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Abstract

COBRA is a behavioral high level synthesis tool for datapath
dominated applications. It uses a regular architecture which has
been previously shown to significantly reduce the area of synthe-
sised datapaths and integrates the traditional scheduling, alloca-
tion and binding tasks into one global optimisation. Optimisation
is performed using simulated annealing in a three dimensional
space termed “datapath space”. Unlike previous approaches,
COBRA uses the actual data flow defined by the behavioural de-
scription to imply a datapath. The combination of the datapath
space concept and target architecturegives COBRA a strong rela-
tionship between behavioural and physical domains and provides
area efficient, globally optimising datapath synthesis.

1 Introduction
A high level synthesis system creates an RT-level structural

netlist from an algorithmic behavioural description. Logic and
layout synthesis tools can then be used to assemble the RT-level
netlist thus providing a route from algorithmic behaviour to phys-
ical chip layout.

The RT-level structure forms the interface between high level
synthesis and silicon assembly. High level synthesis systems have
therefore traditionally optimised the RT-level structure, however
the real cost of the synthesised system, will ultimately be mea-
sured in the physical domain in terms of chip area. The high
level synthesis system therefore optimises the final cost of the
solution indirectly. The physical cost of an RT-level structure is
difficult to estimate, and to compound this, the physical cost of a
partial structure during high level synthesis is even more difficult
to estimate.

The importance of wiring and layout on high level synthesis
cannot be over emphasised. It was concluded in [14] that high
level synthesis must take physical domain effects into consider-
ation if they are to produce high quality designs. Similar con-
clusions were drawn in [10] where it was shown that BUD could
not produce a cost–performance trade-off curve when physical
domain effects were taken into account.

High level synthesis tools also typically perform synthesis in
a number of discrete steps. For example, scheduling may be
performed first, followed by operator allocation and binding, in-
terconnect allocation, and finally register allocation. The optimi-
sations carried out at each stage are heavily interdependentand do
not guarantee to optimise the final cost of the RT-level structure.

Partitioning the high level synthesis problem and optimising
the RT structure, makes the problem easier to formulate, but the
overall consequence is that a sub-optimal solution is found for a
cost function which only indirectly optimises the real cost. There
are therefore essentially two problems:

1. The cost of the solution is measured in the structural domain
rather than in the physical domain.

2. Subdividing the synthesis problem results in sub-optimal
solutions.

This paper presents the COBRA (Column Oriented Butted
Regular Architecture) high level synthesis tool for datapath dom-
inated applications. COBRA addresses the two problems defined
above by :–

1. Defining a target architecture and layout style which gives a
close relationship between structural and physical domains
and significantly reduces interconnect area.

2. Performing global optimisation of the RT-structure.

The overall effect is to provide a global optimisation of a
cost function which is closely related to the physical cost of the
solution.

2 Previous Work
There are a number of ways to take physical domain effects

into account. Firstly, physical effects can be estimated during syn-
thesis. This approach is adopted in systems such as BUD[9] and
the Siemens Synthesis System[18] which use hierarchical cluster-
ing to give an estimate of layout and wiring costs. HYPER[16]
partitions the synthesised datapath using locality of interconnect
as one of the main criteria in the partitioning process and 3D
Scheduling[19] schedules and floorplans simultaneously. Pangrle
et al[13] perform placementand routing simultaneously with con-
nectivity generation, similar ideas are also employed in Pangrle
and Jang’s GB system[6].

A second method involves iterative improvement of the RT
structure using information fedback from later in the design cycle.
The Chippie expert system[1] controls the Slicer/Splicer system
using a “knobs and gauges” approach which allows it to meet
area, timing and power constraints. The University of Illinois’
IBA system uses layout information fedback to its Fasolt[7] tool
to improve the synthesised datapath.

A third method is to define a target architecture such that the
interconnect and layout style are well defined. This approach has
been used by the PARBUS[4], DAGAR[17] and CASS[3] systems
which have all reported large area savings when compared to
“conventional” synthesis techniques. These systems do not need
heuristic physicaldomain estimation techniques or feedback from
layout tools; the architecture and layout style are such that the
structural domain cost is closely related to the physical cost. This
is the approach used in COBRA.

