current practice, the partitioning task is
vaguely de�ned, decisions are based on mental or hand-
calculated estimations, and documentation of decisions is
scarce. These shortcomings have led researchers to pro-
pose starting from a simulatable functional speci�cation,
whose pieces are then partitioned among system compo-
nents with the aid of tools.

In this paper, we de�ne closeness metrics for function-
ally partitioning a speci�cation among hardware or soft-
ware components. A closeness metric measures the like-
lihood that two pieces of the speci�cation should be im-
plemented on the same system component. For exam-
ple, if two system functions use the same data, execute
sequentially, and have the same hardware requirements,
then implementing them on the same system component
would likely lead to a good design. Closeness metrics can
be used for two purposes: pre-assignment clustering or
N-way clustering. In pre-assignment clustering, we
merge together a few very close pieces of the speci�cation.
Then, when we subsequently apply partitioning heuristics

to assign those pieces to system components, the heuris-
tics deal with fewer objects, leading to reduced runtimes
and possibly to better results. In N-way clustering, we
group close objects until there are only N groups remain-
ing, where each group is then assigned to its own system
component. N-way clustering is a viable alternative to
other N-way partitioning heuristics, and is especially use-
ful when global metric values, such as overall performance,
size, and pins, are not yet available. Global metric values
are unavailable when we are in the process of forming an
initial partition, since such values are based on a complete
partition, or when estimators for those metrics don't exist.

Previous research into closeness metrics has been fo-
cused on �ne-granularity objects: logic operations in [1],
arithmetic operations in [2], and statements in [3]. To
our knowledge, our metrics are the �rst to address objects
at the procedural level. Such coarse granularity supports
manageable complexity and designer interaction. The case
for procedural-level granularity during system partition-
ing has been presented in [4, 5, 6, 7], although those ef-
forts did not address the issue of closeness metrics. Other
functional partitioning e�orts include operation-level ap-
proaches in [8, 9, 10, 11], statement-sequence level ap-
proaches in [12, 13], and state-level approaches in [14, 15].
Our closeness metrics can be used in conjunction with the
procedural, statement-sequence, or state-level approaches.

The paper is organized as follows. In Section 2, we
provide a problem de�nition. In Section 3, we discuss nor-
malization techniques. In Section 4, we de�ne closeness
metrics among behaviors. In Section 5, we describe re-
sults of experiments to determine the best combination of
metrics, and to demonstrate the advantages of using the
closeness metrics. In Section 6, we provide conclusions.

2 Problem de�nition

A major system design problem is the partitioning of
functional objects among system components. There are
three types of functional objects in a speci�cation: Vari-
ables store data, behaviors transform data, and chan-

nels transfer data between behaviors. We consider behav-
iors at a process/procedural level of granularity, as opposed
to the �ner-grained statement or arithmetic-operation level,
since coarse granularity is needed for manageable complex-
ity and designer interaction when dealing with large sys-
tems. There are also three types of system components:
memories, such as RAMs, ROMs, register-�les, and regis-
ters, store scalar and array variables; standard and custom
processors implement behaviors and variables; buses im-
plement communication channels. Hence, there are three
partitioning problems to be solved: behaviors/variables to
processors, variables to memories, and channels to buses.
This paper focuses on the �rst problem.

We read a functional speci�cation into a directed-graph
intermediate format called an access graph, or AG. The
AG represents the accesses, rather than dependencies, be-

tween behaviors and variables. An access is a procedure
call, a variable/port read or write, or a message pass. The
AG's orientation around accesses, its coarse granularity,
and its estimation annotations make it particularly well-
suited for system-level partitioning. For details on the AG
and the more general speci�cation-level intermediate for-
mat SLIF, we refer the reader to [16]. We include a partial
AG de�nition in Figure 1 for use in our closeness metric
equations.

