
Integration of VHDL into a System Design Environment

Ludwig Schwoerer, Matthias Lück, Hartmut Schröder
University of Dortmund

Working Group on Circuits of Information Processing
44221 Dortmund, Germany

Tel.: (+49) ..231/97506717, Fax: (+49) ..231/7553196
E-Mail: LS@NT.E-Technik.Uni-Dortmund.de

Abstract
Verification of image processing systems is mainly

done on the basis of image sequence simulations. To
achieve high simulation efficiency, our compiled code
simulator MSIPC offers a high performance clock period
precision simulation, according to the SDF simulation
paradigm. Furthermore it supports mixed mode (e.g.
VHDL) simulations via coupling to external simulators,
and via cross-compiling.

1. Introduction

The design of complex image processing systems
demands for computer aided design procedures.
Normally, a design is done in several steps of refinement,
starting at the system level with the algorithm design and
ending e.g. at the gate level with an ASIC netlist. At all
these stages, the proceeding design has to be verified by
extensive image or even image sequence simulations.
These simulations can take up to 90 % of the whole de-
sign time. Therefore, powerful simulation tools are neces-
sary, that enable fast simulations even for these high
quantities of test data [1]. To ensure an uninterrupted de-
sign over all design stages, the system has to be multi-
level and mixed-mode capable, i.e. to offer simulation fa-
cilities for all applied implementation styles.

In this paper we present the new compiled code sim-
ulator MSIPC, whose main part is a fast multi-level simu-
lator, which can be coupled to several external simulators
(e.g. VHDL). Furthermore, optimizing cross-compilers
enable very efficient simulations of processor-based
modules. Related approaches [2], [3], [4] do not offer this
functionality, since they are more focused on synthesis.
One of the main topics in current MSIPC development is
to extract as much functionality from external descrip-

tions as possible and to simulate them functionally identi-
cal within MSIPC, in benefit of simulation efficiency.

2. Typical design flow for image processing
systems

Typically, when a new image processing system is
being designed, first the underlying algorithms are inves-
tigated and developed by means of image sequence simu-
lations, i.e. well chosen testsequences are grabbed into an
image sequence store (or already available as files) and
the algorithms under test are performed offline with these
data. The results are then written back into the image se-
quence store and visualized on connected monitors. Since
the amount of data to be processed is enormous (typically
about 400 kB per frame and 25 frames per second, yield-
ing 10 MB per second of image sequence), these simula-
tions are very sensitive to simulation efficiency. These
simulations are normally implemented on the basis of or-
dinary high-level languages, in most cases ´C´, not re-
garding any impacts on further hardware realization [5].
For example, it is quite common to separate major blocks
of the algorithm by frame buffers, so that unlimited ran-
dom access to twodimensional frame data is possible -
which is not the case for real hardware environments.

After the succesful verification of the algorithm at
system level, the system is split up into several modules,
for each of which an appropriate design methodology
(ASIC, signal processor based, etc.) has to be chosen.
Normally, here the design flow is broken up, i.e. for each
module the design now starts just with the specifications
derived from the system simulation, but without any mu-
tual interference between the different modules. This is
even more forced due to the different design methodolo-
gies, resulting e.g. in a VHDL - description for the ASIC
parts, whereas the signal processor based parts result in
the corresponding assembler code. Also, possible feed-

backs to the system level resulting e.g. from optimization
on register transfer level, are very indirect. All resulting
changes have to be induced manually to the system simu-
lation and checked again by image sequence simulations.

Algorithmic
System-
Design

Register-
Transfer
Design

Gate-
Level

Design

MAZ

Camera
Image sequences

Test-
Vectors

Test-
Vectors

Display/
Verification

Verification

Verification

Figure 1: Typical design flow for image processing
systems

It was our goal to overcome this gap during the de-
sign flow and to enable mixed mode image sequence
simulations for the whole system, when we started to
work on MSIPC.

3. The concept of MSIPC

The system design environment MSIPC (M ixed
mode System simulation for Image Processing Circuits)
enables a continuous design of image processing systems
from system level down to implementation level. Through
all stages of the design, the system as a whole with all the
interaction between different modules can be evaluated
by means of image sequence simulations,.

