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Abstract

This paper is focused on reducing the design time in a
CAD framework environment by the optimal use of resourc-
es. A user-transparent load distribution system (Framework
based LOad DIstribution System - FLODIS) is presented
that enables a distributed execution of design tools over a
heterogeneous network of workstations. The basic idea of
the proposed algorithm is to allocate tools to workstations
by using estimations about the required resources. These
values can be obtained by user-defined tool characteristics,
recorded previous tool executions and by methodology
information provided by the framework. Compared with
standard distribution approaches that use less information
about the activities, experimental data show a significant
average reduction (40-50%) of the tool execution time.

1 Introduction

Today CAD designs are typically very complex, and
therefore, a lot of design tools are needed and different
designers work concurrently on one project. Frameworks
are used to solve the problem of concurrent engineering and
to manage these large projects [7]. Hereto, the design tools
have to be integrated or encapsulated in the framework.
Depending on the parameters and the selected input/output
data type, every tool can perform different activities. The
design methodology is modelled by a design flow which is
defined by the methodology manager. A design flow con-
sists of activities and their dependencies.

The activities are typically executed on a heterogeneous
net of workstations having different computing power. In a
CAD environment, the critical activities typically require an
execution time ranging need from several minutes up to sev-
eral hours. Also, it has to be taken into account that not all
activities can be started on every machine. The execution
time - the elapsed time period between the start and the end

of the tool execution - increases if more than one activity
has been started on one workstation. Therefore, an intelli-
gent distribution of activities on hosts is required to reduce
the overall execution time, hereby optimizing the use of
available resources.

Many approaches of load distribution can be found in
the literature (e.g., [12][14]). One general problem of most
distribution algorithms is the missing knowledge about the
upcoming load. Static approaches use statistics, for instance,
fixed job arrival rates. The distribution is calculated without
measuring the load on the hosts, assuming an average exter-
nal load on the hosts [14]. Dynamic load distribution
approaches use the current system state, which is measured
at the moment when an activity has to be executed to select
the least loaded host [12]. However, these approaches do not
take the information about loads of previously executed
activities into account.

In a framework environment, several load distribution
approaches were reported: The MCC CAD framework
selects the best suitable workstation based on a ‘Round
Robin‘ algorithm [1]. FLOW is a dynamic load distribution
system. Depending on the needed static activity resources,
FLOW will select the workstation with the least load [8].
PAPYRUS is based on the operating system SPRITE and,
therefore, provides easy process migration [4]. In the
ULYSSES II framework, resources are dynamically allo-
cated [3]. Here, the appropriate workstation is selected by
calculating the processing power and the work load.

The calculation of all these approaches is only based on
the number of activities. But obviously, the required
resources (e.g., CPU-time, main memory) are essential to
improve the allocation of activities. In the presented new
approach, activity specific resources are taken into account.

The accessible network of workstations may be hetero-
geneous with hosts of different computing power. It is
assumed that all the load on this network is produced by the
integrated CAD tools of the framework and controlled by
the load distribution system. Different designer can start
activities at any time from any host.



The presented algorithms are independent of the topol-
ogy of the network [12]. For an Ethernet it is assumed that
the communication time between all workstations is the
same. As further boundary condition in this approach proc-
ess migration is not used, since the overhead to stop a CAD
tool, transfer the data and continue the work on another host
is very high.

This work is focused on the distribution of tools which
are encapsulated in a framework. Other work can be found
to perform a parallel execution of the activity itself but this
requires the source code of the tool [2].

In the following, the profile of activities is discussed
and the way how to calculate the estimated load is pre-
sented. Section 4 presents a new load distribution algorithm
which uses these estimated load values to provide an opti-
mized allocation of activities. Section 5 describes the archi-
tecture of the load distribution system FLODIS. Experimen-
tal results with several CAD tools point out the achieved
improvements. The summary and the future plans show the
extendability of this system to other domains.

