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Abstract

Most existing performance-driven and clock routing al-
gorithms can not guarantee performance after all nets
are routed. This paper proposes a new post routing ap-
proach which can reduce both maximum delay and skew
of an existing routing topology by tapered link inser-
tion and non-uniform wiresizing. It uses the Sequen-
tial Quadratic Programming method for constrained
optimization. Experimental results show that our ap-
proach can improve performance signi�cantly and con-
sume less area than uniform wiresizing.

1 Introduction
Interconnect routing problem is critical for high speed
preformance-driven physical design and must be ad-
dressed properly during the layout process. In recent
years, several performance-driven routing algorithms
have been proposed [1, 2, 3, 6]. Unlike conventional
routing approaches, their objective for routing tree
construction is to minimize the maximum delay of
the net. They all adopt Elmore delay or its upper
bounds for delay estimation and various optimization
algorithms have been developed.
Another category of problems closely related to
performance-driven routing is clock routing which
aims at minimizing the maximum delay skew among
sinks of a net. There have been numerous approaches
for zero-skew solutions. [7] uses a recursive bottom up
algorithm to build a zero-skew clock tree.
These performance-driven and clock routing algo-
rithms are in fact pre-routing methods, i.e., the op-
timal routing topology for each net is constructed in-
dividually without considering the routability of the
entire circuit. Pre-routing methods can not guarantee
performance after �nal routing because the net topolo-
gies are subject to signi�cant modi�cations when nets
are routed in order to generate a feasible solution.
Thus, post routing performance optimization is nec-
essary to satisfy the performance requirements for the
nets.
Another limitation of existing approaches is that they
restrict routing topologies to either trees or other �xed
topologies. Such simpli�cation sacri�ces the exibil-
ity in routing. For example, topologies which contain
loops have not been studied.
This paper proposes a new approach for post routing
performance optimization. Unlike [4], which greedily

adds new edges into an existing tree on a geometric
routing graph, we analyze in detail the impact of link
insertion on maximum delay and delay skew of any ar-
bitrary topology and demonstrate that a link inserted
between the reference node and maximum delay node
can achieve the best improvement in performance. We
then design an approach which inserts a new link into
an existing net topology and performs non-uniform
wiresizing under routing resource constraint to im-
prove the performance of the net. The objective is to
satisfy the performance requirements with minimum
routing area consumption. This approach has several
advantages over previous ones:
1. It achieves reduction in both maximum delay and
skew while previous clock routing algorithms often
sacri�ce delay for skew minimization.
2. It guarantees the routability of the net and treats
the tree and mesh structures in the same manner with-
out any restrictions on routing topology.
3. It reduces maximum delay and skew to satisfy any
user speci�ed bounds, while minimum delay and zero
skew algorithms may generate over-constrained solu-
tions in real world situations.
The advantage of our approach over previous wiresiz-
ing approaches can be demonstrated by the following
example. Wiresizing on Topology 1(Fig. 1 (a)) alone
can never reduce the skew between sink 1 and 2 to
zero, but Topology 2 (Fig. 1 (b)) with a new link
added between the source and sink 2 consumes less
routing area than the double wiresizing of Topology 1
while achieving a larger reduction in maximum delay
and zero skew between the sinks. This is because both
the admittance at the nodes and the topology of the
net are adjusted by our approach.
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2 Delay and Skew Analysis
2.1 De�nitions

The interconnect routing topology N is formulated as
a network of uniform RC lines, each line is formu-



lated by the � lumped RC model. Trees and meshes
are treated without distinction in the following discus-
sions.
We adopt the convention that the ground node inN is
not numbered, the source consists of a voltage source
in series with a driver resistance Rd which is inserted
between the ground and node 0, as shown in Fig. 2.
The remaining nodes in N are numbered from 1 to
n = jN j. The loading capacitance at every sink node
in N is denoted by Cs. The resistance matrix of N is
denoted by R = [Rij], where each entry Rij in ohms,
is equal to the potential in volts at node i if a 1A cur-
rent were injected into node j while all nodes in N
other than j were open circuited [5]. Notice that the
driver resistance Rd should be a part of every Rij . In
the special case where N is a tree, Rij is simply the to-
tal resistance along the common path shared by node
i and j. Denote c = [Cj] as the capacitance vector for
N , where Cj is the ground capacitance at node j 2 N .
We use Elmore delay which is the �rst order of mo-
ment of the impulse for delay and skew computation.
It provides a good estimation for signal delay when
the waveform is monotonic. The delay Di at node i
is:

