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Abstract

In this paper an analog network macromodeling technique
is presented. It is oriented towards a functional-level
simulation of both analog and analog-digital networks. The
signals are assumed to be piecewise linear (PWL)
waveforms. A class of nonlinear inertial building blocks is
introduced for modeling. The proposed macromodels are
accurate in sense of a timing behavior and computationally
efficient, since an explicit algorithm to obtain the waveforms
is used. It is based on a PWL approximation of original
smooth timing responses. Practical macromodels of
particular functional units are discussed. A functional-level
macromodel of analog amplifier is derived in detail and its
performance is shown based on SPICE estimates.

1. Introduction

The actual design strategy for complex electronic
networks is based on synthesis, analysis and verification
performed together at different levels of abstraction (3,4,5].
Modeling and simulation play here important role. An effort
has been made to develop efficient techniques of
modeling/macromodeling and simulation specific to
particular level [3,4,5,6]. Usually simulation accuracy has
to be trade for efficiency, reducing thereby the required
CPU time. Because of the recent progress in technology of
analog and mixed-signal application-specific ICs (ASICs)
the need of functional-level analog simulation bégins to
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emerge. Also an attempt of formulating the AHDL standard
influences the work towards the efficient high-level
macrosimulation tools [2].

In this paper the analog functional-level macromodeling and
simulation are addressed. Timing specifications of analog
units are incorporated into the models and an efficient
explicit algorithm to solve for the timing waveforms is
proposed. Piecewise linear (PWL) approximation both for
the waveforms and DC characteristics is used [1] and an
improved version of the PWL algorithm [11], controlling
the range of approximation is given. All the units are
assumed to be unidirectional, so that floating elements, like
transmission gates or coupling capacitors cannot be
represented separately. However, some loading effects can
be accounted for. The amplifier macromodel is derived in
detail as an example. The proposed macromodeling
technique is well suited to the simulation of A/D networks
with PWL signals, following at this point the approach
presented in [1], where only rather rough analog
macromodels have been used. It has been verified by means
of a prototype PWL simulator for various A/D networks.

2. Macromodeling technique

The macromodeling technique proposed here is based
on a class of first order inertial building blocks. It is to be
pointed out that in most cases the analog units consist of
subcircuits that exhibit inertial properties. Therefore, any
macromodel of an analog unit can usually consist of a few
building blocks to mimic the timing behavior, the basic



nonlinearities (e.g. saturation) and the output loading
effects. The constitutive relation of the basic building block
takes the form of:

dx
T—;‘; +x = f(x,,)

ey
where f( o) denotes its static (DC) characteristic and T its
time constant. The eqn.(1) can be generalized into a
multiple input case, e.g. for a multiplier or adder. To
obtain a pure static block its dynamics has to be removed
by letting in eqn.(1): T=0. On the other hand, when
capacitive loading effects at the output x must be accounted
for, the time constant takes the form of:

T = R,(C,+C,) Q)

where C, is charging capacitance at the output and C,, R,
are respectively the intermal output capacitance and
resistance. Using a PWL signal x,(t) and a PWL
approximation for f(0), also a PWL signal u(t) =f[x,(t)]
is obtained. Let x(0)=x, and u(t)=u, + rt, tE[0,t.].
Hence, solving for (1) we have:

-8

x(t) = (xo-uo+rT)eT +r(t-T) + u, ©)
Our aim is to get a PWL approximation of (3) to enable
further propagation of the signal x in a linearized form. For
this purpose first we split the time interval [0,t,,] into
subintervals [0,t,],[t;,6], ...[ttmx]. For each subinterval
[t,t.] a segment of PWL approximating signal xy, is
defined by its end points, that are assumed to lie on the
curve x. Hence we have: x,,(t)=x(t) and x;,(t;,,)=x(t,,).
In fact, given t;, the t;,, has to be found. To control the
accuracy of this approximation, the Chebyshev measure has
been found the most advantageous. Consequently our
objective can be formulated as an optimization task, that is
to maximize the distance d = t;,,-t; with some constraints
and given t;:

Maxt;mze d: {d=l,‘1-ti, ‘i*lStm} (4a)
§+1
P, t.,) = Max |x(1) - x,(8)| (4b)
i? Vel
P 1) < o (de)

where p(t,t,,) is the performance index and p,. is an
arbitrarily chosen constant (maximum allowed
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approximation error). During simulation it is important to
calculate the subsequent points (t;.,,x(t;,,)) in an efficient
way and possibly to avoid iterations, that all typical
optimization procedures (e.g. Fibonacci search [7]) are
based on. Hence, we propose an explicit algorithm to solve
this problem.