2 Estimation of activity-specific resources

If there is more than one activity running on one single
processor workstation at the same time, the execution time
of all these activities grows. This is caused by the necessity
to share CPU and I/O resources of the workstation. But this
increase of the execution time heavily depends on the com-
bined types of activities. For example, the combination of a
CPU-intensive with an I/O-intensive activity results in a
lower time increase compared with two CPU-intensive
activities on the same machine.

Figure 1 shows the protocol of a perfmeter on a
SPARC 2 where a FPGA was designed. This design requires
a partitioning and a state-encoding tool. The X-axis, repre-
senting the time shows the execution order of these tools
with a simultaneous execution of both tools at the end. The
upper part shows the used CPU percentage, in the lower part
the number of disk accesses is protocolled. As indicated, the
partitioning tool requires 100% CPU and only a few disk
accesses. The state encoder shows an average CPU usage of
about 50% CPU along with a significant number of disk
accesses. To find the exact I/O usage also other aspects (e.g.,
paging) must be taken into account. In Unix systems this
information can be found in the protocol of the in-/out
blocks (e.g., using the ‘rusage‘ command). If both tools are
executed at the same time on one host, the partitioning tool
requires twice as much execution time while the state
encoder execution time does not change. The operating sys-
tem assigns for both tools 50% of the CPU computing time.
While the partitioning tool uses the CPU, the state encoder
makes I/O operations.

The activities and resources can be modelled as fol-

lows: The host provides two resources, namely the CPU and
the I/O resource. An activity needs a specific percentage of
the CPU and the I/O distributed over the time. In this model
the mean value of the resource usage is used to estimate the
overall execution time of an activity. One tool uses only one
resource at the same time, no simultaneous CPU and I/O
usage are assumed. This model allows to calculate the exe-
cution time of activities running in parallel, if the relative
resource usage and the execution time is known for each
activity determined exclusively on one host.

The described model has been validated by a number of
typical CAD tools including a testpattern generator, logic
simulators, state encoders, FPGA partitioning and place-
ment algorithms which are offered by different design sys-
tems (e.g., MENTOR, LOGIC, MIGRATE, XILINX).

Figure 2 presents a subset of these tools which have
been evaluated in more detail. The times have been meas-
ured with the UNIX ‘time‘-command, and all the tools have
been executed exclusively on one host. The highest ratio
between CPU usage (CPU time) and execution time is 98%
for the analyzed testpattern generator while the state
encoder shows the lowest ratio with 48%. In the latter case a
lot of I/O resources are used while the CPU can be used by
other processes.

The CPU and I/O profile of an activity depends on sev-
eral parameters, especially on the algorithm, the execution
parameters and the input data. Obviously, for each activity
both, the algorithm and the parameters are fixed. Therefore,
activities can be classified in CPU intensive or I/O intensive.
One could conclude that this classification is valid for all
activity executions. However, there is an influence of the
(sub-) project specific data and therefore, the same activity
can have different CPU and I/O characteristics. The follow-

 Figure 1: Perfmeter protocol of FPGA partitioning
and state encoder
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ing subsections present three different methods to specify
the data dependent relation between CPU and I/O time.

2.1 Information from tool integrator

The relationship between the data and the profile of the
activity typically depends on several complexity dimensions
(CD), for instance, the gates, transistors or the primary
inputs. Often, the tool integrator knows the dependencies
between CD value and execution time (e.g., the execution
time for test pattern generation grows cubically with the
number of gates on average). The tool integrator should not
use a worst case estimation but the most typical relationship.
The CD values can be found in the database or by analyzing
the input files. In [3] CD values are used to predict a theoret-
ical CPU time value. If several tools can be used for the
same design task, the tool with the least CPU time require-
ment is selected. In this paper, and in contrast to [3], CD val-
ues are used to allocate tools to workstations.

2.2 Information from activity protocol

With every activity execution, the used resources are
recorded and stored together with the CD value. This leads
to a list of CD values and the required resources (CPU time,
I/O time and main memory). Based on the recorded CD val-
ues, the expected amount of needed resources can be calcu-
lated using mathematical approaches. In FLODIS, the me-
thod of linear regression is used to forecast CPU time, I/O
time and main memory requirements. The coefficients of the
straight line are estimated by the method of minimum
squares [5].