Work has also focused on globally optimising high level syn-
thesis. The various tools from the University of Waterloo, eg. [5],
have developed an integer programming model which can perform
optimisation on the whole datapath synthesis problem. Devadas
and Newton [2] use simulated annealing to perform global datap-
ath optimisation. However, neither of these systems are designed
to take physical domain effects into account during synthesis.
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Figure 1: Example of target architecture/layout-style composed
of three processors

3 Target Architecture
COBRA uses the CASS target architecture and layout style first

defined in [3]. In [3] this architecture and layout style was shown
to have the potential to save around 50% area when compared
to “conventional” techniques. This was achieved by virtually
eliminating global wiring in the final datapath. Estimation of
wiring cost is perhaps the biggest problem in determining the
physical cost of an RT-structure. Therefore, because of the large
reduction in global wiring, the structural cost of CASS datapaths
will be a good estimate of their physical cost.

Figure 1 shows the target architecture. The datapath is par-
titioned into a number of communicating processors, each with
functional units and local memory (register file and ROM). Each
processor is designed around a three bus local bus consisting of
two read buses and one write bus. Processors communicate us-
ing a system of global buses. In addition to local memory, some
processors may also require a multi-ported “global register file”.
Sufficient global buses, and global register ports, are allocated
such that all global communications can be serviced without hav-
ing to add extra c-steps to the schedule.

Processors are implemented as separate datapaths and are con-
structed by butted bit-sliced cell assembly. Cells are butted hor-
izontally to achieve the desired bit-width and stacked vertically
to achieve connectivity between datapath elements. The proces-
sors therefore form “columns” of cells in the physical domain.
Butting the cells to form columns essentially provides free local
interconnect. Since the local bus structure is fixed, the area cost
of each cell will be fixed and real physical cost of each processor
is therefore easy to calculate.

Global bus routing may also be provided by butt connection,
however, if column lengths are markedly different a more area
efficient solution may involve conventional macrocell place and
route techniques viewing each processor as a macrocell. Global
wiring between processors is required for this method, but since
COBRA minimises the number of global buses required by a
solution, any required wiring area will also be minimised.

The combination of the architecture and the synthesis tool lo-
calises computation, and thus interconnect in columns. Moreover,
the combination of the architecture and layout style almost com-
pletely eliminates global interconnect in the final datapath, thus
significantly reducing area. There is a strong relationship between
the structural and physical domains since the structure implies a
floorplan.
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Figure 3: Mapping on variable-time plane for c = a+ b.

The target architecture therefore addresses problem 1 of sec-
tion 1.

4 Datapath Space

High level synthesis systems are typically hardware oriented,
that is, they allocate hardware and connect it such as the given
behaviourcan be realised. In contrast, COBRA is data oriented, it
uses the data flow described by the behaviour to imply a datapath.
COBRA uses a solution space known as datapath space (dp-
space) in which the lifetimes of variables are globally optimised
using simulated annealing. The configuration of the variable life-
times in datapath space implies a datapath and optimising the vari-
able lifetimes in dp-space will optimise the datapath. Dp-space
provides a strong relationship between behavioural and structural
domains, and therefore a strong relationship between behavioural
and physical domains via the architecture and layout style. The
dp-spacemodel allows COBRA to perform simultaneousschedul-
ing, allocation and binding.

COBRA currently only synthesises straight line code segments
and uses a three dimensional datapath space model as shown in
figure 2. The three dimensions of dp-space are time, variable
and column. Ordinates in the variable dimension represent vari-
ables (both explicit and implicit) in the behavioural specification
and the column dimension directly relates to the columns of the
target architecture. The data flow described by the behavioural
specification is mapped into, and optimised in, datapath space.

Figure 3 is a mapping of c = a + b into datapath space. The
operation uses a 1-cycle adder and shows four important entities
in dp-space: data lines, a tie line, destination points and a root
point.

� A data line defines data. A tie line in the time dimension
implies storage, and hence register use, for that variable for
the length of the line. A data line in the column dimension
implies a global bus transfer between columns.
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� The root point is the data source for all uses of a variable
until it is reassigned.

� Destination points are data sinks.

� A tie line “ties” data from one or more destination points
together and creates new data at the new root point. The tie
line in figure 3 ties a and b together to create the new data c.
Therefore, the tie line implies an adder is required in c-step
0.

Data lines are composite entities and are composed of an over-
lay of one or more two pin nets, as shown in figure 4 (cf. two pin
net in routing terminology). Every use of data requires a unique
two pin net which defines the “route” of the data from its data
source to its data sink. In this context, a two pin net defines the
lifetime of a particular data between its birth at its root point, and
its death at its destination point. Figure 4 shows that a two pin
net is composed of originator lifetime, destination lifetime and
logical global bus use segments:

� The originator lifetime is the time contributed by a net to the
variable data line in the source column.

