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Abstract
The paper presents a static process scheduling approach

as a front-end to hardware-software cosynthesis of small
embedded systems which allows global system optimiza-
tion. Unlike earlier approaches, scheduling is executed
before hardware definition assuming scalable system per-
formance. Scheduling supports process communication
and external timing requirements. We explain the algo-
rithm and give results using an example.

1 Introduction
Process scheduling is a well known problem in em-

bedded system design. In current approaches, the
hardware-software architecture is widely known at compile
time. With the advent of hardware-software co-synthesis,
hardware-software partitioning can be moved to a very
late design stage (late binding) because changing sys-
tem descriptions and generating and modifying hardware-
software architectures has become much easier. This is
very much like the automation of physical layout has re-
duced the cost of netlist changes and logic synthesis has
simplified RT-level modifications. As a consequence, pro-
cess scheduling could move ahead of hardware architecture
definition. We will first explain why process scheduling be-
fore hardware definition is useful and will then show that
this approach leads to a new kind of scheduling problem
and finally give a scheduling approach and first results.

Many of the more complex embedded system applica-
tions consist of a mixture of processes with very different
requirements. In the example of an automotive motor man-
agement, ignition control requires a simple process, which
must be repeated every 10 us, while fuel injection and
emission control are computation intensive processes with
iteration rates in the range of many milliseconds. This is
why we often find a mixture of hardwired logic, ASPPs
(application specific programmable processors) and gen-
eral purpose processor cores. Today, this architecture is
typically defined before the system is implemented on this
architecture, in most cases using preemptive scheduling.
Global system optimization is difficult in this context and
whatever changes occur during system design will hardly be
able to influence the hardware architecture. Co-synthesis
systems, such as VULCAN [5] or COSYMA [4], start with
unified process system description and then derive a hard-
ware architecture. In the current state, COSYMA takes a
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single process in a superset of C, Cx, together with tim-
ing constraints on this Cx process. COSYMA first tries to
implement the process on a given processor. If the timing
constraints are not met, COSYMA automatically creates a
coprocessor for process acceleration. Co-synthesis can also
be controlled by a required speedup factor for a given pro-
cessor. Processor-coprocessor architectures are popular in
embedded system design such as in the motor management
example [9]. If we, now, would be able to map the set of
processes of an embedded system to a single process, as in
fig. 1, then we could use the co-synthesis system to create a
new processor-coprocessorarchitecture, independent of the
original process structure. This allows global system opti-
mization. To give an example, it might be more efficient to
speed up one or more small processes with a high iteration
rate, or, instead, to speed up one or more computation in-
tensive processes with loops. Partitioning would also share
the coprocessor for several processes, such that the original
process structure might differ from the optimized hardware
architecture. This is a difficult and time consuming task if
done manually.
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Figure 1: Mapping of the processes

In the next section, we will explain the requirements to
scheduling which result from this approach, in section 3
we will inspect related work, section 4 will describe our
approach, in section 5 we give results which we obtained
with a complete system example, and finally, we draw some
conclusions.
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Figure 2: Coupling the scheduler with COSYMA.

2 Scheduling requirements
The major difference of the scheduling problem, as com-

pared to other process scheduling problems is that the
scheduler works on an architecture with scalable perfor-
mance. Given a process system with time constraints, the
scheduler cannot simply anticipate the execution time of
the individual processes or process segments, because ac-
celeration is determined by the co-synthesis system. Co-
synthesis can, however, regard I/O time constraints.

To alleviate the scheduling problem, we assume that
hard I/O-timing constraints are buffered by a peripheral
device and that processes with cycle times of less than a
microsecond are moved to hardwired logic upfront. In
a manual design, such decisions would be reasonable, as
well.

The scalable performance is defined relative to the per-
formance of a given processor which shall be used as core
processor in the hardware-software system. To express
the required performance, a performance scaling factor is
defined,

Sc =
required system performance

given processor performance
;

such that Sc can be used as speedup factor for co-synthesis
(fig. 2).