Assuming that only a few values are available the linear
regression might not provide good results. But in general, a
load distribution system is robust against a few incorrect
estimated resources of a job. Additionally, with every exe-
cution of the activity, a better resource estimation is availa-
ble.

For a non-linear relationship it is possible to use a linear

transformation, which can also be found in [5]. To store the
data in the data base related with the activities will not sig-
nificantly increase the access time. The meta data which are
protocolled have the size of some bytes so even thousands
of activity executions result in a few kilobytes of meta data.

2.3 Information from methodology management

The results of the linear regression enable an efficient
distribution of activities. However, needing little calculation
effort, further improvements can be achieved in a frame-
work environment. If an activity is repeatedly executed
within the same subproject, the CD values are expected to
be similar. Therefore, the currently needed resources are the
mean value of the previous resource requirements. Also, it is
possible to include the information of a designer reexecuting
an activity within the same design flow. This is typically the
case for incremental electronic CAD developments, includ-
ing debugging and several optimization and verification
phases. In this situation, the input data are only slightly
modified. Therefore, the resource requirements usually are
very similar compared with the last activity execution.

3 Resource estimation algorithm

Based on the three presented variants to estimate the
required resources, a combined estimation algorithm was
developed and implemented in FLODIS (Figure 3).

 Figure 3: Algorithm for resource estimation
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lated and used. In the JESSI-COMMON-Framework [11],
this information is provided by the design management
component. Here, the same cell (subproject) version means
that the same design flow is used. However, the resource
estimation can be found in every framework where informa-
tion about design flows and subprojects can be found.

If the activity is used for the first time in a new subpro-
ject, the resource requirements are calculated by using the
linear regression (cf. Section 2.2). Based on the resulting
CPU and I/O ratio of the activity, the allocation algorithm
can select a workstation for efficient activity execution.

4 Allocation on resources

The aim of the distribution system is to find an alloca-
tion of activities on a network of workstations such that the
overall execution time is minimized. The efficiency of an
allocation algorithm heavily depends on the information
which is available about activity related resources. Such an
allocation algorithm has to provide good results by keeping
the extracted and recorded information manageable. In the
last chapters it has been described how activity specific esti-
mations about the percentage of CPU and I/O resources can
be determined with low effort. However, other allocation
algorithms use less information. In this paper two of those
algorithms are presented and compared to the FLODIS allo-
cation algorithm which uses the information about the per-
centage of the CPU and I/O resources.

Round robin: Using a round robin algorithm, a mini-
mum of information is needed. The algorithm has to identify
the available hosts and has to know the fact that an activity
is ready to be executed. The activities are allocated to the
hosts one after another.

Class allocation: For this allocation algorithm the
activities are classified by the tool integrator in CPU inten-
sive or I/O intensive tasks. Therefore, the protocol of the
activity execution is not needed for repetitive activity execu-
tions. The idea of this allocation is to avoid the execution of
two activities which belong to the same class on the same
host. The hosts are ordered by their computing power and
the most powerful host not executing an activity of the same
class is selected. However, an activity can skip into the other
class depending on the input data. In this case, the algorithm
may allocate activities on the same host which are both CPU
intensive (or I/O intensive). This could only be avoided if
the protocol of the activity execution is available.

FLODIS allocation: The allocation procedure is based
on the needed percentage of CPU and I/O time. Addition-
ally, memory resources are taken into account. The distribu-
tion algorithm uses a list of hosts which is ordered according
to the available computing power. The algorithm always
starts at the top of the list to find a workstation which pro-
vides the previously estimated resources for the activity.

The value of the available resources of this workstation is
decreased by the value of the activity. For the next activity,
the algorithm starts again at the top of the list, but the last
selected host now may not have the needed resources availa-
ble. However, this algorithm guarantees that the powerful
machines will be used more often than others. It is based on
the fact that the execution on a powerful host that already
executes an activity of different activity profile, is faster
than the selection of the least loaded but less powerful host.