Item De�nition

AG < IOall; BVall; Call > (Functional objects)

IOall fio1; io2; :::g (Input/output ports)
BVall Ball [Vall

Ball fb1; b2; :::g (Behaviors)
Vall fv1; v2; :::g (Variables)
Call fc1; c2; :::g (Channels)
ci < src; dst; accfreq; bits >

src 2 Ball (Accessor behavior)

dst 2 BVall [IOall (Accessee object)

Fig. 1: Access-graph de�nition

Each communication channel ci has two weights. The
accfreq, or access-frequency, weight indicates the number
of times the access occurs during an average start-to-�nish
execution of the source behavior, as determined from a
branch probability �le. (Minimum and maximum accfreq
weights can also be associated with each edge). The sec-
ond type of weight is the bits weight, which indicates the
number of bits transferred during an access. For access to
a scalar, this is the number of bits into which the scalar
would be encoded. For access to an array of scalar ele-
ments, this is the number of bits to encode an array ele-
ment, plus the number of address bits needed to specify an
element's address. For a more complex data item, such as a
three-dimensional array, the data item is �rst transformed
to an array of scalars. For access to another behavior, the
bits weight is the number of bits needed to transfer any
parameters. For a message pass, this is the number of bits
into which the message would be encoded.

3 Normalization

Before de�ning the closeness metrics, we �rst discuss
normalization of metric values. Normalization refers to
the scaling of metric values to a number between 0 and
1. There are two reasons why we wish to normalize met-
ric values. First, normalized values provide an absolute
measure of the closeness of objects, e.g., we do not know
if 10 shared wires between two objects represents a high
closeness, whereas we know that a normalized value of .9
is very high. Second, normalization provides a means for
combining values of di�erent units, such as transistors and
seconds, into a single value.

We provide two normalization techniques. In the �rst
technique, called global normalization, we divide each
metric value by a number that computes that metric over
the entire design. For example, we can divide a shared-
wires value between two objects by the total number of
wires in the design. In the second technique, called local

normalization, we divide each metric value by a number
that computes that metric only over both objects involved,
rather than over the entire design. For example, we can

divide the shared-wires value by the number of wires ac-
cessed by either of the involved objects.

In either type of normalization, we add the normalized
values of all metrics, and then divide the sum by the num-
ber of metrics involved, in order to achieve a �nal closeness
value between 0 and 1. A function that combines several
closeness metric values into a single, normalized number is
called a closeness function.

We now describe our closeness metrics, including local
and global normalization techniques for each.

4 Behavior closeness metrics

We have de�ned seven closeness metric between two sets
of procedural-level behaviors and variables, BVi and BVj .
Connectivity, shared hardware and sequential exe-

cution are common metrics also used for �ner-grained be-
haviors [1, 17, 2]; our de�nitions di�er from previous ones
since they are for procedural-level behaviors, and since
they include the two types of normalization. The commu-

nication metric considers the amount of data transferred
during execution, which hasn't been addressed directly by
previous metrics. Constrained communication is an
even more powerful metric that considers both the com-
munication and the provided performance constraints. In
case communication metrics can't be computed due to a
lack of appropriate estimators, we've de�ned the common
accessors metric as an indirect measure. Finally, our bal-
anced size metric ensures that no single cluster grows too
large.

4.1 Connectivity

This metric measures the estimated number of wires
shared between two sets of behaviors. Wires appear be-
tween behaviors in the case when the behaviors' channels
have been mapped to buses. If channels have not yet been
mapped to buses, we map each channel to its own bus,
with a wire width equal to the channel's bits weight.

We assume a procedure AccessedBuses(bv) exists that
returns the set of buses connected with the given behavior
or variable. Speci�cally, it returns the set of buses I =
fi1; i2; :::g for which i:C (the set of channels mapped to the
bus) contains at least one channel c in which c:src = bv or
c:dst = bv. The connectivity metric is then de�ned as:

ConnectivityMetric(BVj ; BVk) =

width cmnj;k=norm (1)

width cmnj;k =
P

i2Ij\Ik
i:wires,

Ij =
S

bv2BVj
AccessedBuses(bv),

Ik =
S

bv2BVk
AccessedBuses(bv).

norm = width bothj;k for local norm.,
= width all for global norm.,

width bothj;k =
P

i2Ij[Ik
i:wires,

width all =
P

i2I
i:wires

In other words, Ij and Ik represent the set of buses
connected to any behaviors in BVj and BVk, respectively.
width cmnj;k represents the total width of all buses con-
nected to both BVj and BVk. width bothj;k represents the
total width of all buses connected to either BVj or BVk.
width all represents the total width of all buses in the sys-
tem.

4.2 Communication

This metric di�ers from the connectivity metric in that
it measures the amount of data transferred between sets of
behaviors, rather than the number of wires used to transfer
that data. For example, if two behaviors communicate 16
bits of data 10 times over an 8 bit bus, then the communi-
cation metric would consider 16 � 10 = 160 bits, whereas
connectivity would consider only the 8 wires of the bus.