Algorithmic
System-
Design

Register-
Transfer
Design

Gate-
Level

Design

MAZ

Camera

Image sequences

Test-
Vectors Display/

Verification

Figure 2: Improved design flow using MSIPC
The main part of MSIPC is a compiled code simula-

tor (sometimes also classified as Streamline Code
Simulation [6]). It generates optimized C-Code to perform

a clock period precision simulation from system to regis-
ter transfer level, according to the Synchronous Data
Flow (SDF) [7] paradigm. Since typically 80 to 90 % of
all signals change every clock cycle, a compiled code
simulation with static scheduling is more efficient than an
event-driven simulation technique, which suffers from the
event-management overhead because of this high change-
percentage [6]. Under these circumstances, a simulation
in the SDF domain is by 1-2 orders of magnitude more ef-
ficient compared to discrete-event simulation [8].
Therefore MSIPC directly yields an adequate and fast
simulation for all synchronous parts of the system.

Circuit GraphAuxiliary
Algorithms

Synthesizer

NDL MSIPC

MSIPC
Simulation Program

. .
e.g. EDIF, ...

. .

. .

Parser

SVP

VHDL

MVP

e.g. VSP, FPGA, VERILOG, ..

VHDL-
Simulator

SVP-
Simulator

MVP-
Simulator

Schematic Entry

Simulator Coupling

C
ro

ss
-C

om
pi

le
r

Figure 3: MSIPC system structure
The structural description of the circuit is done by a

hierarchical netlist. The description language can either
be a pure architectural description language (e.g.: NDL
[9]) or a versatile hardware description language as e.g.
VHDL. Of course, a description in native MSIPC - code
is possible, too. To have a user-friendly front-end, these
netlists can be generated by an arbitrary schematic editor.

The functional description of the circuit modules can
be done in several ways:

First, the description can be given directly in MSIPC
syntax. Since MSIPC is based on ´C´, system designers
immediately feel familiar, when using MSIPC. In benefit
of simulation speed, the natural data type in a first step is
restricted to a bi-valued logic, so that all signals (busses)
can be calculated directly with their full wordlengths [10]
using standard ´C´algebraic expressions.

On the other hand, functional descriptions can be
given in several other formats. The integration of these
external formats, e.g. VHDL, is discussed later on.

From these input sources, MSIPC automatically gen-
erates an equivalent ´C´ program by taking the MSIPC
sources for all modules and arranging them according to
the netlist given. In total, a fast clock period precision
simulation is achieved, according to the SDF paradigm.

The flexibility of the system concerning different ab-
straction levels and description styles is achieved by con-
nection to other, already existing simulators. By giving
functional descriptions in an external format to MSIPC,
the user specifies which parts of the system shall be simu-
lated by which external simulator. To communicate with
these simulators, MSIPC automatically inserts appropriate
interface modules within the simulation program. Hence
it is possible to simulate single modules or blocks of
modules with e.g. a VHDL simulator, whereas the rest of
the circuit is simulated on system level (mixed mode sim-
ulation). This is even more important, when parts of the
system are currently refined down to gate level, and have
to be tested within the whole system, still specified on
system level. But one of the most important advantages of
mixed mode simulation certainly is the resulting simula-
tion speed, because most parts of the system are effi-
ciently simulated by MSIPC on system level. After the
gate level description has been verified, the whole module
can be substituted again by its system level description,
and another module can be further refined.

Another way of integrating external functional de-
scriptions is to find a functional (within the SDF domain)
identical MSIPC description. Here, all optimizing tech-
niques known from compiler construction can be applied
to achieve very high simulation efficiency. This way of
cross-compiling is possible for every processor-based
module, since they are synchronous by default. As an ex-
ample, we have implemented such a cross-compiler for
the SVP [11], which enables MSIPC to perform most
SVP algorithms at 1 frame per second on a Sparc 20. But
also a quite large subset of VHDL [12] can be used to de-
rive a functionally identical MSIPC description.

Because of the resulting high simulation speed, now
image sequence simulations are possible for the whole
system during all stages of design progress.

4. Internal modeling of synchronous circuits
and systems

The underlying circuit model of MSIPC consists of
modules, whose inputs and outputs communicate via uni-
directional signal nets. Modules can be placed in arbitrary
hierarchy levels, i.e. that modules can consist of sub-
modules, which themselves are constructed by sub-mod-
ules. Such modules are called macros. Modules, that have
no further sub-modules, are primitives. The behaviour of

primitives is given directly as a functional description. An
example of such a system is sketched in figure 4.