To take workstations with different computing power
into account, transfer factors are calculated in advance for
adapting CPU and I/O time estimations on the selected
workstation. These transfer factors represent the relation of
computing power on the selected host and a reference host.
For both, the CPU and I/O resource, such a factor is neces-
sary. Until now the factors are calculated using a set of typi-
cal CAD tools, and a linear relation between the hosts is
assumed. However, it is also possible to take non linear and
activity specific transfer factors into account. For a hetero-
geneous environment, a reference host must be used for
each CPU architecture.

5 FLODIS system architecture

Until now, the load distribution system FLODIS is a
domain-neutral tool, but it may also be a part of the design
management of the framework. The different hosts which
are available in the network are known to the system.

As described in the previous sections, the distribution
system provides an estimation of the activity resources and
an allocation of the activities on the different workstations.
To fulfil these tasks, different subtasks have been defined
that are realized by the related modules of the FLODIS
architecture (Figure 4). This architecture is very flexible and
modular which is very important for controlling the system
and for extensions (e.g., other domains).

 Figure 4: FLODIS architecture
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The central module provides the communication
between all the modules [10]. Several services are offered to
other modules to get information even if they are distributed
over the network.

The activities are started via inter-tool communication
between the central module and theactivity starter  on the
different hosts. The activity starter executes the activity on
the selected host. The current load of this host is reported to
the central module to update the system state information.
As a second task of the activity starter, the needed resources
of the executed activity are reported to the analysis module
after the successful execution.

The analysis module has the task of estimating the
needed resources for an activity as presented in Section 3.
The used design flow, the subproject and the complexity of
input data can be provided by the framework.

The planning module information is provided about
the activity profile to plan the load distribution on the work-
stations as presented in Section 4. Until now, three presented
allocation algorithms are realized as planning module of
FLODIS, using more or less the available information about
the activities [15]. The planning algorithms are based on a
static load distribution. However, it is possible to send the
actual load of the hosts to the central module. In case of an
overload on the selected host which is not caused by a
framework controlled activity, another host can be chosen.

The implementation of FLODIS was done in the object
oriented language C++. For the inter-process communica-
tion, the C++ functions of Base Communication Module
(BCM) [6] have been used. It is planned to integrate the load
distribution system [13] in the JESSI-COMMON-Frame-
work which will provide an open C++ interface to the
design management and the data base.

6 Experiments and results

In the selected experimental environment FLODIS has
been used to control the execution of two, four and six
design flows in parallel (Figure 5; n,m = 1,2,3). One part of
the design flows consists of three subsequent activities for
FPGA partitioning (mapping, clustering, partitioning). The
other flows consist of an activity for state encoding and an
activity for minimizing the state table. The flows represent
different designers using the activities with different data.
Six SUN workstations with the same CPU architecture but
different computing power are used (1×Sparc 20, 1×Sparc
10, 2×Sparc 2, 2×Sparc 1) in the test environment.

Both the mean execution time of the different flows and
the overall execution time have been measured. Table 1 and
Table 2 show the results for two ‘standard approaches‘
(Round Robin algorithm and Dynamic Load Distribution),
the classification algorithm and the FLODIS algorithm. The
Round Robin and the classification algorithm have been
implemented as a planning module in the FLODIS system,

for the Dynamic Load Balancing the tool ‘LB‘ has been
used [9]. This tool allocates a workstation based on its
actual load and a selection factor which corresponds to the
computing power of the machine. The actual load is meas-
ured as load average during the last minute. For the selec-
tion factor the same values as used for the transfer factors of
the FLODIS allocation have been selected. LB uses the
„rsh“ command to perform the activities on other worksta-
tions. To avoid the influence of the communication over-
head caused by this time consuming daemon, the execution
time of this load balancer has been measured locally. In the
measurements of the other allocation algorithms all commu-
nication overhead is included in the presented results.