We assume a procedureAccessedChannels(bv) exists that
returns the set of channels in which the given behavior or
variable is the accessor or the accessee. Speci�cally, it re-
turns the set of channels C such that c has c:src = bv or
c:dst = bv. The communication metric is then de�ned as:

CommunicationMetric(BVj ; BVk) =

bits cmnj;k=norm (2)

bits cmnj;k =
P

c2Cj\Ck
c:accfreq � c:bits,

Cj =
S

b2BVj
AccessedChannels(bv),

Ck =
S

b2BVk
AccessedChannels(bv).

norm = bits bothj;k for local norm.,
= bits all for global norm.,

bits bothj;k =
P

c2Cj[Ck
c:accfreq � c:bits,

bits all =
P

c2C
c:accfreq � c:bits

In other words, Cj and Ck represent the set of chan-
nels accessed by behaviors in BVj and BVk, respectively.
bits cmnj;k represents the total number of bits transferred
between BVj and BVk. bits bothj;k represents the total
number of bits transferred between BVj and any other be-
havior, or between BVk and any other behavior. bits all
represents the total number of bits transferred over chan-
nels throughout the entire speci�cation. (If a behavior con-
tains an in�nite loop, the behavior is ignored when com-
puting this metric, since its accessed channels will have
access frequencies of in�nity).

4.3 Hardware sharing

The hardware sharing metric measures the amount of
hardware that two sets of behaviors could share. For ex-
ample, if two behaviors both perform multiplication, then
they may share a single multiplier. We assume a proce-
dure Size(BV) exists that returns the hardware size for the
given functional objects on a particular ASIC type. This
size may be computed through synthesis, through sum-
mation of abstract hardware weights associated with each
object, or through incremental synthesis techniques. If a
particular ASIC type is not speci�ed (along with a set of
available functional units and a maximum number of each
unit that can be used), then a default type is assumed.
The hardware sharing metric is de�ned as:

HardwareSharingMetric(BVj; BVk) =

size sharedj;k=norm (3)

size sharedj;k = sizej + sizek � sizej;k,
sizej;k =Size(BVj

S
BVk),

sizej =Size(BVj),
sizek =Size(BVk),
norm = size both min for local norm.,

= size all for global norm.,
size both min =Min(sizej ; sizek),
size all =Size(BVall)

In other words, sizej and sizek represent the hardware
size to implement BVj and BVk, respectively. sizej;k rep-
resents the size for a single implementation of both sets of
behaviors BVj and BVk. size sharedj;k represents the size
of the hardware that would be shared between the two sets.
size both min is the minimum of sizej and sizek, which
is the maximum amount that could be shared between the
two sets of behaviors. size all is the size for a single im-
plementation of all of the behaviors in the speci�cation.

An analogous metric could be de�ned for software shar-
ing, where size would be measured as the number of in-
structions, and sharing would involve the use of common
subroutines.

4.4 Common accessors

When two sets of behaviors (and variables) are accessed
via subroutine calls or variable reads/writes by many of
the same behaviors, grouping those sets will likely improve
performance by reducing inter-component communication.
We assume a procedure Accessors(bv) exists that returns
the set of behaviors that access the given behavior or vari-
able. Speci�cally, it returns the set of behaviors B such
that there exists a channel c for which c:src = b and
c:dst = bv, where b 2 B. We consider a behavior as its
own accessor, in order to encourage grouping a variable or
behavior with the behaviors that access it. The common
accessors metric is de�ned as:

CommonAccessorsMetric(BVj; BVk) =

jaccessors cmnj;kj=norm (4)

accessors cmnj;k = accessorsj
T
accessorsk,

accessorsj =
S

bv2BVj
Accessors(bv),

accessorsk =
S

bv2BVk
Accessors(bv),

norm = jaccessors bothj;kj for local norm.,
= jaccessors allj for global norm.,

accessors bothj;k = accessorsj
S
accessorsk,

accessors all = Ball

In other words, accessorsj and accessorsk represent the
set of behaviors that access at least one behavior/variable
in BVj and BVk, respectively. accessors cmnj;k repre-
sents the set of behaviors that access at least one behav-
ior/variable in each of BVj and BVk. accessors bothj;k
represents the set of behaviors that access at least one
behavior/variable in either Bj or Bk. accessors all rep-
resents all possible accessor behaviors, which is simply
all behaviors in the entire speci�cation. (The notation
jaccessorsj represents the number of elements in the set
accessors).

