
ODE : Output Direct State Machine Encoding

Dr. J. Forrest
Dept. of Computation,

UMIST,
Manchester UK.

Abstract

A somewhat novel approach is presented for
determining FSM state codes. Instead of producing an
assignment designed to minimise the overall logic of the
machine, all Moore outputs are converted to state bits.
Pure state bits are only introduced as a final resort. This
results in very simple output equations at the expense of
more complex next state equations. The total number of
output and state bits is usually reduced – a feature that
has major advantages on most PLDs. Perhaps the greatest
advantage, though, is that outputs are glitch-free. The
propagation delays for PLD implementations are also
minimised.

1. Introduction

This paper is concerned with the implementation of
synchronous Finite State Machines (FSMs). FSMs have
been long used as part of the digital design process.
Increasingly automated, their implementation path consists
of two related steps: the derivation of state encodings, and
the synthesis of the subsequent combinatorial logic. The
steps are related because the encoding method used can
have a marked effect on the ability of the synthesis step to
minimise the logic, and that in turn is dependent on the
underlying technology used for implementation.

The paper first defines the basic FSM terminology
used. It goes on to describe the principal points of PLDs
and the ODE algorithm itself. Finally, some examples are
given and conclusions made.

2. FSM Terminology

FSMs, as first described independently by Mealy[1]
and Moore[2], are used frequently in the implementation
of digital systems. Both the Moore class and Mealy class
of FSMs link inputs to outputs via a simple concept of
memory known as their state. IIn digital system FSMs,
the inputs consist of a number of separate bits or signals –
termed the input variables (I) – and the “current input” is
the set of the values on these variables at the given
moment. Similarly for outputs and output variables (O).
In Moore-class FSMs, the current output is purely a

function of the current state, while in Mealy-class FSMs
the output is a function of both the current state and the
input variables.

The term Moore Machine is used as a synonym for
Moore-class FSMs. However, the term Mealy Machine is
used to refer to those Meally-class FSMs that are not
Moore machines. Meally machines can react faster than
functionally equivalent Moore machines and often use less
states. However, Moore machines are often prefered
because their design is simpler. Another useful distinction
is between Moore and Mealy Outputs. These terms refer to
single output bits, where a Moore output is itself only a
function of the current state whereas a Mealy output is a
function of the current state and the current inputs. A
Moore machine only has Moore outputs, while a Mealy
machine typically has a mixture of Moore and Mealy
outputs. This paper is primarily aimed a Moore machines
but is also of use with the Moore outputs of Mealy
machines.

3. Common State Assignment Techniques

A common aim of state assignment is to produce
minimal logic. In traditional practice, the minimum number
of state bits is used. For example, if there are five states,
three state bits will be used – leaving three potential state
codes that will be unused, but are normally taken as don’t
care during logic minimisation. The original argument
behind using as few flip-flops as possible was based on
flip-flops being comparatively expensive compared with
combinatorial logic. This has long ceased to be the case. A
more compelling reason is that manual logic minimisation
methods are severely limited in terms of the number of
state bits they can handle. With the use of logic
minimisation software, the reasoning behind this approach
is reduced – although there may well be limits on the
number of flip-flop bits available in given environments.

In practice many engineers use more ad hoc
techniques for state assignment – such as using grey-code
or even normal counting. It is unlikely that these give the
best results, but they are quick to use in manual
situations. Such practices are common in PLD based
designs, which suggests that logic minimisation under
such technologies is not critical – this point is returned to
below.

One alternative to the above strategy is one-hot
encoding, where each state is allocated its own state bit
which is one when the machine is in that state and zero
otherwise. This results in simplified next state logic at the
expense of more state bits – a given state bit’s next state
function will depend merely on the state bits of
proceeding states and the associated input variables.
Output equations are also simple: equivalent to OR
functions of the state bits of the states where that output
is asserted, or NOR functions of the states where that
output is not asserted – whichever is simplest. However,
although the logic is simplified the number of inputs to
that logic is often higher than traditional methods.
Consider a 16 state FSM where one particular Moore
output is high in 8 of the states and low in the others.
Using one-hot encoding, the output function will be a
predictable 8-input OR function. Using the minimum
number of state bits, the worst case is an arbitrary function
of 4 inputs, while the best case is that the output directly
corresponds to a state bit. Although the internal logic
derived using minimum state bits will possibly be more
complex, the number of bits used as input to that logic
will always be fewer. Under many programmable logic
techniques the number of logic inputs is at least as
important as the function complexity. For example, with
Xilinx 4000 devices[3] any single output function of up
to four inputs has an identical cost – because of the
lookup table approach used. This contrasts with full
custom approaches, where the function itself directly
affects the implementation cost. The underlying
technology is thus important when deciding factors such
as state assignment and minimisation.

