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Abstract
DPLAYOUT is a layout synthesis tool for bit-sliced

datapath designs targeting standard-cell libraries. We
developed fast and efficient heuristics for placing the cells
in a bit-slice, such that the regularity of datapath circuits
is preserved and the number of channels occupied by a
control signal is minimized. In addition, we propose a
novel window-based heuristic for global routing of multi-
pin nets. VHDL interface makes DPLAYOUT a general
tool which can be easily integrated with any high-level
synthesis system. This paper describes the heuristics
developed for placement and global routing of a single
bit-slice. We compared the area and run-time efficiency of
the proposed heuristics with conventional methods and
the results show a significant improvement.

Ke y words:placement, routing, layout, channel, dat-
apath, bit-slice.

1. Introduction

Datapath logic of microprocessors and digital signal
processing circuits contributes significantly to the overall
chip area. This logic is regular and often implemented by
connecting several bit-slices in parallel. In custom cir-
cuits the layout of datapaths is generated by replicating
the layout of one bit-slice [1]. In cell-based designs, usu-
ally datapath compilersare used to generate the layouts.
To achieve better performance the compilers implement
the datapath logic using cells from specialized (datapath)
libraries [2,3]. These specialized libraries allow abutment
of the leaf cells in a bit-slice, thus resulting in compact
layouts. However, the development and maintenance of
specialized libraries requires an extra effort and causes
cost overhead. In addition, not all vendors supply these
specialized libraries. In such cases, the CAD tools use
standard-cell library elements to implement the datapath
logic. These tools use traditional placement techniques
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[4] which ignore the regularity present in the datapath
designs. Consequently, the resulting layouts are not area
efficient. This has necessiated the development of new
techniques for datapath module placement in standard-cell
based designs.

In the past, different techniques [5-8] have been
proposed to solve the datapath layout generation problem.
The datapath compiler in LAGER [5] assumes datapath
libraries, and uses an extension of the Kernighan-Lin par-
titioning algorithm to solve the placement problem. Other
techniques [6-8] assume standard-cell libraries. Luk and
Dean [6] use a multi-stack approach in which the datapath
logic cells are partitioned and assigned to several stacks
with the objective of minimizing the number of nets
crossing a stack. The placement within a stack is deter-
mined such that the misalignment of macros and a num-
ber of vertical wiring tracks used for routing, are mini-
mized. However, they did not use the regularity present in
the datapaths. Wu and Gajski [7] used the regularity prop-
erty of datapath designs, but concentrated only on parti-
tioning the RTL netlist to generate RTL-component layout
based on bit-sliced architecture. In [8], the authors extract
similarity among several bit-sliced components to form
macros and solve the problem as the placement of the
extracted macros. The authors did not effectively use the
repetitive nature of bit-sliced datapath designs by consid-
ering several bit-slices at a time. Also their cell-matrix
approach for placement leaves some empty slots in the
matrix. The area wastage due to these empty slots is more
significant when the macros have non-uniform width.

In our work, we solved the datapath layout problem
using standard-cell libraries by exploiting the bit-sliced
nature of datapath designs. While performing the place-
ment and global routing, we consider one bit-slice at a
time instead of considering all the bit-slices together.
This information is then used to obtain the complete lay-
out of the design. Theoretically, our approach is faster
than the recent work reported in [8] because we reduce
the size of the problem by considering a single bit-slice at
a time. This is more important when the number of leaf
cells in a bit-slice is large which is typically the case in
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designs where large number of datapath functional blocks
are stacked together. While placing the cells in a bit-slice,
we attempt to route each of the control signals in mini-
mum number of channels and preserve the dataflow pre-
sent in the design. For global routing of multiple nets we
propose awindow-basedheuristic which to the best of our
knowledge has not been applied to the global routing
problem before (see [9] for references). This technique
generates an efficient global routing without rip-up-
rerouting of nets and can be easily integrated into Span-
ning/Steiner-tree [9] based global routing algorithms.

The remaining part of the paper is organized as fol-
lows. Section 2 giv es the problem description and the
layout model used in our work. In section 3 we describe
the overall approach used in DPLAYOUT. The placement
and global routing techniques are explained in sections 4
and 5 respectively. Finally, in section 6 we discuss the
performance of DPLAYOUT when applied to a set of dat-
apath designs.