� The logical global bus transfer schedulesa logicalglobal bus
transfer between source and destination columns. Logical
global buses provide connectivity between a column and
other columns in the datapath. Logical global buses are an
upper bound on the number of physical global buses which
will be required in the final datapath.

� The destination lifetime segment is the time contributed by
a net to the variable data line in the destination column. Part
of the destination lifetime is “solid.” The solid part cannot
be shortened by moving the logical global bus transfer back
in time. As such it represents the delay of the operator
associated with the destination tie line.

Two pin nets define root and destination points and hence tie
lines. The overlay of two pin nets define data lines. Figure 5 shows
a data line composed of an overlay of three nets. As can be seen,
a data line is essentially a rectilinear Steiner tree (RST) rooted at
the root point with leaves at the destination points. The RST will
be planar in the column-time plane (since a unique RST exists
for each variable) and defines the c-steps in which the variable
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Figure 6: Solid length of destination lifetime.

is alive for each column. Storage and bus use are not directly
associated with nets since this could imply multiple resource use
for storing/transferring the same data.

As mentioned above, the solid part of a net represents the
delay of an operator associated with the destination tie line. To
be more precise, it defines the time when the data is operated on
by the target functional unit, when transactions occur on the local
bus and how frequently operations can be started on a pipelined
operator. Figure 6 shows the solid part of a destination lifetime in
more detail. As can be seen, it is composed of delay, read time
and stage delay segments. Delay represents the overall operator
delay whereas stage delay refers to the delay of each stage of a
pipelined operator. The read time is the number of cycles the
register file needs to be read for this operator, and therefore when
the local read bus is required. The local write bus will be used
during the last “stage delay” of the operator execution.

Using this model COBRA can deal with multicycle and
pipelined functional units. To illustrate this, figure 6a represents
a three cycle pipelined operator with stage delay of 1 c-step. The
pipelined operator has internal registers and therefore has a read
time of 1 c-step. Figure 6b depicts a 3 cycle non-pipelined opera-
tor without internal registers. Since the operator is non-pipelined,
the stage delay is the same as the operator delay. Similarly, since
the operator has no internal storage, the register file is read for the
duration of the operation.

The solid length effectively defines when a functional unit and
local bus is in use and hence partially defines local processor
operations in the processor to which the operator is assigned.

The configuration of two pin nets in dp-space defines a set of
data lines and tie lines. The data lines imply register and global
bus use whereas the tie lines in conjunction with the destination
solid length imply FU use. Thus, the configuration of two-pin
nets, and hence variables, in dp-space implies a datapath.

The actual connectivity between two pin nets is defined by
the specified behaviour but their structure in dp-space can be re-
configured (whilst retaining the connectivity) in order to optimise
the implied datapath. It can be seen that reconfiguring the two
pin nets, whilst retaining their connectivity, will imply different
hardware use, at different times and in different processors, and
hence a different datapath. Optimising the variable lifetimes will
therefore optimise the datapath required to created the datapath.

COBRA uses a library which associates a delay (in c-steps)
and an area estimate with each datapath component type. Module
binding is specified to the tool; the user chooses which type of
functional unit will be used for each operator.

To summarise, dp-space is a three dimensional space in which
the configuration of variables (represented by two pin nets) im-
plies a datapath structure, which in turn implies a floorplan. The
physical cost of a dp-space configuration can therefore be easily
estimated through the area figures associated with each datapath
component.

5 Mapping into Dp-space

COBRA begins by compiling the given input description into
a data flow graph (DFG) and performs ASAP and ALAP schedul-
ing as a preprocessing operation. The DFG is then mapped into
dp-space. DFG nodes map to tie lines which are randomly al-
located to columns in dp-space. Input and operator DFG nodes
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use their ASAP time as their initial time co-ordinate. Output
nodes are all scheduled at the time constraint specified in the be-
havioural description. DFG edges map to two pin nets which are
created between root and destination points. The translation of
the DFG into dp-space also creates the implicit structural domain
representation.

