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Abstract

The behaviour of a real-time system can be
validated at the system level by means of a real-time
operating system model in a VHDL simulation
environment. The model consists of the real-time
operating system, hardware described in behavioural
VHDL and task descriptions written in C. The real-time
operating system behaviour, HW/SW partitioning  and
HW/SW interfacing can be analysed by studying the
simulation results.

1. Introduction

Technologies, methods and tools related to both the
hardware and software of real-time embedded systems
have developed rapidly. ASIC and FPGA technologies
have become competitive implementation alternatives [1],
and great progress has also been made with multi-
purpose, RISC and DSP processors [2]. The target
architectures of the systems are less obvious than before,
because of the wider variety of possible technologies and
the more obscure boundaries between them. An advanced
application may contain embedded processors, ASIC's,
FPGA's,  real-time embedded software, etc.

Specification, partitioning and verification has
increased significantly in importance, and main system
properties, e.g. costs, performance and functionality, are
greatly affected when an operating system is defined and
task-level HW/SW partitioning is performed. System-
level validation requires models that can be modified
rapidly and analysed with advanced validation methods
and environments.

HW/SW codesign has been widely recognised as a
solution to the new requirements of system design [3], the
idea behind it being to validate design decisions against
system properties. The result is a better target system
rather than highly optimised subsystems that do not
operate properly together.

An implementation-independent specification
language is a basic requirement for codesign. Simulation

is usually carried out by translating the specification into
VHDL or C. StateCharts [4], Structured Analysis (SA) [5]
and SpecCharts [6] are examples of graphical source
languages.

Validation of the functionality and performance of
HW/SW partitioning is crucial part of any codesign
environment. Since no implementation platform
normally exists during the system-level design phase, the
partitioned specification has to be executed or simulated
using a more or less artificial implementation platform.

In prototyping environments [7,8] embedded systems
are implemented using prototype boards that include
programmable circuits, standard components and
computer interfaces.

Several cosimulation approaches exist for the
validation of HW/SW partitioning. In VHDL-C
cosimulation the hardware part is simulated in a VHDL
simulator and the software part executed as a C program.
VHDL-C cosimulation is used in COSMOS and Vulcan
cosynthesis systems, for example [9,10]. UNIX sockets
and HW/SW communication primitives are used together
with Verilog simulation in [11], while a processor model
is used as an execution platform for HW/SW interaction
in [12]. The Ptolemy framework uses a simulation
backplane to combine simulation environments [13].

The COSYMA system uses run-time analysis for
validation [14], whereas the TOSCA system uses
synthesis results for the HW part and virtual assembly
results for  the SW part in architecture and performance
evaluation [15]. A coarse-grain HW/SW partitioning is
performed at the software task level in [16] and validated
in [17].

More software oriented approaches are the physical
modelling of software and RT-OS [18] and software
simulation [19]. Monitoring tools have also been used to
measure the performance of HW/SW systems [20].

The validation method presented here combines the
cosimulation and software simulation approaches. The
processor model in VHDL simulation is replaced with a
real-time OS model. The software is executed as C
program controlled by the simulated OS model, which is
created using VHDL and C.



2. Validation of HW/SW partitioning in
real-time embedded systems

Complex real-time embedded systems consist of a
hardware part and a software part that runs under a real-
time operating system. The hardware part consists of
microprocessors, which may be embedded in ASIC, and
application-specific hardware. The system-level
validation method has to support the modelling of all
parts of the system, including the behaviour of the real-
time software.

2.1 Definition of the problem

The validation method for the partitioned model has
to support functional validation, performance evaluation
and architecture evaluation. The main problem is the
analysis of software behaviour. The hardware designer
can analyse the functionality and timing of his design by
simulating the models, but in order to avoid the
integration problems, similar methods and tools are
needed for software and system design as well. This
requires that the actual behaviour of the software and
real-time operating system must be visible to the system
designer during the partitioning phase.

2.2 VHDL platform

The analysis of system behaviour requires that the
system specification is executed in some execution
platform. In case the specification is done with an
implementation-independent specification language, the
execution platform should be an ideal machine. A VHDL
simulator is a good candidate for such machine [21], and
was chosen in our method for the following reasons:

Parallel execution. The VHDL has parallel
structures, i.e. processes and signals. The ideal parallel
machine can be used as a target architecture.

Control of timing features.  Two separate time
concepts exists in the VHDL simulator environment,
simulation time and execution time. This makes it
possible to model timing independently of the actual
execution times in the simulation environment.

Use of foreign languages. The foreign kernel
interface in VHDL'93  provides a way of importing
algorithms written in languages other than VHDL into
the simulation.

Possibility to use graphical front-end tools. VHDL
can easily be generated from  system-level descriptions.

Debugging and analysis features. VHDL simulators
offer excellent debugging and analysis features compared
with almost any other system. The VHDL language itself
has many constructs that help in the design of analysis

functions, e.g. assertion statements and analysis
processes.