Di =
X

j

RijCj (1)

De�ne the maximum node delay in N as Dmax =
maxfDiji 2 Ng. Denote the delay skew between
nodes i; j by �Dij = Di � Dj . The maximum de-
lay skew in N , �Dmax, is then de�ned as �Dmax =
maxfjDijjji; j 2 Ng.
Consider N as an undirected connected graph, which
is not bi-connected, and let reference node 0 be an
articulation point of N , i.e., N will be disconnected
if node 0 is removed from it. Assume that the re-
moval of node 0 results in the decomposition of N
into k+1 disjoint components N1; N2; : : : ; Nk and the
source. There is no connection between any of these
components (If 0 is not an articulation point of N ,
then k = 1). This decomposition facilitates the inves-
tigation of changes in net delay and skew caused by
topology modi�cation(Fig. 2).

n

0

articulation point

Rd

Nk

N1

N2

+
−Vs

Fig. 2 Decomposition of N
To study the impact of changes in topology on Dmax

and �Dmax, we establish a new routing topology N 0

by adding an additional link e with parameters Re

and Ce between node 0 and a chosen node n 2 N . R0

and c0 are the resistance matrix and capacitance vec-
tor of N 0, respectively. D0

max and �D0
max denote the

maximum delay and delay skew of N 0, respectively.

2.2 Changes in Node Delay

We �rst compare the entries in resistance matrices of
N and N 0, i.e., R= [Rij] and R

0= [R0
ij].

For any chosen node n 2 Nk, the additional link e
with parameters Re; Ce between node n and 0 will
increase the admittance value at node n and provide
an extra path from every node in Nk to reference node
0. As each pair of nodes i; j 2 Nk now share one more
path to node 0 through n, R0

ij will decrease. For each

pair of nodes i; j which do not belong to the same
component in the decomposition, Rij is not a�ected
by this topology change in N 0 since node 0 is on every
path p(i; j) between i and j. In this case, R0

ij and

Rij are the same as the driver resistance Rd. This
observation leads to the following Lemma (The formal
proofs of all lemmas, theorems and corollaries in this
paper can be found in [8]).

Lemma 1 Suppose n 2 Nk. If both i; j 2 Nk, R0
ij <

Rij, and when Re decreases, R0
ij also decreases; if i 62

Nk or j 62 Nk, R0
ij = Rij.

According to Eqn (1), the delay Di at node i is deter-
mined by the product of R:i and c, so decrease in Rij

alone can not guarantee a decrease in Di. Re and Ce

must be set properly so that the decrease in Rij can
o�set the increase in C0 and Cn.

Theorem 1 With appropriate Re and Ce values,
D0

i < Di, 8i 2 Nk, and when Re decreases, D0
i also

decreases.

According to Theorem 1, D0
max < Dmax holds for the

following special case:
When node 0 is not an articulation point of N , i.e.,
k = 1 and N = Nk, according to Theorem 1, D0

max

will decrease.

Corollary 1 If node 0 is not an articulation point of
N , then D0

max < Dmax holds with proper values of
Re; Ce.

In most routing situations, it is easy to satisfy the
condition that node 0 is not an articulation point ofN
by designing the routing topology properly. According
to Corollary 1, the maximum delay can then always be
reduced by adding new link into the existing topology
with proper values of Re; Ce.

2.3 Changes in Delay Skew

We �rst investigate the change in �R(i; j;m) = Rim�
Rjm which is directly related to the changes in delay
skew �Dij . Again, it is assumed that n can be any
node inNk (later in Corollary 2, n is set to be the node
with maximum delay skew). To study the impact of
topology change on �R(i; j;m), we further decompose
Nk into two sub-components, Nk1 and Nk2, if n is an
articulation point of Nk. Nk1, Nk2 are connected to
each other only at n, i.e., n is on every path from a
node in Nk2 to node 0 (Fig. 3).