4.5 Sequential execution

If two behaviors are de�ned sequentially in the speci-
�cation, they are less likely to reduce performance when
mapped to a single processor than are two concurrent be-
haviors. We assume a procedure SequentialBehs(b1,b2) ex-
ists that returns 0 if behaviors b1 and b2 could execute
concurrently, else it returns 1. This metric is de�ned as:

SequentialExecutionMetric(Bj ; Bk) =

seq pairsj;k=norm (5)

seq pairsj;k =
P

b12Bj ;b22Bk
SequentialBehs(b1; b2),

norm = jBj j � jBkj for local norm.,

= jBallj�(jBallj�1)

2
for global norm.

In other words, seq pairsj;k equals the number of pairs
of behaviors that can execute sequentially, where a pair
consists of one behavior from Bj and one from Bk. The
local normalization factor is the total number of possible
pairs between those two behavior sets, while the global
normalization factor is the total number of possible pairs
of behaviors from the entire speci�cation.

4.6 Constrained communication

This metric is signi�cantly unique from metrics de�ned
in previous works. When we are given a set of perfor-
mance constraints on behaviors, it is probably better to
concentrate on the communications that a�ect those con-
strained behaviors, rather than on all communications as
was done in the above communication metric. Grouping
heavily communicating behaviors will reduce inter-group
communication delay, and will thus make it more likely
that we will meet performance constraints. Therefore,
when deciding whether to group two sets of behaviors, we
look not only at the amount of communication between
those sets, but also at how much this communication af-
fects the given performance constraints. We assume a pro-
cedure AccessedChansRecur(b) exists that returns all chan-
nels accessed by behavior b, and all channels accessed by
any accessee of b, etc. This metric is then de�ned as:

ConstrainedCommunication(BVj ; BVk) =

bits cmnj;k=norm (6)

bits cmnj;k
=
P

t2Tcons
ConstrCommBehs(t:b; BVj ; BVk),

ConstrCommBehs(t:b; BVj ; BVk)
=
P

c2ContribChansRecur(t:b)
c:accfreq � c:bits,

ContribChansRecur(t:b)
=
S

c2AccessedChansRecur(t:b)
contrib chanc,

contrib chanc
= c if c:src 2 BVj and c:dst 2 BVk,
= c if c:src 2 BVk and c:dst 2 BVj ,
= ; otherwise,

norm

=
P

t2Tcons
ConstrComm(t:b; BVj ; BVk)

for local norm.,
=
P

t2Tcons
ConstrComm(t:b; BVall; BVall)

for global norm.,
ConstrComm(t:b;BVx; BVy)

=
P

c2AccessedChansRecur(t:b)
c:accfreq � c:bits if

ConstrCommBehs(t:b; BVx; BVy) > 0,
= 0 otherwise

In other words, ContribChansRecur(t:b) is the set of
all channels that involve a communication between a be-
havior in BVj and one in BVk, where that communication
contributes to the performance of constrained behavior t:b.
ConstrCommBehs(t:b;BVj ; BVk) is the total number of
bits transferred over those channels during an execution of
t:b, and bits cmnj;k is the sum of this number for each con-
strained behavior in Tcons. The local normalization fac-
tor is the number of bits communicated between any two

behaviors during the execution of constrained behaviors
in which at least one communication occurs between BVj
and BVk. The global normalization factor is the number
of bits communicated between any two behaviors during
execution of all constrained behaviors.

This metric is particularly useful for hardware/software
partitioning, since the metric can be used to group uncon-
strained (or loosely constrained) behaviors for implemen-
tation in the software component, and tightly constrained
behaviors for implementation in the hardware component.

Early investigations of this metric showed that proper
normalization is crucial to e�ective metric use. In par-
ticular, the normalization denominator described above is
usually quite large compared to the numerator, meaning
that this metric's value is quite small compared to other
metric values and thus doesn't play a signi�cant role in
partitioning unless weighed very heavily. We are looking
into a better normalization method; in the meantime, we
use a variation of this metric in which we compute just as
the communication metric, but set the value to zero if the
communication does not contribute to a constraint.