3.1 Glitch-less Outputs

A constraint sometimes applied to state machine
implementation is that one or more of the outputs must be
glitch-free – a glitch being a temporary 0→1→0 or
1→0→1 transition as the machine changes state. Such
behaviour is usually perfectly acceptable in a purely
synchronous system, but rarely is when outputs are fed to
asynchronous logic. As a reminder of how easily glitches
occur, take the following simple example:

A0
A1

O1

where output O1 is a simple AND function of state
bits A0 and A1. Consider that we are changing from a
state where the pair (A0,A1) are (0,1) to another where
they are (1,0). In both these states the output O1 should
be 0. However, if the physical nature of the circuit is such
that the 0→1 A0 transition arrives at the gate before the

1→0 A1 transition, there will be a short time when both
inputs are 1, and thus O1 will be too.

One way around this problem is to derive a state
assignment such that there is only one bit difference
between the state codes on each possible state transition.
That is, to ensure that only one state changes on each next
state transition – it is multiple bit changes to
combinatorial logic that causes the problem. Although this
does provide a solution, assignments that fulfil this
constraint do not exist for every state machine. It is also
likely to run counter to the requirements of minimisation.

A common engineers’ solution to this is quite simple
– if an output is depending on only one state bit, then
only one bit can change and thus no glitches can occur.
The requirement is thus to derive a state assignment such
that there is a state bit that directly reflects each output bit
that must be glitch free – either by holding the required
value or its complement. The proposal in this paper
directly follows this practice, but instead of being used for
only those outputs that must be glitch free, it is used for
all Moore outputs. To see the benefits of this approach, it
is useful to look at the characteristics of programmable
logic devices – which have proved ideal targets in
practice.

≥1 =1

Inv

D
C Q

P
ro

du
ct

 T
er

m
 A

rr
ay

Product Term Inputs
Feedback

≥1 =1

Inv

D
C Q

Pin≥1 =1

Inv

D
C Q

Macrocell

S
E

LE
C

T

Fig 1: Basic PLD Model

4. Programmable Logic Devices

This section presents a simplified picture of Extended
Programmable Logic Devices (PLDs), in order to see how
these influence the state assignment and logic
minimisation processes. EPLDs consist of a number of
PAL type blocks, as depicted in Fig 1. Each block
contains a product term array, with a fixed number of
input signals that provide all the combinatorial logic for
the block’s macrocells – a macrocell being linked to an I/O
pin and containing a D-type flip-flop. In each macrocell a
fixed set of product terms are either ORd or NORd

together, the result being passed to the pin, optionally
through the flip-flip. The result is fed back to be used as
an input to the product term array – alternatively the
macrocell can be disabled to provide pure inputs.

The numbers of product term arrays and macrocells,
along with the assignment of macrocells to arrays and the
maximum number of inputs to each array, are features of
each device and cannot be exceeded – unless a larger
device can be used. Similarly for the number of product
terms used per macrocell, although many devices allow for
a macrocell to use some unused terms that notionally
belong to its neighbours.

Real devices are more complex than this. A major
variation being to allow macrocells to be used
independently of I/O pins – denoted as buried, since they
cannot be observed directly. Nevertheless, the above model
is sufficient to consider the effects of state machine
implementation techniques. Typical examples of these
devices include Altera (née Intel) Flexlogic[4] and AMD
Mach 3 and 4 devices[5]. The work described here was
developed using Flexlogic devices. Since all
programmable devices have fixed resources, it is important
to know which of these constraints is broken most
commonly – since minimisation approaches should
emphasise that quantity before others. Prior to developing
ODE, it was the experience of the author with Flexlogic
devices, that the resources ran out first in descending order
of frequency as follows:

C1. Macrocells – the total number of macrocells used
in designs.

C2. Product term array inputs – the total number of
inputs used in the associated macrocell equations.

C3. Product terms per macrocell.
C4. Total I/O pins required.
Category C3 is rarely exceeded in practice, and if so

it is often related to arithmetic or complex XOR terms, for
which these devices are not well suited. These
observations were derived from implementing control style
functions – including state machines and related functions
such as MUXs – and have held true over several designs.
Where there are problems with C3, it has been possible to
factorise the equations, although this does in itself use
extra macrocells. The implications of factorised logic will
be ignored here, to simplify comparisons.