0

n

articulation point

articulation point

Rd

N

N

Nk

1

2

Nk2Nk1

+
−Vs

Fig. 3 Decomposition of Nk

N 0 is again formed by establishing a new link between
0 and n. If both i; j 2 Nk, according to Lemma 1,
R0
ij < Rij . Intuitively, for each node m 2 N , if

j 2 Nk2, Rnm and Rjm will decrease by the same
amount because each path from node j to node 0
must include n, i.e., �R0(n; j;m) = �R(n; j;m). If
j 2 Nk1; j 6= n, Rnm and Rjm do not decrease by
the same amount. Since the increase in admittance
from node j to node m is caused by the insertion of
a new link between nodes 0 and n, it is less than the
admittance increase from n to m, i.e., the decrease in
Rjm is less than the decrease in Rnm. If j 62 Nk, Rjm

will not change according to Lemma 1. In both cases,
�R0(n; j;m) < �R(n; j;m) (if n is not an articulation
point, i.e., Nk = Nk1, the analysis above is still valid).

Lemma 2 8m 2 N , If n is an articulation point of
Nk and j 2 Nk2, �R0(n; j;m) = �R(n; j;m); other-
wise, �R0(n; j;m) < �R(n; j;m), and when Re de-
creases, �R0(n; j;m) decreases.

Again, since delay skew relates to both R and c and
C 0
0
; C 0

n increase in N
0, reducing �R(n; j;m) alone can

not guarantee the decrease of �Dnj . Appropriate val-
ues of Re and Ce are necessary.

Theorem 2 If n is not an articulation point or j 2
Nk1, then �D0

nj < �Dnj holds with proper values of

Re and Ce. When Re decreases, �D0
nj also decreases.

Recall that �Dmax = maxfj�Dij j j8i; j 2 Ng. With-
out the loss of generality, we can choose n 2 Nk as
the node with maximum delay skew in N . Suppose
�Dmax exists between n and some node p 2 N , i.e.,
�Dmax = Dn � Dp = �Dnp (If �Dmax occurs be-
tween more than one pair of nodes, multiple links can
be added). Since �Dnj � 0; 8j 2 N , n is also the node
with maximum delay in N and n can not be an articu-
lation point (otherwise, 9n0 2 Nk2, s.t., Dn0 > Dn and
�Dn0j > �Dnp = �Dmax). So n enjoys both maxi-
mum delay and skew and is denoted as the maximum
delay (skew) node in the following context.
Let �Dm2 be the maximum skew among nodes other
than n, i.e., �Dm2 = maxfj�Dij jj i; j 6= ng. Appar-
ently, �Dm2 < �Dmax. After the link is established
in N 0, both �D0

m2
and �D0

np will be continuous func-

tions of Re and Ce. Since �D
0
np is less than �Dmax,

it is always possible to determine values of Re and Ce

such that D0
max = max(�D0

np;�D
0
m2

) < �Dmax.

Corollary 2 If n is the maximum delay (skew) node
in N , then �D0

max < �Dmax holds with proper values
of Re; Ce.

Corollary 2 implies that we can always reduce the
maximum delay skew of an existing routing topology
by adding a new link properly between the reference
node and the node with maximum delay (skew). Re-
call that a similar approach is used to reduce the max-
imum delay of the topology. So unlike previous clock
routing algorithms which increase delay to minimize
delay skew, it is possible to reduce both maximum
delay and maximum delay skew with our approach.

3 Tapered Link Insertion and Wiresiz-

ing
This section discusses a new post routing approach
which constructs a tapered link and wiresizes it prop-
erly to improve the performance of the net in terms of
both maximum delay and delay skew. This optimiza-
tion process has two phases:
1. Find the route of the link under routing resource
constraints.
2. Wiresize the link so that the performance require-
ments are satis�ed.

3.1 Problem Formulation

In the following analysis, we assume that reference
node 0 is not an articulation point of N , i.e., N = Nk

(the situation where node 0 is an articulation point
can be easily handled by adding a link for each Ni).
The given topology is not modi�ed during the opti-
mization process.
Suppose link e established between maximum de-
lay(skew) node n and reference node 0 in N0 has k
line segments. De�ne length and width vectors of e
as l = (l1; : : : ; lk) and w = (W1; : : : ;Wk) and denote
wub as the vector of routing resource constraints on
w. The R, C values of segment i 2 e, Ri; Ci satis�es:

Ri = ro
li

Wi

; Ci = c
0
liWi (2)

where r0; c0 are the unit resistance and capacitance of
the link with minimum width W0, respectively. The
total R, C values of link e, Re and Ce, can then be
expressed as:

Re = r0

kX

i=1

li

Wi

; Ce = c0

kX

i=1

liWi (3)

The delay and skew of N 0 can be measured by K =
(P � Pub)=Pub, where P is the maximum delay or de-
lay skew, and Pub is a speci�ed constraint. Kmax =
maxfKdelay ;Kskewg measures the performance of the
net and Kmax � 0 means that the requirements for
maximum delay and skew are both satis�ed.