Figure 7 shows the DFG and a random initial mapping for
a simple example, the relationship between the graph structure
and the mapping should be apparent from the figure. The initial
random mapping defines the initial lifetimes and examination of
the dp-space configuration will reveal the implied architecture.
In this case two columns are required; column 0 requires an
adder, which is implied by the (a � b) + c tie line, and column 1
requires a multiplier which is implied by the a � b tie line. Both
columns require two registers; dp-space shows that there are two
variables alive simultaneously in each column (ie. there is a
lifetime density of 2 in each column) therefore two registers will
be required. Finally, the intercolumn transfer implies that a global
bus is available between columns 1 and 0. Figure 8 shows the
implied architecture graphically.

The mapping from DFG to dp-space gives an initial random
solution for optimisation by simulated annealing. Dp-space can
be used for formulation of both time constrained and resource
constrained optimisation problems, however, at the moment only
time constrained problems are considered.

Figure 9 shows the internal representation and datapath for
the example after optimisation. Naturally, real examples have
much more complex dp-spacestructures than this simple example,
however this does serve to illustrate the basic concept.

Optimisation by reconfiguration of lifetimes in dp-space pro-
vides a global perspective on the synthesis problem and addresses
problem 2 of section 1.
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Figure 9: Dp-space representation and synthesised architecture
after optimisation

6 Optimisation by Simulated Annealing

Every dp-spaceconfigurationwhich retains the data-flow spec-
ified by the behavioural description is a solution to the datapath
synthesis problem. Simulated annealing is used to optimise the
dp-space configuration, and thus optimise the synthesised data-
path. Dp-space forms the annealing state space with the cost
of a solution measured from the implied structural description.
The number of functional units, registers and global buses can be
evaluated from the implicit structure. The cost of a solution is
calculated as:

Cost =
P

Columns ColumnCost+
P

Buses GlobalBusCost

+
P

Transfers TransferCost

where ColumnCost is calculated as follows:

ColumnCost= FuncUnitArea �ConcurrencyPenalty
+RegisterArea +MuxArea

A number of points should be noted. The dp-space configu-
ration may imply an illegal solution, which arises because of the
fixed local bus structure. The configuration may imply concur-
rent use of local bus resources by more than one functional unit,
which is, of course, illegal. It is easy for COBRA to identify
illegal solutions and it adjusts the cost of these solutions using the
ConcurrencyPenalty term in the cost function. Illegal solu-
tions will therefore be expensive and annealing will tend to move
away from them. At the moment, the cost function does not incor-
porate any mechanism for avoiding columns of different height,
however, it is envisaged that such a feature will be added in the
future.

The global bus term in the cost function takes into account
the number of logical global buses allocated. This influences
potential global wiring (if required), the complexity of the column
multiplexers and also the number of ports on the global register
files.

The
P

Transfers
TransferCost term is introduced in an at-

tempt to minimise the use of the allocated logical global buses.
This does not directly affect the area of the solution during an-
nealing, however, it may allow more efficient use of buses when
logical buses are mapped to physical global buses during post-
processing.

During annealing, one of three operations can be performed:

� Move tie line in time dimension – this is analogous to
scheduling operations, it also affects register use and po-
tentially logical global bus use.



� Move tie line in column dimension – this affects the binding
of operators to columns and thus the allocation of FUs to
columns. It also affects register use and logical global bus
use.

� Move logical global bus transfer in time dimension – this ef-
fectively schedules intercolumn communications. It affects
global bus use and register use.

Depending on the current state of the solution, annealing is
biased to either perform an operator scheduling move, or biased
to perform one of the other two moves. If the current solution has
a “bad” schedule1, a scheduling move is likely to be made in an
attempt to improve the schedule. Similarly, if the current solution
is deemed to have a “good” schedule one of the other two moves
will probably be made. The biasing mechanism has been found
empirically and is quite effective.

The annealing cooling schedule has also been empirically de-
rived and typically produces good results in very acceptable run
times.

7 Postprocessing Operations

When annealing terminates the final structure of the datapath
has been optimised. COBRA then performs a number of postpro-
cessing steps to complete datapath synthesis.

The first post processing step attempts to reduce the number of
physical global buses. This is performed using both Prim’s span-
ning tree algorithm[11] and Dijkstra’s shortest path algorithm[11].
This has the potential of reducing the number of physical buses
by routing logical bus communications over other physical global
buses.

A second step determines which variables must be mapped to
the global register files and evaluates the number of ports required
on each global register file and column multiplexer. The final
post processing step then assigns constants to ROM and performs
explicit mapping of variables to registers using the well known
left-edge algorithm. Note that annealing only determines how
many registers will be required; the mapping step will always
require the number of registers determined during annealing.