The total macrocells used for implementing an FSM
is the sum of the state and output bits. It will be noted
that one-hot encoding essentially maximises this figure. It
is often argued the number of state bits is not so
important, as they can use buried macrocells which are less
critical. However, the above evidence suggests that it is
macrocells per se, rather than the pins, that are the
constraint. As EPLDs grow larger, it is important to use
them to implement not just state machines and decoders,

but related functions that were previously allocated to
separate devices – these include registers, counters and
other functions that directly relate to state machines. By
placing these functions on the same IC as the state
machines, the integration of the system is improved. There
are many other uses for buried macrocells than state bits,
and it is important to minimise their use. One idea is to
note where a Moore output corresponds exactly to a state
bit – since the same macrocell can be used for both. The
approach used in this paper, described in the next section,
takes this to extreme – all Moore outputs being used as
state bits.

5. The ODE Algorithm

The Output Direct Encoding algorithm is inherently
simple:
1. For each of the FSM’s Moore outputs Oi, i∈ {0..n-

1} – n being the number of Moore output bits –
allocate a state bit Xi. An x-code is allocated to
each state by giving Xi, i∈ {0..n-1}, the value of Oi
in that state.

2. Calculate array U, which is the usage counts of
each distinct x-code, and u the largest element in U.
Then calculate v, where v is the smallest number
where 2v≥u.

3. If v>0, allocate extra state bits Yj, j∈ {0..v-1}.
Allocate a y-code to each state, such that the first
state with a particular x-code has a numeric y-code
of 0, the second 1, the third 2, etc.

4. If v=0, the y-code of each state is a null string.
5. The state code of each state is the concatanation of

its x- and y-codes.
In practice, one makes each output a state bit, and

allocates extra state bits to yield unique state codes. It is
vital that the state bit reflects the required value, and not
its complement. That way, the state bit can use the same
PLD macrocell as the output. This has two advantages:
the number of macrocells is reduced, and the outputs are
taken directly from flip-flops without passing through a
product term array again. On an iFX780-10 the direct
outputs produced using ODE are valid 6.5ns after the
clock input, while outputs that require an additional
combinatorial function take 16.5ns[4]. Another benefit of
direct outputs is that all the Moore outputs are
automatically glitch-free.

Mealy outputs can be treated as they would using
other state machines – by generating the output equations
using the state code. However, if a Mealy output equation
F can be rewritten:

F = A0Z0 + A1Z1 …
where Ai are input conditions and each Zi a state bit

or its complement, then F will be glitch-free if only one of

these state bits changes on each cycle and the associated
condition code is stable whenever the Z bit is true. In
many situations it is worth adding extra state bits to
ensure this property. These Z bits are not true outputs, and
can be implemented using buried macrocells. There should
probably be a step in the synthesis procedure to see if
these extra bits are equivalent to one of the true outputs –
in which case they can be replaced by that output. This is
currently performed manually.

6. Sample Results

The purpose of this section is not so much to
demonstrate that the algorithm works, but to compare the
outcome with alternative approaches. Two examples are
presented – the commonly used Mead and Conway traffic
lights controller [6] and one from a real design

The traffic light system FSM is described in table 1c.
This table shows the original version of the machines,

where ST is a Mealy output and the other outputs Moore.
No attempt has been made to ensure that ST is glitch free.
Table 1b shows a number of sample state encodings that
have been derived for this machine. The straight encoding
counts up from 0 in the order of the states. Jedi[7] is a
state assignment program. With assignment 3, jedi was
told to use 4 state bits instead of the default two.
Assignment 4 is the ODE encoding, that directly reflects
the Moore outputs. Assignment 5 is a simple one-hot
version – assigned manually. Espresso[8] was used to
minimise the state machine’s combinatorial logic, using
each of the above assignments. Throughout this section,
the -Dso_both flag was used with Espresso, which forces
it to look at each of the outputs individually, including
working out whether to take the complement of the
function, and is the most appropriate for the PLD model
described above – by default Espresso is aimed at PLA
implementations.