First, to avoid the transcendental equation we start with a
quadratic approximation for x. Invoking the Taylor series
expansion at t;=0 we obtain:

-u+rT [ ¢\2

S0

x (1) = 3

The truncation error introduced by omitting in (5) the third
order Lagrange rest is:

0(<%) = uy=xo=rT (%)3’ c e D 6a)

6
Eqn.(6a) can be reformulated to control the range of the
quadratic approximation (5). The maximum allowed time t,
for x, to hold can be found from:

for | 5% (6b)
¢ | xo-ug+rT|

where ¢, is an estimated value of the maximum allowed
truncation error. Consequently the constraint condition
given by (4a) has to be slightly modified by putting
ti.1 €(t,4+¢]. In Fig.1 the signals x,x, and u are shown.
In Fig.2 the distance function A= |xy,-x,| for the quadratic
signal x, is presented. The x,, is defined by the pair of
points (0,x,(0)) and (t,,x,(t,)). Similarly, the distance
function for the original x signal can be formulated by
A,=|xy-x|. Since the A function is strictly quadratic,
A(t,/2)=A,,, and from simple calculations we have:

Ixo"‘o""Tl ta :
baa” = (T

Assuming A, to be an estimate of p(0,t,) we check for the
constraint (4c). Suppose, A, > Pmax, SO that this constraint
is violated and a new value of t,,,=t, must be found (see
Fig.2). The following condition has to be satisfied:
p(0,t,) =P Again, from simple calculations we obtain:

Aml 8

(]

™)

Since x is almost quadratic for t<t,, we have also:



ta

Figure 1. Model time response x versus its
quadratic approximation x,.

(]

In practice, when the constraint (4c) is violated, t, can be
computed based on (9) from:

t =t Pruax
r@©.t)

This simple formula is fundamental for an efficient solution
of the approximation task (4a,b,c). Hence, a preliminary
algorithm for the PWL approximation of x, expressed by
(3) is as follows:
repeat

compute t,

if t, St then tt, else t,t .

compute parameters for A,=|x-x,|

A (t,/2)

if D> Drax then t,44,*5qrt (P a/P)

Lyttt

X ex(t)

j=i+1

POt
PO.2)

)

(9a)

Lo -t
if Loy > 0 then x(t)ex(t+t,)
until t,,>0

Observe, that for each linear segment only two
computations of the exponential function (present in formula
(3)) are required, for x(t,) and for x(t,/2). After a segment
calculation is completed, the time shift tet+¢, for the x
signal is done and new data to compute the next t, and A,
are available.
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Figure 2. Method of the distance function
calculation.

In Fig.3 an example of the obtained piecewise linear
approximation for x is shown. The accuracy controlled by
Puu=0.08 has been chosen. The excitation u consists of
two segments.

More detailed analysis of eqns. (3) and (9a) makes an
improvement of the presented computation algorithm
feasible. It can be shown that the denominator | xo-u,+1T]|
in (6b) is reduced in the next linear segment of xy, by a
ratio exp(-t,/T), where t, is the length of the actual time
subinterval. Hence, for two subsequent segments of x;, we
have:

. ‘
= 10
t(i+1) = 1,G) T 10
Clearly, the same holds for the numerator in eqn.(7) and

we obtain:
[ 4

1) = Ixo-uo+rT|e—_T (ta(i-q)]2 . _ _%
A (i+1) = 2 T = A (i)e
43

Now, after simple manipulations using (11,8,10), the
subintervals [t;,t;,,] can be found from:
0

£ (iv) = t(i)e T, 12

£0) = ty- 1,
However, the latter result is overoptimistic. One could
expect to take advantage of formula (12) by calculating
from it the subsequent points t, t.;, ., .. Wwithout
computing the p; (only p, would be required).
Unfortunately, the earlier mentioned truncation errors tend
in this case to accumulate from segment to segment.



Usually, using the formula (12), the obtained time intervals
are shorter than they should be due to the optimization
criterion (4a,b,c). In consequence, the values p(t,t;,,) are

much less than pg,, and the number of segments within
[0,t.,) becomes unnecessarily too big.

4.5 T T

4 L

VOLTAGE

3. Analog macromodels

At the functional simulation level we deal with analog
units like amplifiers, adders, voltage comparators,
multipliers or D/A converters. For the purpose of modeling
by means of the proposed technique, their DC
characteristics must be represented in a PWL form. Based
on the introduced inertial building blocks, basic timing and
DC specifications including some nonlinear effects, like
saturation, are feasible. Other nonlinear effects arising at a
signal multiplication can also be handled, since the
respective products are strictly quadratic functions of time
and hence the basic algorithm also holds but in this case it
can be replaced by a much simpler procedure. Apparently,
the t, need not be computed at all. Moreover, if we assume
the quadratic function to be expressed as: x=at’
tE€[0,t,,), the first linear segment crossing x at t=0 and
t=t, takes the form of: x,=att. For this segment
p(0,t) =af(t,)*/4. Hence, for the given accuraCy puu, the t;
should be found from: t,=2sqrt(p,. /). It can be also
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Figure 3. Model time response and its piecewise linear approximation.
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observed that to keep the accuracy for the next segments
the same length for each of them should be chosen, i.e.
t;.,-t;=t,. This efficient formula is very useful while dealing
with analog multipliers or controlled switches.