2. Problem description and layout model

We assume that a datapath circuit is designed using
standard-cell library components (leaf cells). Given a bit-
sliced datapath design, the problem is formulated as plac-
ing the leaf cells in the bit-slices and routing them such
that no two leaf cells overlap and the area occupied by the
final layout is minimized. The layout model used is a sin-
gle stack of rows with leaf cells placed in rows. We
assume that all data signals enter from the top of the stack
and leave to the bottom of the stack. The control signals
enter from the left side of the stack and leave to the right
side of the stack. Fig.1 shows the layout model used in
DPLAYOUT.

datain 0

dataout 0

Row 1

Row 2

Row 3

Row n

control in control

out

channel 1

channel 2

channel n

Slice 0 Slice 1

datain 1

dataout 1

datain (n-1)

control in

dataout  (n-1)

control out

Slice ( n-1)

Fig.1. Layout Model of DPLAYOUT

3. Overall approach
The overall approach used in DPLAYOUT is shown

in Fig.2. The design is described in the form of a hierar-

chical VHDL netlist. A bit-slice is described as anentity
in VHDL, and the datapath is described by instantiating
these entities. This interface to VHDL makes DPLAY-
OUT a general tool which can be integrated with any
high-level synthesis system.

Each of the bit-slices is constructed from a set of
primitive cells present in the target standard-cell library.
We first analyze the netlist and classify the bit-slices into
different types. Tw o bit-slices are treated as different
types if they consist of different sets of leaf cells or con-
nectivity among the leaf cells varies, or both. Next, the
placement and global routing for each of the bit-slice
types is performed.

A datapath is constructed by connecting several bit-
slices in parallel. We extract the bit-slice order (the order
in which the bit-slices are connected) from the netlist and
bit-slices are abutted in that order. Finally, the nets within
a channel are routed using greedy channel routing tech-
nique [10]. The output of DPLAYOUT is a CIF file con-
taining the layout information.

Analyze Netlist

Select  a bit-slice 
type

 Any more
bit-slice
 types ?

Yes

No

Global-route the nets

Generate CIF

Route channels

Place  cells in the

bit-slice

Abut bit-slices

Fig.2. DPLAYOUT overall approach

4. Placement
The area of the datapath layouts is minimized by

preserving the dataflow during the placement and by min-
imizing the number of channels in which a control signal
is routed. Usually, in datapath circuits the same control
signal is connected to several leaf cells. Therefore, to
maintain the dataflow a control signal has to be assigned
to more than one routing channel (multiplication of con-
trol signals). The routing of a control signal can be lim-
ited to minimum number of channels (ideally to one) by
placing all the cells connected to that control signal in the
same row or in two adjacent rows. However, this may vio-
late the dataflow. Hence while generating the layout, we
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need to meet two objectives: preserving the dataflow and
minimizing the multiplication of control signals (MCS).
The placement heuristic proposed here attempts to meet
both objectives, and hence minimize the area. The steps
involved in the placement heuristic are described below.

a) Regularity preserving classification of control signals :

In the case of the bit-sliced structure, control sig-
nals propagate through several slices. This propagation
can be of two types,direct and indirect, as shown in
Fig.3(a). The first type occurs when a control signal is
connected to leaf cells belonging to different slices (eg.
clock signal). The second type of propagation occurs
when an output control signal of one bit-slice is connected
as an input control signal to the next bit-slice. For exam-
ple, in an adder, the carry-out of one bit-slice is connected
as carry-in of next bit-slice. We classify the control sig-
nals into two categories,related (control signals involved
with indirect propagation) andunrelated(control signals
other thanrelated control signals). In Fig.3(b)Cin and
Cout of slice-0 are related signals. We identify therelated
control signals within a bit-slice type. Theserelatedcon-
trol signals are treated as one signal during initial stages
of the placement. DPLAYOUT also allows the designer
to specify a set of control signals to be treated asrelated.

slice 0 slice 1 slice 0 slice 1

Cin Cout Cin

Indirect 
Propagation

Direct
Propagation

(a) (b)

Fig.3. (a) control signal propagation (b) Related Signals
Cin, Cout assigned to same channel

b) Classification of the leaf cells :

The leaf cells in the bit-slice are classified into
groups. All leaf cells that are connected to the same con-
trol signal or torelatedcontrol signals are assigned to one
group. All other leaf-cells are assigned to unique groups.
The purpose of this classification is to place leaf cells
using the same control signal in the same row or in two
adjacent rows. For each of the control signals, we identify
all the leaf cells connected to that signal. A leaf cell
might appear in more than one group. This occurs when a
leaf cell is connected to more than one control signal.
The placement of such cells is discussed in the subsequent
paragraphs. The classification of leaf cells allows us to
assign therelatedcontrol signals to one channel as shown
in Fig.3(b), thus minimizing the routing area.

c) Row assignment :

The leaf cells classified into groups are assigned to
rows using the following technique. Represent the bit-

slice netlist as a directed graph such that nodes represent
leaf cells and edges represent the nets (signals). The direc-
tion of an edge represents the direction of the signal flow.
Fig.4(a) shows a sample netlist and Fig.4(b) its graph rep-
resentation. In the following description of the proposed
heuristic, we use node and leaf cell as synonyms.