Inputs Outputs
C TL TS Present

State
Next
State

ST HL0 HL1 FL0 FL1

0 - - HG HG 0 0 0 1 0
- 0 - HG HG 0 0 0 1 0
1 1 - HG HY 1 0 0 1 0
- - 0 HY HY 0 0 1 1 0
- - 1 HY FG 1 0 1 1 0
1 0 - FG FG 0 1 0 0 0
0 - - FG FY 1 1 0 0 0
- 1 - FG FY 1 1 0 0 0
- - 0 FY FY 0 1 0 0 1
- - 1 FY HG 1 1 0 0 1

Table 1a - Traffic Light State Transisition Table

State Encodings
Description HG/HY/FG/FY

1. Straight 00/01/10/11
2. Default Jedi/Armstrong 00/01/11/10
3. Jedi with 4 state bits 1010/1011/0011/0010
4. ODE 0010/0110/1000/1001
5. One-Hot 1000/0100/0010/0001

Table 1b Traffic Light Assignments

Description Total
PT

Harm
Mean
PT

Max
PT

Literals No.
Inputs

No.
Macro-cells

1. Straight 13 1.40 3 29 5 7
2. Jedi/Armstrong 14 1.39 5 34 5 7
3. 4 bit Jedi 14 1.39 5 34 7 9
4. ODE 15 2.85 4 37 7 5
5. One-Hot 17 1.45 3 37 7 9

Table 1c Traffic Light Results

Inputs Outputs
Ref Ram DS AS Had

Ref
Sam
Pag

Present State Next State U/L RCas Ras Cas
01

Dsack

1 - - - - - Idle Rf_Cas 1 1 1 1 1
0 0 - - - - Idle Ras 1 1 1 1 1
0 1 - - - - Idle Idle 1 1 1 1 1
- - - - - - Rf_Cas Rf_CasRas 1 0 1 1 1
- - - - - - Rf_CasRas Rf_CasRas2 1 0 0 1 1
- - - - - - Rf_CasRas2 Idle 1 1 0 1 1
- - 1 - - - Ras Ras 0 1 0 1 1
- - 0 - - - Ras RasCas 0 1 0 1 1
- - - 0 - - RasCas RasCas 0 1 0 0 0
1 - - 1 - - RasCas Idle 0 1 0 0 0
0 - - 1 1 - RasCas PageIdle 0 1 0 0 0
0 - - 1 0 - RasCas Idle 0 1 0 0 0
1 - - - - - PageIdle Idle 0 1 0 1 1
0 0 - - - - PageIdle PageIdle 0 1 0 1 1
0 1 - - - 0 PageIdle Idle 0 1 0 1 1
0 1 1 - - 1 PageIdle PageIdle 0 1 0 1 1
0 1 0 - - 1 PageIdle RasCas 0 1 0 1 1

Table 2a DRAM Controller State Transition Table

State Encodings
Description Idle/Rf_Cas/Ras/Rf_CasRas/Rf_CasRas2/RasCas/PageIdle

1. Straight 000/001/010/011/100/101/110
2. Default Jedi 001/000/101/100/110/111/011
4. ODE 111110/101110/010110/100110/010000/010111

Table 2b DRAM State Assignments

Description Total
PT

Harm
Mean
PT

Max
PT

Literals No.
Inputs

No.
Macro-cells

1. Straight 23 1.58 6 74 9 8
2. Default Jedi 19 1.49 6 55 9 8
4. ODE 23 3.27 6 88 12 6

Table 2c DRAM Results

S_IDLE = cUL * RCAS * RAS * CAS01 * DSACK1 * /DS0
Fig 2. PldShell Example

The results are shown in Table 1c. This shows total
product terms, the harmonic mean and max (greatest for a
single output) figures, the literal count, the total inputs to
the combinatorial logic and the total macrocells used. The
harmonic mean gives an indication of the typical product
term usage per macrocell – for example, row 2 has a better
harmonic mean value than row 1, indicating that in most
circumstances the product term usage is better, even
though the max figure is worse. It will be readily seen that
in terms of both product term count and literals, which are
common measurements of implementation complexity,
ODE does not score particularly well. However, it uses the
fewest macrocells, which is the main argument.
Furthermore, the other figures are perfectly acceptable – so
using such a different approach is not a problem.
Although the mean product term usage is the highest, the
maximum figure is not – this should just be seen as a
bonus. On a different note, it should be pointing out that

two of the four bits from assignment 3 turned out to be
unused in the minimised logic – so assignments 2 and 3
are equivalent.

The second example is the DRAM controller for a
68332 microcontroller based system[9]. The state
transition table is given in Table 2a. It should be noted
that some of the “inputs” are expressions in the real
design, for example IsDRAM is a function of AS and the
appropriate address lines, but are treated as single inputs
here for sake of simplicity. Also some of the signals are
active low. As a final note, the real CAS signals are
themselves functions of RCAS and CAS01:

CAS0' = RCAS' + IsUpper.CAS01'

This is to avoid glitches, as described above. It would
have been possible to rewrite the DRAM controller itself
to avoid this step, but the state machine would have been
more complex – this was a design decision. This equation

gives glitch-free output if RCAS and CAS01 are glitch-
free – since at most one of these signals changes on each
state transition and IsUpper is known to be stable
throughout memory cycles.