4.7 Balanced size

When clustering behaviors in order to obtain a parti-
tion among ASICs, we usually want a �nal partition that
consists of groups that are roughly balanced in hardware
size. If we don't make an e�ort to balance group size, the
above metrics will end up clustering nearly all the objects
in one group. One way to encourage balanced sizes is to fa-
vor merging smaller behaviors over larger ones, to prevent
any one group from getting too large.

BalancedSizeMetric(BVj; BVk) =

(size all� sizej;k)=norm (7)

sizej;k =Size(BVj
S
BVk),

norm = size all for both local and global norm.,
size all =Size(BV)

sizej;k represents the size for a single implementation
of both sets of behaviors BVj and BVk. size all is the
size for a single implementation of all of the behaviors
in the speci�cation. Note that the metric numerator is
(size all � sizej;k), since the smaller that sizej;k is, the
larger should be the metric value. Also note that there is
no real way to locally normalize in this case, so we use the
global normalization factor for both normalization types.

5 Results

In this section, we describe how we determined the
best combination of metrics for pre-assignment clustering
and for N-way clustering. We selected six examples: a
microwave-transmitter controller mwt, a fuzzy-logic con-
troller fuzzy, a telephone answering machine ans, a volume-
measuring medical instrument vol, an interactive-TV pro-
cessor itv, and an Ethernet coprocessor ether. The �rst
three examples represent control-dominated systems with
some data computation, while the last three represent larger
examples with a roughly-even mix of control and data com-
putation. The examples averaged 630 lines of algorithmic-
level VHDL.

5.1 N-way clustering

We developed a 2k experiment to determine the e�ect
of k metrics during N-way clustering. (For information on

2k experimental designs, see [18]). We examined the met-
rics of Connectivity, Communication, Constrained commu-
nication, Common accessors, and Balanced size; for con-
ciseness, we shall refer to these below as Cn, Cm, Cc, Ca
and Bs. We did not include Hardware sharing, because
early experiments indicated that it was not useful for the
given examples. Apparently, the hardware size estimator
used a PLA model for control in which the control size for
two behaviors was often larger than the sum of the control
sizes for each behavior alone, which in turn meant that
the hardware sharing metric was often negative. We also
did not include Sequential execution, since only two of the
examples involved concurrent processes.

For each example, we applied 2-way clustering 32 times,
once for each of the 25 possible combinations of the �ve
closeness metrics. We experimented with both global and
local normalization; global yielded slightly better results in
this experiment. Each �nal partition was evaluated using
a cost function that measured the magnitude of size, pin,
and performance constraint violations; a cost of 0 meant
no violation. We intentionally formulated constraints such
that there would always be a constraint violation, so we
could compare how close each partition was to 0.

Results are summarized in Table 2. Each row represents
one of the �ve examples, with the last row representing
the average over all examples. Each column represents
a particular combination of metrics. Column 1 represents
clustering without any metrics, which is essentially random
clustering. Columns 2 through 6 represent clustering with
the single metric of Cn, Cm, Cc, Ca, or Bs, respectively.
Columns 7 through 16, 17 through 26, and 27 through
31 represent combinations of two, three, and four metrics,
respectively. Column 32 represents all �ve metrics. The
lowest averages occur in column 30 and 28, representing
Cn-Cc-Ca-Bs and Cn-Cm-Cc-Bs, respectively. The next
lowest average occurs in column 32, where all �ve metrics
are used.

We have found that N-way clustering should be followed
by fast greedy improvement for best results [19]. Table 1
compares such clustering (Clust+grdy) with greedy im-
provement (greedy), group migration (Groupmig) and sim-
ulated annealing (Simann) [20], all of which improve on a
random initial partition. Results are shown for 3-way and
4-way hardware partitioning, and for hardware/software
partitioning. Note that Clust+grdy compares favorably
with the other heuristics, and in the last example actu-
ally �nds the best solution in two cases.