After all postprocessing is complete COBRA creates a VHDL
netlist to describe the final datapath.

8 Results

COBRA is implemented in C and runs on Sun workstations.
A number of results for the elliptical wavefilter benchmark are
given in table 1 and comparisons are given where possible. The
cosine results are for the fast discrete cosine transform example
from [12].

The COBRA results were synthesised on a Sun SparcCenter
1000 running Solaris 2.3 and the ellip examples typically require
around 8 minutes of CPU time. The synthesised architecture for
the 19 cycle example with pipelined multiplier is shown in figure
10.

COBRA uses the same target architecture and layout style
as the CASS system discussed in [3]. It was shown in [3] that
the architecture and layout style had the potential to save up-to
50% area when compared to macrocell layouts synthesised by a
conventional tool.

Examination of the CASS results in table 1 shows that, in terms
of structural resources, they are inferior to those of other systems.
It was initially thought that there was a structural overhead inher-
ent in the architecture which would always require more registers,

1This is determined by examining the current number of allocated
operators and the implicit operator concurrency.

System Example * + � > Regs G-Bus/
Cols

non-pipelined multiplier
ellip18 2 3 – – 12 3/3

COBRA ellip19 2 3 – – 13 2/3
ellip21 1 2 – – 12 2/3
cosine20 3 3 2 – 14 3/3
ellip18 2 3 – – 16 5/4

CASS ellip19 2 2 – – 17 4/4
ellip21 1 2 – – 16 2/3
cosine20 4 2 2 – 23 8/6

HAL[15] ellip19 2 2 – – 12 –
ellip21 1 2 – – 12 –

ELF[8] ellip19 2 2 – – 11 –
pipelined multiplier

COBRA ellip18p 1 2 – 13 3/3
ellip19p 1 2 – – 11 3/3
cosine20p 2 2 2 – 12 3/3

PARBUS[4] ellip19p 1 2 – – 12 –
HAL[15] ellip19p 1 2 – – 12 –
ELF[8] ellip19p 1 2 – – 11 –

Table 1: Structural comparison of COBRA synthesis results with
other systems

however, further examination of table 1 reveals that COBRA so-
lutions are structurally comparable with those of other systems.
This indicates that there is no significant structural overhead in
using the presented architecture and that the COBRA results are
close to optimum.

Even although the CASS results use more structural resources,
[3] showed that they were physically superior to conventional
techniques. Since COBRA uses the same target architecture and
layout style as CASS, COBRA solutions will be physically supe-
rior to CASS solutions because they use less resources. There-
fore by implication, COBRA has the potential to save even more
area when compared to conventional systems. Further work is
required to produce actual layout of COBRA datapaths to demon-
strate conclusively the area saving, but these initial results are very
encouraging.

It is interesting to note that the COBRA solution for the 19
cycle non-pipelined example uses one more adder than other sys-
tems. However it should be noted that COBRA uses 5 less reg-
isters and three less global buses than the CASS solution. The
addition of an extra adder results in a lower global cost for the
same target architecture, which illustrates that addition of redun-
dant functional units can decrease the overall datapath cost.

9 Conclusions and Present Work

COBRA has been shown to produce solutions which, from
a purely structural viewpoint, are as good as other systems, but
which will be physically superior to that of conventional synthe-
sis tools. Moreover, the global optimisation performed results in
better solutions when compared to another system (CASS) syn-
thesising onto the same architecture.

COBRA has proven the dp-space concept and has shown that
the actual data flow defined by the given behaviour can be used as
the core of a solution. In combination with the target architecture
and layout style, dp-space optimisation has begun to address the
two problems discussed in section 1. The overall effect is that the
global optimisation in dp-space is performed on a cost function
which will is closely related to the physical cost of the solution.

Present work is investigating the extension of the dp-space
model to deal with conditional branches, loops, and pipeline syn-
thesis as well as completing resource constrained synthesis. Ar-
chitectural issues, particularly that of the global bus structure, are
also being investigated with a view to introducing hierarchy into
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Figure 10: Synthesised architecture for the 19 cycle wavefilter
with pipelined multiplier

the global communication layer. This may allow allocated global
interconnect to be more efficiently utilised.

Other work is also required to tune the annealing schedule and
investigate other optimisation methods in dp-space (eg. genetic
algorithms). In addition, work is also required on interfacing with
other CAD tools for back-end processing and solution verifica-
tion.
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