Communication with buffering increases the solution
space of scheduling and co-synthesis and is therefore in-
cluded. Buffering does not change rate constraints and
it must regard I/O-constraints, but it allows to reschedule
process initiation times as well as communication among
processes. We define: An I/O-constraint (i.e. an event re-
lating to I/O-communication) is scalable when buffering is
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Figure 3: Speedup of a macro period.

permitted for at least one scheduling period. All other I/O-
constraints are unscalable. Inter-process communication
constraints are always scalable.

Sc is a global speedup factor that does not require that
COSYMA is able to speed up the execution time of each
individual process. The partitioning is performed on the se-
rialized process, P, enabling a true global optimization that
is not restricted by the boundaries of the original processes.
Assuming that the communication between the processes
can be buffered for at most one macro scheduling period it
does not matter in which part of the code the speedup can
be reached. In figure 3, six processes with two different
rates are serialized in one single macro process. After that,
COSYMA would choose a part of the macro process for a
hardware implementation that offers the greatest capacity
for speedup. In fig. 3, we assume that this is a part of P4.
As a result, the execution time is shortened to t0p. This way,
the average iteration rate of each individual process has
been reduced to the required rate, but the execution within
a macro period is not, which is why buffering is necessary
now.

3 Related work
Scheduling has been an important area of research in

real-time computer systems and in signal processing. Many
of the publications are focused on scheduling of periodic
processes. Liu and Layland [8] have shown that Rate Mono-
tonic Scheduling (RMS) produces an optimal schedule, but
it does not consider process communication. Therefore,
several extensions have been suggested [13], [10], [11]. All
these approaches are fixed priority assignment algorithms
meaning that the order of the processes is determined at
run time depending on the priorities which are assigned a
priori.

In order to serialize a system of communicating pro-
cesses as a single process, we need a static order of the
processes which is decided at design time. A (mostly)
static scheduling approach is given by [7] and [12].

Chou and Boriello present in [1] a static, non-preemptive
scheduling algorithm for reactive real time systems, which
is implemented as a part of the Chinook framework. By
serializing a process dependency graph both interprocess



and intraprocess constraints can be regarded. In the Chi-
nook framework partitioning and scheduling is an iterative
process starting with partitioning [2]. This approach is es-
pecially efficient for interface synthesis, but less suited to
data dominated parts with (possibly data dependent) loops
because it requires loop unrolling. The same holds for
Gupta’s approach [6]. Both approaches do not consider
communication buffering.

All these scheduling approaches depend on a fixed tar-
get architecture with known performance. In this paper we
present a completely different solution, which allows a seri-
alization of parallel processes with only partial knowledge
of the final target architecture.

4 Scalable performance scheduling
For scheduling we define different classes of processes

[3]. The major differences are the constraint types and
the timing requirements. The scheduling of the process
classes is separate and hierarchical. We omit details here,
in order to focus on the most challenging class of periodic
tasks with a wide variation of process execution times and
iteration rates.

At the beginning of the scheduling process (fig. 4), a
process dependency graph (PDG) is derived from the Cx

description. The processes are split into basic blocks in
order to get short time segments, which allow to schedule
processes with a shorter cycle time in the order of a few
microseconds. Each basic block also ends at a blocking
communication or at a label which corresponds to an inter-
task constraint. Each node in the PDG represents a code
segment and is attributed by the index of the code segment
as well as its execution time on the target processor, which
is estimated by prescheduling and simulation.

In a prescheduling step, the processes are first serialized
such that the order of the processes does not violate the
data and communication dependencies but without regard-
ing the external time or rate constraints. Being executed
with external stimuli data, the ordered segments show the
correct function and timing when executed on a single target
processor simulator. The prescheduling step saves an extra
simulator. The sequential process provided by preschedul-
ing is functionally correct, because all dependencies were
considered, but the timing constraints are not regarded.
Therefore a different scheduling is required, now.