5.2 Pre-assignment clustering

We performed a similar experiment for pre-assignment
clustering. All combinations of metrics were applied for the
examples to reduce the number of initial objects. In pre-
assignment clustering, there are many possible methods for
deciding when to terminate clustering (unlike N-way clus-
tering, where we simply stop when there are only N groups
remaining). We experimented with all possible closeness
thresholds, and found 0.3 to yield the best results for our
examples. In other words, terminating clustering when
no objects had a closeness greater than 0.3 yielded good

Ex P Greedy Groupmig Simann Clust+grdy

C T C T C T C T

vol 3 50 3 0 20 22 220 96 17
4 88 7 29 87 16 246 15 20
hs 61 2 16 21 18 148 66 14

ans 3 25 8 7 198 0 174 16 34
4 0 11 2 187 0 208 15 43
hs 0 1 0 7 0 0 0 25

itv 3 115 32 71 953 63 609 142 175
4 141 60 100 2953 94 625 137 200
hs 83 12 20 296 20 379 67 151

eth 3 114 34 114 1064 97 520 5 422
4 66 60 39 2036 72 693 37 443
hs 102 20 23 598 0 268 76 378

Table 1: Existing N-way partitioning heuristics

time reductions without cost increase. Higher thresholds
terminated clustering too early, resulting in only minor
time reductions (but no cost increase), while lower thresh-
olds merged too many objects, resulting in cost increases
(though greater time reductions). Due to space limita-
tions, we omit the detailed results of the experiment. The
conclusion from the experiment was that the combination
of the Connectivity and Communication metrics yielded
the best results.

5.3 E�ects of pre-assignment clustering

0

20

40

60

80

100

20 40 60 80 100

0

Percent of original objects

N
or

m
al

iz
ed

 ti
m

e
N

or
m

al
iz

ed
 c

os
t

0

20

40

60

80

100

20 40 60 80 100

0

Percent of original objects

0

20

40

60

80

100

20 40 60 80 100

0

Percent of original objects

(a) (b)

(c)

Fig. 2: Cost/time tradeo�s of pre-assignment clustering:
(a) mwt, (b) itv, (c) ether.

To demonstrate the e�ect of pre-assignment clustering
on improvement-heuristic runtime, we experimented fur-
ther on mwt, itv, and ether. We followed pre-assignment
clustering by random partitioning and then group migra-
tion. Results are shown in Figure 2. The x-axis is the
percent of original objects remaining after pre-assignment

Ex 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

mwt 131 65 131 145 131 121 131 151 131 65 131 83 131 121 131 111 138 65 138 15 137 121 137 106 138 15 138 83 137 94 137 94

fuzzy 180 77 260 77 180 77 180 77 180 216 180 242 180 72 180 72 181 77 181 77 181 77 181 77 181 163 181 66 181 63 181 98

vol 75 416 136 148 75 344 136 191 72 128 72 116 71 191 71 191 72 149 72 148 71 85 71 85 72 128 72 45 71 85 71 85

ans 244 208 244 240 244 258 244 258 249 158 249 246 249 258 249 185 248 134 248 134 248 134 248 134 248 134 248 134 248 141 248 141

ether 199 999 199 945 199 999 199 807 199 561 199 463 199 640 199 615 199 214 199 219 199 350 199 337 199 240 199 167 199 109 199 147

Avg 166 353 194 311 166 360 178 297 166 226 166 230 166 256 166 235 168 128 168 119 167 153 167 148 168 136 168 99 167 98 167 113

Table 2: 2-way clustering 2k experiment to determine best closeness metric combination.

clustering. Thus, the right end of the axis represents no
pre-assignment clustering, meaning all original objects are
subsequently partitioned among parts; the center repre-
sents reduction to half of the original number. The y-axis
represents the magnitude of constraint violations of the �-
nal partition after group migration, normalized to a num-
ber between 0 and 100. It also represents the runtime of
group migration, again normalized. Results show that the
fewer the number of objects input to group migration, the
lower the runtime. In all three examples, we could reduce
the objects by 25% (75% of the original number) for a
25% decrease in runtime without any increase in cost. We
could the objects by 50% for a 50% decrease in runtime
with only a small increase in cost. Such runtime reduc-
tions are signi�cant since we may apply group migration
hundreds of times, once for each possible combination of
system components (whereas clustering is only done once).

6 Conclusion

We have de�ned several new closeness metrics between
procedural-level functional objects. Partitioning at this
level of granularity enables us to partition much larger
systems than possible with previous e�orts. More impor-
tantly, it encourages designer interaction, especially when
we consider that current manual partitioning is performed
at that level of abstraction, meaning that our approach
�ts well with the current design methodology. Supporting
interaction is crucial for system-level tool acceptance, and
partitioning at the procedural level achieves this goal.