. .

E0E1

E2

E3

E4

E5i00

i01

i10

i20

i21
i30

i40

o30

o10

i41

o40

o20

o21

i50

i51

i52

o50 o00

Figure 4: Example of hierarchical system
So, the whole system is defined as a set of modules

En, n ∈ {0,1, .., Ν} , each characterized by an according
triple {In, An, On},where:

In is a set of all signal nets connected to the inputs

inj, j ∈ {0,1, .. , J} of module En,

An is either a structural (for macro modules) or

functional (for primitives) description On = An(In) ,

On is a set of all signal nets connected to the outputs

onk, k ∈ {0,1, .. , K} of module En.
Inputs and outputs at the top level, i.e. of the total

circuit, are called primary inputs and outputs.
The temporal modelling of the system is done ac-

cording to the applied SDF paradigm with clock period
precision, so that MSIPC is dedicated to synchronous cir-
cuits. Therefore the delay of a module´s output is not de-
termined by the physical delay time of actual circuitry,
but due to internal buffers and registers. So all delays are
specified in multiples of clock cycles, and assigned inde-
pendently to each output pin onk as

Del (onk) = Max (delay (inj -> onk), for all j,k).
In total, our module model consists of a pure combi-

natoric description An with concentrated delays at the
module´s outputs, as sketched in figure 5.

. .

En
in0

in1

inj

on0

on1

onk

Del (on0)

Del (on1)

Del (onk)

An

Figure 5: Delays assigned to output pins
The hierarchy of the system and the interconnection

of the modules can be described by graphs. The circuit el-

ements (pin and module) are represented by knots, signals
and hierarchical corespondencies by edges. One can dis-
tinguish two types of graphs:
a) The module-related circuit graph, which is a hierar-

chical graph, showing on the one side the hierarchical
relation between all modules En, and on the other
side the interconnection between all modules.
Figure 6 shows such a graph for the example system
of figure 4.

E0

E1 E2
E5

E3 E4

Hierarchical edges

Signal edges

Figure 6: Module-related circuit graph
b) The pin-related circuit graph, where all connections

(i.e. signal nets) are represented by bundles of edges.
As an eample, the corresponding graph for the ex-
ample system of figure 4 is sketched in figure 7.

. .

E0E1

E2

E3

E4

E5i00

i01

i10

i20

i21
i30

i40

o30

o10

i41

o40

o20

o21

i50

i51

i52

o50 o00

Figure 7: Pin-related circuit graph
To handle these graphs within a software system like

MSIPC a suitable data structure has to be implemented to
store all circuit information. Since all graphs used by
MSIPC are unweighted digraphs, they are stored as dou-
ble-pointered adjacency list. This allows a fast and flexi-
ble search of the circuit architecture [13].

5. Resulting Compiled Code Simulation

After parsing all circuit information to the MSIPC
internal representation, the synthesizer part of MSIPC
generates a corresponding hierarchical ´C´ program, in
which every module is mapped onto a function. That is, a
depth-first-search (DFS) algorithm [13] is used to trans-
form the hierarchy graph to ´C´ source code for all macro
modules. Within these macro modules, all sub-modules

are arranged according to the data flow. The sequence is
determined within the socalled ´levelizing´ process. Every
module of the module related circuit graph is assigned to
a level, which increases along the data flow. Modules
without inputs or connected only to primary inputs are as-
signed to Level(Ep) = 0, all other levels are computed
within a breadth-first-search (BFS) algorithm [13] by

Level(En) = (1 + Max(Level(Eν) |In ∩ Oν ≠ ∅))
In cycle-free circuit graphs (i.e. circuits without

feedbacks, resulting in directed acyclic graphs, DAG´s)
all module levels can be determined this way.

But if the graph contains cycles, this procedure fails.
Obviously, the levelizing process has to be cut within cir-
cuit cycles. To detect cycles within the system, we use an
algorithm to determine all strongly coupled components
of a digraph. Now a simple heuristic is applied to choose
one module of the cycle, at which the levelizing is cut
[14]. Beginning with this module the BFS can be contin-
ued. This process is repeated until all cycles are resolved.
To illustrate the process, figure 8 shows the determined
levels for an example system.