    
I1(d1_in, c1_in, I1_out) ;

     c1_out, d1_out, d2_out : OUT ;

    d1_in, d2_in, c1_in, c2_in : IN;

cell      row       phase

I1           1             1

I2           1             1

I3           2             1

I4           3             1

I5           4             1

I6           3             2

I1 I2

I3

I4

I5

I7I6

d1_in d2_in

d2_outd1_out

c1_in

c2_in

c1_out

I3_out

I4_out

I6_out I7_out

I2_out
I1_out

(a) (b)

(c)

I2(d2_in, I2_out) ;

I3(I1_out, I2_out, I3_out) ;

I4(I3_out, c1_in, c2_in, d1_out, I4_out) ;

I5(I4_out, I7_out, c1_out, d2_out) ;

I6(c2_in, I6_out) ;

I7(I6_out, I7_out) ;

I7           3              3

Fig.4. Row Assignment (a) Input netlist (b) Graph repre-
sentation (c) placement result

The row assignment heuristic involves three phases.
In the first phase, the graph is traversed in a breadth-first
manner, starting from the leaf cells connected to data-
input signals. We assume that the order of data-input sig-
nals is specified by the user. The edges representing the
control signals are not considered during the traversal. For
each of the node (leaf cell) visited, the current level repre-
sents the row in which the leaf cell has to be placed. In
otherwords, leaf cells connected to data-input signals are
assigned to row one (top row). Leaf cells within a group
have to be assigned to the same row or to two adjacent
rows. Whenever the first leaf cell from a group is encoun-
tered during the traversal, then the channel below the row
corresponding to the current level is assigned as the chan-
nel number of the group. Then all control signals con-
nected to the cells in that group are assigned to that
group’s channel. If the group the visiting node belongs to
has already been assigned to a channel, then the visiting
node is placed in a row below that channel if minimiza-
tion of MCS has more weightage than data flow preserva-
tion. If the data flow preservation has more weightage
then it is placed in a row corresponding to the current
level. When a leaf cell appears in more than one group,
the row assigned to that leaf cell is the channel number of
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the first group encountered during the graph traversal.

In the second phase, we place all the unplaced leaf
cells, which are connected to the control signals. We
repeat the following procedure for each of the control sig-
nals which have been assigned to a channel. For all the
unplaced leaf cells connected to the control signal, assign
the row directly below the control signal’s channel. In the
third phase, we place all the remaining unplaced leaf
cells. In this phase, the graph is traversed in depth-first
manner starting from the data-output signals. Unplaced
leaf cells are assigned to rows using the same row assign-
ment technique as in the first phase. The depth-first
traversal backtracks when we encounter any of the input
signals (control/data) or placed leaf cells and terminates
when all the leaf cells are placed. This phase is required
only if there are feedback signals in the given circuit.
Fig.4(c) shows the row assignment for the sample netlist
in Fig.4(a). The assigned rows are shown in the second
column and the row assignment phase is shown in the last
column. Analysis of the row assignment heuristic shows
that in the first phase all the cells which constitute the
dataflow (data-in to data-out) are placed. In the second
phase any glue logic associated with the control signals is
placed and in the last phase cells in the feedback loop are
placed.

This graph based technique preserves the data flow
and the grouping of cells minimizes the number of chan-
nels used by each control signal, thus the circuit layout
area is minimized. The relative position of leaf cells in a
row is determined by the order in which the leaf cells are
assigned to that row.

d) Row merging :

In this step, some of the rows are merged in order to
maintain user specified aspect ratio. However, this step is
not trivial because merging of rows may violate the above
described minimization of MCS objective. At present we
only allow merging of complete rows so that the control
signals in the channels adjacent to the merged rows need
not be multiplied.

5. Global Routing
After placing the leaf cells of a bit-slice, the nets

are routed using the two-stage routing approach. In this
paper, we propose a newwindow-basedrouting technique
which has been integrated with Minimum Spanning Tree
(MST)[11] based global routing algorithm.