The Round Robin algorithm distributes activities to
every workstation. Also, the workstation with the least com-
puting power has to perform activities, and if two activities
are executed on one host both activities may have the same
resource profile. Therefore, this results in execution times
that are distinctly longer than the FLODIS results for 2, 4
and 6 flows in parallel. As expected, the Dynamic Load Bal-
ancing provides better results, but FLODIS is still the better
alternative with an execution time reduction of about 40% to
50%. This result is mainly caused by the fact that dynamic
approaches allow an allocation of activities with the same
profile on the same host, i.e. the decision to execute an
activity on a host is only based on the number of processes
on a workstation. Another major problem of this approach is
that the measurement of the load can be performed right in
the moment when a very short process is using a lot of com-
putation power. To avoid this, it is possible to measure the
load average over a period of time, but high loads can be
measured, caused by recently finished activities in the
design flow. In both situations, a powerful workstation may
not be selected although there is no process running.

The classification algorithm provides good results espe-
cially for activities with short execution time (flow 1, flow
5). However, the FLODIS algorithm can improve the over-
all execution time by over 10% compared with the classifi-
cation algorithm. This is mainly caused by the differentiated
view on the resource usage of the activities, e.g., two I/O

 Figure 5: Evaluated design flows
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intensive jobs may not exceed a resource limit on a more
powerful workstation. Additionally, depending on the data,
an activity can switch to another class which can not be
taken into account without activity profiles and resource
estimation (e.g., state encoder in flow 4).

The measurements show that an efficient execution of
CAD tools can be achieved if the activity profiles are taken
into account. It should be noted that the CPU time for the
load distribution algorithm itself is distinctly below one sec-
ond, and it therefore can be neglected.

7 Summary and future work

The presented load distribution system FLODIS is
based on activity profiles. This information is used to mini-
mize the execution time of all design flows controlled by
and started via a framework. It could be shown that every
activity has a specific relative usage of CPU and I/O with
respect to the overall execution time. This profile can be
estimated based on the methodology information of the
framework or on statistic calculations. The main idea of the
presented FLODIS load distribution approach is the com-
bined execution of activities with different CPU and I/O
usage on the same host. The experimental results show that
FLODIS significantly reduces the necessary execution time
compared with other allocation algorithms that use less
information about the activities. The presented architecture
of the load distribution system can optionally be integrated
into a CAD framework, but FLODIS can also be used as a
domain neutral tool.

As all the executable design flow is sent to the load dis-
tribution system, FLODIS has information about activities
which will be executed in the future. This allows to add pri-
ority strategies to the FLODIS allocation algorithm. Further
improvements can be achieved if the available design flows
are used to calculate the start time of future activities.There-
fore, future work will also include the development of a

look-ahead distribution algorithm.
In a CAD environment a large number of tools is inter-

active. Therefore, the execution of interactive tools on the
same host with tools of other resource profile should be
advantageous, but has to be examined in more detail.
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Algorithm Flow 1 Flow 2 Σ Flow 1 Flow 2 Flow 3 Flow 4 Σ
Round robin 100,17 115,31 215,48 112,66 106,86 266,99 224,9 711,41

Dynamic(LB) 68,15 105,2 173,35 88,96 101,47 230,23 205,05 625,71

Class 55,78 63,36 119,14 51,08 88,38 112,83 131,46 383,75

FLODIS 49,24 58,5 107,74 47,77 57,51 113,29 104,05 322,62

Table 1: Execution time of two and four design flows [s]

Algorithm Flow 1 Flow 2 Flow 3 Flow 4 Flow 5 Flow 6 Σ
Round robin 133,12 146,75 233,95 217,38 149,32 129,81010,32

Dynamic(LB) 103,88 144,21 213,77 252,27 75,8 128,66918,59

Class 68,99 118,8 130,5 159,38 56,58 88,54622,79

FLODIS 77,53 88,86 121,81 113,51 63,43 83,27 548,41

Table 2: Execution time of six design flows [s]
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