E1 E2

E3

E4

E5

E6

E7

E8
E9

1 2

3

5

6

4

7

9

8 9

E10

Cycle2

Cycle1

Figure 8: Levelizing within cycles
Since all modules have been arranged according to

the data flow, even modules with a specified zero delay
can be handled. All signals are evaluated in the correct
sequence. Only within cycles at least one module must
have a delay ≥ 1 clock cycle, since then calculations are
temporally decoupled.

Finally, the automatically generated macro modules
together with the user defined primitives (which of course
can be predefined in a library) form an autonomous ´C´
program, which is a direct representation of the System
Under Test (SUT). All primary inputs and outputs are
connected to (image sequence) files, defined during run-
time. For the user´s convenience, appropriate MSIPC
function skeletons are generated for all modules for which
no functional description can be found. So the user has to
fill in only the functional description of that primitive,
whereas the module´s I/O description is automatically de-
rived to fit into the system.

Because of the very efficient modelling of all syn-
chronous parts of the SUT and simulation as SDF system,
a remarkable acceleration of simulation speed results, by
this allowing image sequence simulations within reason-
able time.

aMSIPC

Cut-Level 0

MSIPC

Cut-Level 1
SGUT

External Simulator

Clock

Data

Clock

Data
Unix
Pipe

Unix
Pipe

Parent Process

Child Process

Ctrl Ctrl

Testbench

b c

d

Figure 11: Parallel Mixed-Mode simulation

MSIPC Behavioural
VHDL *

Logic
Simulation

temporal
resolution

clock
period

1 ns 0.1 ns

processing
time **

1 200 1500

*) Synopsys VHDL - simulator
**) relative data

Figure 9: Comparison of simulation duration

6. Mixed Mode Simulation within MSIPC

MSIPC offers the possibility of mixed mode simula-
tion. In this case, the generated ´C´ program interacts with
external simulators in the sense of synchronous simulator
coupling [15]. To prepare for such a mixed mode simula-
tion, the whole circuit graph is searched for modules,
which the user has specified for external simulation. To
minimize the amount of data exchange with external
simulators, all neighboured modules assigned to one spe-
cific external simulator, are grouped and form a socalled
Simulation Group (SG). This SG is treated as a whole by
the external simulator.

VHDL

C C

C

C

Simulation
Group

Cut

Cut
Cut

Cut

Cut - Level 1Cut - Level 0

VHDL

Figure 10: Building of a Simulation Group and intro-
duction of Cuts

For the actual data exchange, two concepts are pro-
vided: the serial and the
parallel mixed mode simula-
tion.

With the serial mixed
mode simulation, the circuit
graph is cut at connections
between MSIPC modules
and external modules.
Because parallel paths have
to be cut, too, a BFS
algorithm is applied. All cuts
are done on the highest
possible hierarchy level,
which guarantees a minimum
number of cuts (cf. fig.: 10).
As a result, the whole system

is split up into several sequential subsystems, ordered by
the socalled cutlevel. During simulation, first all data are
passed through the subsystem with cutlevel 0, and the
results are stored in files. These files are read by the
external simulator specific input interface modules, which
together with the output interface modules form a
testbench for the SG under test (SGUT). The results are
again stored as files, which now form the input stimuli for
the subsystem with cutlevel 1. This procedure is repeated
until the whole system is evaluated.

This method can easily be implemented with every
external simulator, even if the simulators run on different
workstations, but has the disadvantage, that mixed mode
simulations are impossible within circuit cycles.

Therefore a parallel mixed mode simulation method
was also implemented, to overcome these restrictions.
Here, the generated ´C´ program and the external simula-
tors work as parallel processes and data are exchanged
every clock cycle via standard unix pipes, as shown in
figure 11. Restrictions on the circuit graph no longer hold.

The automatically generated testbench for the SGUT
maps the bi-valued logic of MSIPC to the simulator spe-
cific data representation, and vice versa. Furthermore, the
testbench is used to convert the synchronous dataflow of
MSIPC into temporally equidistant input events by gener-
ating appropriate clock and control signals for the SGUT,
so that signals are temporally expanded, i.e. held for one
clock period, when given to the external simulator, and
subsampled when returned to MSIPC. Figure 12 illus-
trates this process by showing the temporal sequence of
samples resp. events at the locations indicated in fig-
ure 11.