Window-based routing :

Instead of routing a net completely, we route only
part of the net and defer the routing of the remaining part.
To determine which part of the net to route first, we define
a parameter calledwindow. A window is a rectangular

region with constant height and variable width. At the
beginning of the global routing, the window width is set
to a range 0 -Ws, whereWs is the window width specified
by the user. The window height is always fixed and
includes all rows of the bit-slice layout. For all the nets
which originate in the current window, MST is con-
structed. Then for each net, only those edges in its MST
that terminate in the current window are routed. The win-
dow is moved from left to right until all the nets are
routed. The advantage of the window-based routing tech-
nique is evident from the following example. Fig.5(a)
shows the path of a netN. When the feed-through assign-
ment for nets routed afterN results in the cell movement
in row 2, the path of the netN in Fig.5(a) is disturbed as
shown in Fig.5(b). Since we are not rerouting the nets dis-
turbed by the cell movement, the overall global routing
solution will not be efficient. The above describedwin-
dow-based technique improves the routing quality
because the net in Fig.5(a) will not be routed until its end
point is visible within the window. Fig.5(b)-(c) show net
N route after a cell is moved for two different window
sizes. Thewindow-basedtechnique results in better qual-
ity routing than the one obtained without this technique.

Row 1

Row 2

Row 3

Net N

window

Net N

Net N

Ws

Ws

(a) (b)

(c)

Row 1

Row 2

Row 3

Fig.5. (a) Initial net route (b) Net route after a cell is
moved for large window (c) Net route after a cell is

moved for small window

6. Results
DPLAYOUT is implemented in C under UNIX

environment. We conducted experiments to evaluate the
run-time and area efficiency of DPLAYOUT. We com-
pared the results of DPLAYOUT with a standard cell
Place and Route tool (scr) in the ALLIANCE CADpack-
age [12] for a set of data path designs. Tables I and II
show the design statistics and results, respectively.
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Ex1 is a bit-slice of anadder-accumulator. Ex2
and Ex3 are single bit-slices of 8x16 bitfifo and 4-bitram
circuit, respectively. All the results were obtained using
the complete row-merging heuristic. The total CPU time
reported is the combined time for input parsing, place-
ment, routing and layout file generation. For all the tested
circuits, the area and run time of DPLAYOUT is better
than that ofscr. We also compared the efficiency of the
bit-slice based layout generation approach with the non-
bit slice based layout generation approach. All the bit-
slices of the above 8x16 bitfifo and 4-bitram are submit-
ted (Ex4 and Ex5 respectively) to DPLAYOUT andscr as
one bit-slice. Considering the fact that area of the datap-
ath circuits is proportional to the number of bit-slices, the
area of the complete circuit must be close to n-times the
area of single bit-slice, where n is the number of bit-slices
in the circuit. The same should be true of the total CPU
time. However, for both DPLAYOUT andscr, the total
time and area in Ex4 and Ex5 are more than n-times the
time and area of Ex2 and Ex3, respectively. This experi-
ment demonstrates that for datapath circuits, bit-slice
based layout generation approach has better area and run-
time efficiency over non-bit slice based layout generation
approach. The results of Ex4 also show that even when
the circuit is not partitioned into bit-slices, DPLAYOUT
outperformsscr for more regular datapath circuits (fifos,
register files etc.). However, traditional methods won
over our algorithms when the datapath circuits have more
random logic associated with them (Ex5).

Conclusions
In this paper we describe an efficient and fast

approach for generating layouts of bit-sliced datapath cir-
cuits designed using standard-cell libraries. We dev el-
oped efficient dataflow preserving heuristics for place-
ment. The placement heuristics exploit the regularity
characteristic of datapath designs and attempt to route a
control signal in minimum number of channels. Thewin-
dow-basedglobal routing technique proposed here gives
efficient routing without any rip-up rerouting. We also
demonstrated that for standard cell based datapath cir-
cuits, we can achieve efficient layouts, when the circuits
are partitioned into bit-slices and the bit-slices are handled
separately. Currently, we are working on improving the
row-merging algorithm. As a future work we would like
to investigate the possibility of using our approach to
solve the Register-Transfer level component layout gener-
ation problem inorder to achieve better datapath layouts.
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Table-I Summary of Design Statistics

design #cells #nets

Ex1 9 17
Ex2 16 35
Ex3 58 107
Ex4 128 154
Ex5 232 284

Table-II Summary of DPLAYOUT results

DPLAYOUT scr
designplace time& total time& area place time& total time& area

(sec.) (sec.) (sq.mm.) (sec.) (sec.) (sq.mm.)

Ex1 0.01 0.32 0.02 0.5 1.87 0.03
Ex2 0.01 0.6 0.057 0.59 3.0 0.08
Ex3 0.03 7.1 0.18 2.4 7.75 0.25
Ex4 0.03 12.8 0.6 5.3 46 1.35
Ex5 0.07 94 1.45 10.5 54.25 1.37
& CPU Time measured on SUN SPARC-2 workstation.
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