Time delays having their origin in saturation effects (e.g.
for comparators) can be modelled by means of two inertial
building blocks (1) in cascade. The first one should slow
down the input signal and control the second stage, putting
it from the positive saturation state into the negative one or
vice versa. In this way an impact of the initial input
polarisation and the overdrive on the output response can be
modelled. A careful scaling procedure should be used for
particular model specification to obtain the optimal
parameter set of it.

Here however, only the macromodel for an amplifier is
discussed in detail.

For an amplifier, usually the following specifications must
be accounted for: the gain, the dominant pole, the
saturation, the output resistance and the slew rate. For
small input/output signals a fully linear macromodel would
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Figure 4. Slope limiting mechanism.

be sufficient. However, to cover possibly the full range of
input amplitudes a nonlinear function f( ©) and a special
slope limiting mechanism (SLM) [1] must be used. It begins
to act when |u,| >u,, where uy, is the input signal and u,
the threshold voltage, that puts the amplifier input stage into
saturation. Then each linear segment of u,, with amplitude
above this threshold is checked for the slew rate parameter
SR. Case the segment slope |duy/dt| > SRk, its value is
reduced to the limit SR/k (k is the amplifier gain) and the
next PWL segments are shifted appropriately along the time
axis to avoid time discontinuities. Beside that, two cascaded
building blocks and are required. Denoting by u’y, the signal
obtained from the SLM, for the first block we have:

To%ﬂc - kug, when |kuj|sU, (13
LEex=U., when |kul|>U (14)
1] dt oz? in os

where T, is the inverse of a dominant pole frequency w,
and U, is an output saturation voltage. For the second
building block we have:

T, % vy=x (1s)
where y=u,, is the amplifier output signal and T, involves
the output resistance R, and output capacitance C,, as well
as a capacitive load C,, (see (2)).

In Fig.4 the functioning of the SLM is shown. The u,
signal consists of four PWL segments. The SLM limits the
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Figure 5. Time responses for input from Fig.4.

slope of the second segment above the threshold voltage
that has been assumed to be equal 80 mV. It corresponds to
a noninverting amplifier (based on bipolar OPAmp), for
which a typical value of u,, is approximately 100mV [10]
and the SR=0.5 V/us. The remaining parameters are
chosen as follows: the closed loop gain k=50 and
iy = 125600 rad/s. The slopes of the next segments need not
be limited since they are less than SR/k. The solid line
denotes the original input signal and the dashed line the
limited one. In Fig.S the amplifier output waveforms for u,
are given (the PWL approximations are not plotted for the
clarity of diagram). The u’,, solid line has been obtained
with the SLM, whereas the u,, solid line without of it. For
comparison the SPICE estimate of the u’y, is also plotted
(dashed line). For other values of k (kuy=const.) the time
responses for various input signals are also good
approximation of the SPICE estimates. However, no claim
is made regarding the PWL macromodel suitability to
mimic ideally the real amplifier behavior for all situations.
Using a more natural way to represent the slew rate effect,
like for a closed loop OpAmp [6,9,10], leads to the
problem of a tight feedback. The nonlinear function f(©)
in the first block must depend no more on uy, but on the
difference ug-y/k. In this case the presented PWL
approximation algorithm should be supported by the local
waveform relaxation. However, because of its very slow
convergence for tightly coupled loops [8], it does not scem
reasonable to give up this simple technique. Certainly, some
accuracy is sacrificed in this way.



4, Summary

A macromodeling technique for the simulation of
analog networks has been presented. Merely, the MOS
networks have been addressed here. The particular units are
assumed to be unidirectional ones, however the loading
effects are allowed. The signals are represented in the
piecewise linear form and while applied to the model
inputs, enable to mimic the real timing behavior. The
computation of the PWL waveforms formulated as an
approximation task is very efficient. Some of the
macromodels have been implemented within a prototype
event-driven functional-level simulator, similar to that one
presented in [1]. To proceed with A/D networks the basic
digital units, like logic gates or registers are included too.
Since logic operations AND,OR,INVERT are replaced by
the analog functions [1], all the units, both analog and
digital ones, are treated in a unified way. However, for
complicated units (merely digital ones) their behavioral
specification is also necessary to define the macromodels.
The simulator is event-driven and subsequent points (t;, V)

Q‘.ﬁ“: DWT  wavefarme ara Adafinad tn ha tha susnte

number of events to be processed and the required
relaxation based iterations are likely to becoming a serious
drawback to overcome.
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