To verify the functional description given to the ex-
ternal simulator, the results returned can automatically be
checked by running the available MSIPC description in
parallel and comparing the results. There are three possi-

ble indicators, MSIPC can give to the user: identity, tem-
poral displacement, or non-identity.

t n t n+1 t n+2 t n+3
t

t n t n+1 t n+2 t n+3
t

t n t n+1 t n+2 t n+3
t

t n t n+1 t n+2 t n+3
t

Data
valid

Data
valid

Data
valid

a b c d

a b c d

W X Y Z

W Y Z

d

c

b

a

Figure 12: Temporal sequence of samples and
events

7. Conclusion

For the design of video signal processing systems ef-
ficient simulation concepts are necessary to enable image
sequence simulations during all stages of design flow.
Since a synchronous design is commonly used for such
video signal processing systems, an according simulator
can benefit from an appropriate circuit model and simula-
tion paradigm. In this paper we present the compiled code
simulator MSIPC, which offers the following features:
• Simulation with clock period precision according to

the SDF model, resulting in very efficient simulation
of synchronous systems

• Architectural system description via netlists, which
can easily be generated by schematic entry

• Mixed mode capability via coupling to external sim-
ulators is supported, allowing e.g. VHDL - simula-
tion for single modules

• Efficient simulation of processor-based modules by
optimizing cross-compiling
Several designs, most of them in cooperation with

industrial partners, have been done using MSIPC, mainly

in the area of format conversion [16]. The experiences
confirm fast design times and easy application of MSIPC.

Currently work is done to implement an optimizing
cross-compiler for VHDL, allowing a functionally identi-
cal simulation in the SDF domain, yielding a rapid in-
crease in simulation efficiency.

References

1 Schwoerer, L.; Schröder, H.: "System Design for Digital
Video Signal Processing - Relations between Algorithm,
Architecture and CAD-Tools", ECCTD’93 - Circuit Theory
and Design, Elsevier Science Publishers B.V.

2 CADIS GmbH, Herzogenrath, Germany, COSSAP User´s
manual

3 Grötker, Th.; Zepter, P.; Meyr, H.: "ADEN: an Environ-
ment for Digital Receiver ASIC Design", ICASSP-95

4 Buck, J.; et. al. : "Ptolemy: A Mixed-Paradigm Simula-
tion/Prototyping Platform in C++", Proc. C++ At Work
Conference, Santa Clara, CA, November 1991

5 Konstantinides; Rasure: "The Khoros Software Develop-
ment Environment for Image and Signal Processing", IEEE
Trans. on Image Processing, VOL.3, No. 3, May 1994,
pp. 243-252

6 Rammig, F.J.: "Systematischer Entwurf digitaler Systeme"
S. 255 - 315, B.G. Teubner - Verlag, Stuttgart 1989.

7 Lee, E.A.; Messerschmidt, D.G.: "Synchronous Data
Flow", IEEE Proceedings, September, 1987

8 Zepter, P.: "Kopplung eines VHDL Simulators an einen
Simulator für Signalverarbeitungs- und Kommunikations–
systeme", GME Fachberichte 11 Mikroelektronik (D.
Seitzer, ed.), pp. 127-132, VDE Verlag, March 1993

9 "Network Description Language Reference", LSI-Logic
Corporation.

10 Marwedel, P.: "Synthese und Simulation von VLSI-Syste-
men" S.30 - 32, Hanser Studien Bücher, München Wien
1993.

11 "SVP User Manual", Texas Instruments, Inc.
12 Baker, W.: "An Application of a Synchronous/Reactive

Semantics to the VHDL Language", Technical Report
UCB/ERL M93/10, U.C. Berkeley, December 1992

13 Sedgewick, R.: "Algorithms", Addison-Wesley, London
1983

14 Krodel, H.T.: "Verfahren zur Logiksimulation komplexer
digitaler Schaltungen mit flexibler Modellierung", Disser-
tation 1989, Lehrstuhl für Rechnergestütztes Entwerfen der
Technischen Universität München.

15 Bechtold, M., et. al: "Das Simulatorkopplungsprojekt",
GME/GI/ITG - Fachtagung "Rechnergestützter Entwurf
und Architektur mikroelektronischer Systeme",
(Dortmund, 1990), Springer - Verlag

16 Blume,H; Schwoerer,L.; Zygis, K.: "Subband Based Up-
conversion Using Complementary Median Filters", 7.th
Int. Workshop on HDTV and Beyond, Torino, Italy, Octo-
ber, 1994

	EURO-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