2.3 Real-time operating system modelling

In HW/SW cosimulation the software part is
executed either on a workstation or in the simulated
microprocessor  model. The first approach is fast, but
important data on the timing behaviour of the software
model are lost. The second approach is practicable only
when interface operations are being studied in detail.
Otherwise the simulation is too slow.
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Figure 1. Architecture of the simulation model

In our approach the processor model is replaced
with a reusable operating system model (Figure 1). The
software is executed on a workstation, but the execution
is controlled by the operating system modelled in VHDL.
Communication between the operating system and the
tasks occurs in the VHDL simulator, which can therefore
monitor the interrupts, messages, switching of running
tasks, task waiting times, etc. The simulation times are
shorter than when using processor models as the
execution platform. Some overhead occurs as compared
with executing pure software on a workstation, because
of communication between the VHDL simulator and the
software model.

The approach can also be used for real-time
operating system design and task allocation. The
operating system model can be easily modified and
optimised for the application being designed, and
simulation of the system also allows rapid evaluation of
the software architecture.

3. VHDL-based cosimulation of a
partitioned system

Cosimulation of a partitioned system model entails
simulating the hardware and software models together in



order to study how the complete system operates, what
the effects of the chosen partitioning are and whether the
system fulfils its requirements.
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Figure 2. Structure of the simulation

The VHDL-based cosimulation approach is
presented in Figure 2. The real-time system model is
described by the SA/VHDL method [22], and the system
structure using the SA hierarchy. The system functions
are modelled by writing the algorithmic behaviour in
VHDL or C. The parts described in C are linked to the
VHDL simulation via the foreign kernel interface of the
simulator. The elements communicate with each other by
token passing.

The system model consists of hardware, software
and operating system models. The operating system and
software are tightly linked, since execution of the
software tasks is completely controlled by the operating
system and the software tasks and hardware
communicate via the operating system. The use of C or
VHDL is not limited by the location of the system
function, and both SW and HW functions can be
described in either VHDL or C.

3.1 Operating system model

The main operating system functions are modelled
as data transformations, which are then described in C or
VHDL, utilizing the parallel features of the later. Timers,
for example, can be modelled as simple processes, and
the actual implementation problems associated with
software timers can be ignored.

The main emphasis is placed on task scheduling,
since this has the greatest effect on behaviour. The
scheduling function provides processing time for the
tasks.  The structure of the model (Figure 3) is based on
the operating system, in which each task has a fixed
priority. The key elements are the task list, containing
the states of all tasks and timer 1, which acts as a system
clock. Tasks can be inserted into the list when called up
by an external interrupt or running task. The control
scheduling part selects which task is executed next, the
selection being based on the priorities. It also removes
finished tasks from the task list.
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Figure 3. Structure of the scheduler

3.2 Software model

The software in the real-time control systems is
organised in form of tasks that communicate via
messages. In cosimulation, the model has to simulate this
structure and behaviour. The SA/VHDL-based method
involves modelling of the tasks as SA data
transformations, which are specified in detail with C. In
order to simulate the actual behaviour, however some
changes have to be made to the task descriptions
concerning state behaviour and execution control.

Each task has three active states, i.e. ready, waiting
and running, the transitions between these states being
controlled by the operating system. In addition to the
states, the algorithmic behaviour also has to be modelled.
The algorithms are described using C or VHDL, but the
problem with algorithm description and simulation is
that the simulation and execution times are different, so
that the data values used in an algorithm may not be
valid, since they may have been changed by some other,
parallel activity. This can be avoided by dividing the
algorithm into phases according to the data inputs and
outputs (Figure 4).  Execution of the algorithm during
the simulation is suspended when the communication
point is reached, until enough simulation time has
elapsed, after which it proceeds with updated data values.



The outputs of the algorithm are sent only after the
simulation time has elapsed.
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The task models written in C are linked to the
VHDL simulator via its foreign kernel interface (FKI), in
which the object code of the algorithm is linked to the
simulator with a process description. The algorithm
consists of two parts, the first, which is executed only
once during the simulation, describing the input and
output signals and memory allocations, while the second
part is the executable algorithm, which is executed when
there is an event or transaction in any of the input
signals. The algorithm itself can be written with standard
C. The VHDL/C interface is implemented using
simulator kernel functions.

Communication between the tasks constitutes an
important part of the software model. In real-time
operating systems this communication takes place via
control and status messages. The most common control
messages deal with the starting and stopping of the tasks,
which ask the operating system for services by means of
status messages. The messages are modelled as data
flows, which are then converted to VHDL signals when
the model is translated into VHDL.

3.3 Modelling of hardware

The hardware model is an abstract functional
specification written in SA/VHDL. The structural
information contained in it presents the functional
structure of the system and not its physical structure. The
descriptions of the algorithmic behaviour of the
functional units can also be very abstract, since the idea
is to validate the behaviour and not to design the
structural implementation.