For both, the prescheduling and the final scheduling
we adapt the algorithm of Chou [1] based on the traversal
search through a graph. The algorithm originally produces
one valid schedule if possible, but this is not necessarily the
optimal one. A suboptimal schedule results in a worse pro-
cessor utilization caused by idle times. This is not a prob-
lem in the case of a fixed target architecture, because, there,
processor utilization is not the primary concern. Since the
target architecture generated by COSYMA depends on the
scheduling, a bad processor utilization results in an over-
dimensioned target architecture. That is the reason why a
schedule close to the optimum is required, here

Neglecting the dependencies of the processes, the "non
scaled" utilization Uns is the sum of the loads of each
process on the processor, which is the ratio of the execution
time Ti to the cycle time Ci of process i:

Uns =

nX

i=1

Ti

Ci

:
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Figure 4: The design flow.

The utilization is a measure of the ratio of the busy
times to the idle times of a processor. The best of all valid
schedules is the one which is closest to the value 1. A valid
schedule can only be found, if this value is smaller or equal
one. Liu and Layland proved, that a set of n processes
are always schedulable for U <= U(n) = n � (2

1
n � 1).

For the interval between U(n) and 1 they gave also criteria
which guarantees a valid schedule [8].

In a hardware-software cosynthesis environment, a typ-
ical application can not be implemented on a single core
processor. The utilization of the processor becomes greater
than 1. Therefore we introduced the scaling factor Sc, in
order to bring the processor utilization in the valid range.
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Figure 5: Block diagram of the train control.

The execution time of each process is normalized by Sc. In
addition to the processor utilization,Sc depends on the task
dependencies, the constraints, the communication and the
overhead for context switching. We merge all these com-
ponents to a factor adep to determine the scaling factor:

Sc = adep � Uns = adep �

nX

i=1

Ti

Ci

:

Becauseadep depends on the number of context switches
and the order of the processes which are unknown before
scheduling, it cannot easily be estimated, but is determined
heuristically. Scheduling iterates several times and adapt
adep and Sc after each iteration. For the adaption we use
simple binary search1, starting with a heuristic value of
5. If this is successful, the interval between one and five
is traversed, otherwise the one between five an ten. By
choosing the width between the first invalid and the last
valid schedule, the quality of the solution can be controlled.

As a result of the scheduling, we get a serialized PDG
and an Sc which is close to the optimum. The cosynthe-
sis system now tries to reach the required speedup Sc by
generating an application specific coprocessor.

5 An example
A model train control serves as an example. The train

is controlled by a personal computer, from which 35 bit
values are transferred over the rails. The model train has
a rather powerful motion speed regulation that moves the
train close to original large trains. Figure 5 shows the block
diagram. A decoder scans the pulse duration on the rails
with a rate of 313 kHz. Due to serious noise, a low pass
filter and a 3 bit burst error correction code are used. The
corrected and decoded value is passed to a regulator, that
receives the actual velocity from a speedometer. Finally a
motor controller generates pulses for the motor electronics.

The train control serves as a demonstrator for a student
VHDL course. The current prototype consists of a XIL-
INX XC 4010 and a microcontroller MC 68HC11. The

1Binary search has been useful for other cosynthesis approaches, as
well [14].

bit decoder and the receiver including the error correc-
tion are mapped on the FPGA, whereas the regulator, the
speedometer and the motor control are implemented on a
microcontroller. With the scheduling experiment, we want
to evaluate if the system could be implemented on a 33
MHz SPARC processor with little additional hardware.