Table 2b describes the state encodings that were tried
on this machine. Unlike the previous example, the ODE
assignment includes a y-code of length 1 – in order to
differentiate between states RasCas and PageIdle. The list
of assignments tried was shorter – since neither jedi with
longer codes nor one-hot encoding seemed fruitful. The
constraint of making RCAS, CAS01 and RAS glitch-free
was not applied to assignments 1 and 2.

Table 2c shows the results achieved. Again the ODE
method comes out worse in terms of the literal count, and
its literal count is higher than optimum too. However, the
macrocell count is down – which is the general aim.

Other examples have been tried, with similar results.

6. Conclusions

A new technique for state assignment has been
introduced. While being essentially an extension of
engineering techniques, what is new is the degree to
which this has been applied. The goal is to reduce the
macrocell usage on PLDs, and at this it has been shown to
succeed. It might have been assumed that this would lead
to an unacceptable rise in other critical values, such as
product terms and inputs to the product term arrays.
However, this has been shown to be not the case – at least
on Flexlogic ICs. As evidence for this, it should be noted
that both of the 68332 based examples were originally
implemented using the Intel PldShell tool[10]. Although
this uses Espresso to minimise the logic, it does not
generate don’t cares from unused state codes – the product
term counts are much more complex than those presented
here, yet there have been few resulting problems. However,
ODE is advantageous not only because of the reduced
macrocell count but also because Moore outputs appear
more quickly than other methods and are always glitch-
free.

The approach is not currently fully automated in a
conventional sense. The PldShell tool does not itself
perform state assignment, so there is no way of describing
states machines with non-encoded symbolic names. Instead
the symbolic names are given together with the
assignment as an input to the tool. The manner adopted
with ODE is to describe the outputs as flip-flops and then
to describe the required output values in the state code –
thus the ODE description is given directly. For example,
the IDLE state assignment for the second example is given
in Fig 2. There are no distinct output equations, and the
next state equations are given using standard PldShell
techniques. This ease of description was one of the

original reasons for developing the approach – before it
was realised that there were other advantages.

It should not be assumed that ODE algorithm is
universally applicable. Machines with many states that
have identical outputs are likely to suffer from the naive
approach to generating the y-codes. The author uses the
ODE technique almost universally now on PLD designs,
but not on counters and similar state machines which have
few outputs. More work may lead to a better generation of
the y-code.

Other areas for further work involve attention to the
number of inputs to the product term arrays – the next
most critical constraint. It is known that there are
scenarios where some of the fedback outputs could be
removed during logic minimisation – that is, the logic
could be rewritten without them. This may involve using
extra or more complex product terms, but that is not a
major constraint. Such minimisation would need to follow
an initial mapping phase, to allow simultaneous
optimisation of physical groups of macrocells, and would
require modifications of tools such as PldShell. However,
there could be major benefits. Using ODE, the product
term array input number has proved a problem on more
occasions – this is to be expected, although it has not
been as bad as was initially assumed. Improved logic
minimisation should help counter this.

It is highly likely that tools exist that produce a
similar state assignment to the ODE technique – under the
guise of relating state assignment to the system outputs –
although the author has no experience of any. What this
paper has tried to demonstrate is that far from being an
obscure approach, with occasional applications, it such be
used as the standard method on EPLD based systems.

References

1. A Method for Synthesising Sequential Circuits, G. H.
Mealy, Bell System Tech. J., no. 34 (Sept. 1955).

2. The Synthesis of Sequential Switching Circuits, D.A.
Huffman, J. Franklin Inst, no. 257 (March-April,
1954).

3. The Programmable Logic Data Book, Xilinx, 1994.
4. Programmable Logic, Data book, Intel, 1994.
5. Mach® 3 and 4 Family Data Book, Advanced Micro

Devices, 1993.
6. Introduction to VLSI Systems, C. Mead and L.

Conway, Addison-Wesley, 1980.
7. Synthesis of Multiple Level Logic from Symbolic

High-Level Description Languages, B. Lin and A. R.
Newton, VLSI 89, Munich, 1989.

8. Logic Minimization Algorithms for VLSI
Synthesis, R. Brayton, G. Hachtel, C. McMullen, and
A. Sangiovanni-Vincentelli, Kluwer Academic
Publishers, 1984.

9. MC68332 User’s Manual, Motorola, 1990.
10. PLDshell Plus™ User’s Guide v4.0, Intel, 1994.

	EURO-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