3.4 Simulation

The original model was created using the SA/VHDL
method extended with minispecifications written in C.
The SA structure can be translated automatically into
VHDL with the Velvet tool [22]. The C descriptions are
translated into object code, which is automatically linked
to the simulation model by the simulator. The VHDL
simulator and the modelling practices adopted give full
control and observability with respect to the actions of
the operating system and software tasks, e.g. scheduling,
the task list and message passing can be monitored from
waveform displays.

4. Experiment: the Ethernet bridge

The approach was tested with the Ethernet bridge
example [23], the function of which is to transmit data
packages from one segment to another. In order to
minimise the net load, the bridge has a capability for
learning the network structure. When the bridge receives
a package from a segment, it updates its database by
linking the source address to the segment information. It
then checks whether the target address is in the database
and the packet is either filtered or sent to a specific
segment or to all segments. Optimisation of operation
requires that the bridge should have some buffering
capacity.

4.1 Bridge architecture

The architecture of the implementation consists of
three Ethernet cards connected to an 8051 micro-
controller. It is not the intention here to optimise the
features of the real system but to demonstrate the
cosimulation method. The physical transmission and
buffering of data packets is handled by the Ethernet
cards, while the forwarding and filtering functions of the
bridge are implemented in the 8051 as software tasks in
RMX operating system.

4.2 Partitioned model

The partitioned model was created by the extended
SA/VHDL method, in which the software part was
divided in two: the operating system model and the task
model (Figure 5). The complete model consists of 17 data
transformations described in VHDL and 11 tasks and 6
subfunctions described in C. The simulated description
consists of 7000 lines of VHDL code and 1000 lines of C
code.

The modelling was done on a Sun Sparcstation 2,
the translation from SA/VHDL/C into VHDL/C with



Velvet taking about one minute, the analysis with
VHDL2000 about 10 minutes and simulation of the
transfer of one packet to another segment about 5
minutes.

RTOS

.8

C-TASKS

.5

BUFFERS

Clock

PowerOn

Task_RQ

Step_Done

T_Control

Changed

Send1

Send2

Ready Address

Packet

Card

Send3

Registers

Send_Packet

PowerOff

Figure 5. Software part of the SA/VHDL model

4.3 Results

The model was tested with simulations, a typical
simulation result of which is presented in Figure 6. The
figure shows a situation where a data packet is received
(first marker) and then filtered (second marker). Finally
it is transmitted and the buffer is released (third marker).

The experiment demonstrated that it is relatively
easy to model the operation of the RT-OS commonly
used in real-time embedded controllers. This RT-OS can
be separated from the control software and reused in
other designs.

The RT-OS modelling approach is compared with
the use of functional processor models and standard
VHDL-C cosimulation in Table 1. Functional processor
models can be used for very accurate system-level
validation when simulation time is not critical and when
a target processor and software exist. VHDL-C
cosimulation is a quick way to analyse HW/SW
partitioned descriptions providing that an executable
code exists and that the target RT-OS can be emulated in
a workstation environment. The RT-OS modelling
approach presented here is a compromise that provides
accurate results with a reasonably short simulation time.
The possibility for analysing the model without having
completed the system description also extends the
usability of cosimulation during system-level
partitioning.

The modelling approach can also be used as a fast
prototyping method. If the execution times of tasks in the
real target environment can be estimated properly, the
method even exceeds the features of a traditional

prototyping environment, because simulation is
independent of the execution environment. The analysis
features of the VHDL simulator can effectively be used to
study the behaviour of the software system. Possible uses
are the design of operating systems, prioritisation of tasks
and analysis of HW/SW partitioning.

 Table 1. Comparison of cosimulation
approaches

Functional
processor
model

Software
execution on
workstation

Operating
System
model

Simulation
time

very long short moderate

Model
accuracy

RT/pin level depends on
workstation

functional
level

Hardware
model

µP based
model

not needed
for µP

not needed
for µP

Software
model

compiled
code

executable
code

behavioural
model

The current approach nevertheless has some
limitations.  It is difficult to model data-dependent
execution times for tasks, and the extent of external
communication of tasks also affects the simulation time.
At the same time the complexity of the operating system
influences the efficiency of the simulation.

5. Conclusions

This paper describes a method for modelling and
validating HW/SW partitioned real-time embedded
control systems. The method uses a real-time operating
system model to control the execution of real-time
control software. The system model is described using
the SA/VHDL specification language extended with C,
and the system is validated using VHDL as a technology-
independent implementation platform. All the debugging
and analysis features of the VHDL environment familiar
to the hardware designer are available for the analysis of
the behaviour of the real-time control software. The
method is suitable for the validation of system-level
HW/SW partitioning and for the development of small
real-time operating systems and control software.
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