The Cx description consists of five different processes.
The edges between the processes represent communica-
tion. The dotted line describes a non-blocking, whereas
the others describe blocking communication. The first pro-
cess is the decoder that has a cycle time of 3,2us and an
execution time of 4,2us. This process alone could not be
implemented on a SPARC, but a speedup of 1,3 would be
required. All the other processes are executed with a cy-
cle time of 51.2us. The processor utilization is the sum of
the quotients of the execution time and cycle time of each
process (non scaled) :

Uns =

nX

i=1

Ti

Ci

=
4; 2us
3; 2us

+
17; 1us
51; 2us

+
2; 6us

51; 2us

+
14; 9us
51; 2us

+
5; 2us

51; 2us
= 2; 09:

Without communication a speedup of 2,09 would be nec-
essary in order to run the example on a SPARC processor.
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Figure 6: Adaptation of the scaling factor.

In order to consider the communication the utilization



is multiplied by the heuristic factor adep. This factor is
adapted in an iterative process starting with a heuristic value
of 9,0. Figure 6 shows the Gantt diagrams of three valid
schedules during the iterative process. A value of 9,0 (fig.
6a) for adep leads to a scaling factor of 19,2. The processes
are split into basic blocks. One block in the diagram repre-
sents the activation of at least one basic block of a process.
The decoder process is activated every 3,2us. All the other
processes are active only at the beginning of the period.
In the interval from 6us until 52us only the decoder task
is active. This leads to a scaled processor utilization of
Us = 11; 83 % (CPUused in Fig.6).

In fig. 6b adep is reduced to 4,5. This adaption influ-
ences the order of the processes, the regulator activation is
moved behind the second run of the decoder. The processor
utilization increases to 23,6 %. As a result, the schedule
becomes more compact.

One more valid schedule is found for adep=2,25. After
the next iteration adep is set to 1,25 which does not result in
a valid schedule. Neither for adep = 1; 69 nor for adep =
1; 97 a valid schedule is found. Since the difference of adep
of the last valid schedule (2,225) and the current adep is less
than the default minimal interval width (0,5) the scheduler
stops returning the best adep = 2; 25.

As a consequence a speedup of 4,8 is required in order to
implement the design on the SPARC. Most of this speedup
is required to implement the decoder as seen in the Gantt
diagram. The PDG of the train control example consists
of about 770 nodes. The whole scheduling algorithm takes
only a few minutes on a SPARC 10, if the lowest interval
width of the binary search is set to 0.5.
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Figure 7: Convergence of the binary search algorithm.

In the following, we assume that the rate of the the bit
decoder ranges from 312 kHz to 1,25 MHz depending on
the transfer rate between the PC and the train. Fig. 7
shows the trials of the binary search to find a valid schedule
close to the optimum for three different rates. Each of them
converges to the optimum quite quickly. For this example
the binary search terminates whenever the distance of factor
a between a valid and an invalid schedule is lower than 0.5.

6 Conclusion
We presented a scalable performance scheduling algo-

rithm for small embedded systems. Scheduling goal is a
minimum performance requirement for a given set of com-
municating processes with rate constraints. All periodic
processes are mapped to a single process which is then
accelerated to the required performance using hardware-
software cosynthesis. This allows global optimization,
because cosynthesis is not limited to the original process
structure.

Unlike earlier process scheduling problems, hardware
performance is not fixed at scheduling time. Hardware
performance, however, influences process ordering in the
schedule and, on the other hand, process ordering decides
on the required performance. Iteration with binary search
is used to adapt both of these parameters. Based on a
relatively fine grain process segmentation, scheduling can
efficiently handle processes with very different execution
times and iteration rates. The results with an example
show high processor utilization and acceptable computation
times.

Scalable performance scheduling can be used for other
problems, as well. Instead of controlling cosynthesis, the
performance scaling factor could be used for core proces-
sor selection, if the relative performance of other proces-
sors is known. This, of course, is not useful for arbitrarily
different processor architectures where scaling is process
dependent. A designer could also use the Gantt diagram
to identify inefficiencies when serializing the process sys-
tem to a valid schedule. Identified inefficiencies can result
from the definition of timing requirements, rates, process
communication and required context switching.

The hardware architecture is still rather simple. As
future work, we will extend the scheduling approach and
cosynthesis to small, heterogeneous multiprocessors.
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