We have demonstrated that these closeness metrics can
be used by clustering algorithms to reduce the computa-
tion time of iterative-improvement partitioning algorithms
without a loss in partition quality. Such a reduction of
computation time increases the usefulness of automated
algorithms during partitioning. We have also shown that
the metrics can be used to create high-quality �nal parti-
tions, o�ering an alternative or complement to iterative-
improvement algorithms. In addition, the closeness met-
rics can be used to guide manual partitioning. Such guid-
ance can greatly simplify the system designer's task and
substantially reduce the amount of hand-calculation nec-
essary. In summary, the closeness metrics can enhance the
rapidly growing number of system-design tools.

References

[1] R. Camposano and R. Brayton, \Partitioning before logic
synthesis," in Proceedings of the International Conference
on Computer-Aided Design, 1987.

[2] E. Lagnese and D. Thomas, \Architectural partitioning for
system level synthesis of integrated circuits," IEEE Trans-
actions on Computer-Aided Design, July 1991.

[3] X. Xiong, E. Barros, and W. Rosentiel, \A method for par-
titioning UNITY language in hardware and software," in

Proceedings of the European Design Automation Confer-
ence (EuroDAC), 1994.

[4] F. Vahid and D.Gajski, \Speci�cation partitioning for sys-
tem design," in Proceedings of the Design Automation
Conference, pp. 219{224, 1992.

[5] D. Thomas, J. Adams, and H. Schmit, \A model and
methodology for hardware/software codesign," in IEEE
Design & Test of Computers, pp. 6{15, 1993.

[6] P. Gupta, C. Chen, J. DeSouza-Batista, and A. Parker,
\Experience with image compression chip design using uni-
�ed system construction tools," in Proceedings of the De-
sign Automation Conference, pp. 250{256, 1994.

[7] P. Eles, Z. Peng, and A. Doboli, \VHDL system-level
speci�cation and partitioning in a hardware/software co-
synthesis environment," in International Workshop on
Hardware-Software Co-Design, pp. 49{55, 1992.

[8] R. Gupta and G. DeMicheli, \Partitioning of functional
models of synchronous digital systems," in Proceedings of
the International Conference on Computer-Aided Design,
pp. 216{219, 1990.

[9] K. Kucukcakar and A. Parker, \CHOP: A constraint-
driven system-level partitioner," in Proceedings of the De-
sign Automation Conference, pp. 514{519, 1991.

[10] C. Gebotys, \An optimization approach to the synthesis
of multichip architectures," IEEE Transactions on Very
Large Scale Integration Systems, vol. 2, no. 1, pp. 11{20,
1994.

[11] Y. Chen, Y. Hsu, and C. King, \MULTIPAR: Behavioral
partition for synthesizing multiprocessor architectures,"
IEEE Transactions on Very Large Scale Integration Sys-
tems, vol. 2, pp. 21{32, March 1994.

[12] R. Gupta and G. DeMicheli, \Hardware-software cosynthe-
sis for digital systems," in IEEE Design & Test of Com-
puters, pp. 29{41, October 1993.

[13] R. Ernst, J. Henkel, and T. Benner, \Hardware-software
cosynthesis for microcontrollers," in IEEE Design & Test
of Computers, pp. 64{75, December 1994.

[14] T. Ismail, K. O'Brien, and A. Jerraya, \Interactive system-
level partitioning with Partif," in Proceedings of the Euro-
pean Conference on Design Automation (EDAC), 1994.

[15] S. Antoniazzi, A. Balboni, W. Fornaciari, and D. Sci-
uto, \A methodology for control-dominated systems code-
sign," in International Workshop on Hardware-Software
Co-Design, pp. 2{9, 1994.

[16] F. Vahid and D. Gajski, \SLIF: A speci�cation-level inter-
mediate format for system design," in Proceedings of the
European Design and Test Conference (EDTC), 1995.

[17] M. McFarland and T. Kowalski, \Incorporating bottom-
up design into hardware synthesis," IEEE Transactions on
Computer-Aided Design, pp. 938{950, September 1990.

[18] R. Jain, The Art of Computer Systems Performance Anal-
ysis: Techniques for Experimental Design, Measurement,
Simulation and Modeling. New York: John Wiley and
Sons, Inc., 1991.

[19] F. Vahid and D. Gajski, \Clustering for improved system-
level functional partitioning," in International Symposium
on System Synthesis, 1995.

[20] D. Gajski, F. Vahid, S. Narayan, and J. Gong, Speci�cation
and design of embedded systems. New Jersey: Prentice
Hall, 1994.

	EURO-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