3.2 Proposed Algorithms
According to Eqn (3), the route of e should be as short
as possible. Thus, a shortest path algorithm can be
applied to obtain a feasible route of e between the ref-
erence node 0 and the maximum delay (skew) node n.
Once the route is determined, the length vector of e, l,
is �xed. Unlike l, the maximum delay and delay skew
are not monotonic inw, since Ci is proportional toWi

while Ri is inversely proportional to Wi(Eqn (2)). So
the wiresizing problem requires an optimization pro-
cess which adjusts the width vector w in such a way
that a satisfactory performance (Kmax � 0) can be
obtained under the routing resource constraint wub.

3.2.1 Tapered Link Insertion and Wire-
sizing Algorithm

1. Initialization:

1.1 Input existing net topology N and its spec-
i�ed constraints.

1.2 Identify maximum delay (skew) node n and
Kmax.

1.3 Set initial delay bound Dbound = Dmax and
its decreasing rate p.

2. Link insertion:
Build new topology N 0 by establishing a shortest
feasible link e of k segments between the reference
node and n.

3. Tapered link wiresizing:
While Kmax > 0 and solution is feasible:

3.1 Reduce Dbound by p.

3.2 Call tapered link wiresizing algorithm s.t.
D0

max satis�es Dbound.

3.3 Evaluate node delays and Kmax.

When the algorithm terminates, either a feasible solu-
tion which satis�es the performance requirements has
been obtained, or w exceeds wub implying that the
speci�ed requirements are unachievable.

3.2.2 Taper Link Wiresizing Algorithm
The non-uniform wiresizing of link e is formulated as
an optimization problem:
Wiresize link e of k segments under constraints on
routing width s.t. D0

max satis�es speci�ed constraint
Dbound with minimum routing resource consumption.
After the routing which �xes the length vector l, w
is the only adjustable vector in N 0, and the delay at
each node can be expressed as a function of w. Thus,
the non-uniform wiresizing optimization problem can
be formulated as:
Minimize lw
Subject to:

D0

max(w) � Dbound

0 < w � wub

This problem is solved by constrained optimization
methods discussed below.

3.2.3 Sequential Quadratic Programming
As can be seen from Eqn (4) below, D0

max(w) is non-
linear with respect to w. Thus the wiresizing prob-
lem is a non-linear programming problem which can
be solved e�ectively by the Sequential Quadratic Pro-
gramming (SQP) method. SQP is an iterative pro-
cedure which establishes a direction of search at each
major iteration. The principal idea is the formula-
tion of a Quadratic Programming (QP) sub-problem
at each iteration based on an approximation made of
the Hessian of the Lagrangian function, using a quasi-
Newton updating method. The Lagrangian function is
expressed as L(w; �) = f(w)+

Pm

i=1
�igi(w), where f

and the gis are the objective function and constraints
of the problem, respectively. This sub-problem can be
solved using any QP algorithm. Its solution is then
used to form a search direction for a line search proce-
dure which determines the step length of the variables
in such a way that a su�cient decrease in a merit
function is obtained.

3.3 Optimality Analysis
The optimality of our proposed algorithm is based on
the following three properties:
1. For a certain amount of reduction in D0

max, a link
connecting to the maximum delay (skew) node n 2 N
consumes less area than a link connecting to any other
node.
2. For a link connecting to n, the non-uniform wiresiz-
ing algorithm requires less routing area than uniform
link sizing for the same amount of reduction in D0

max.
3. The reduction in maximumdelay and maximum de-
lay skew are consistent, i.e, larger reduction in D0

max

leads to larger reduction in �D0
max.

3.3.1 Link to n vs Link to Other Node
Although maximum delay can be reduced by inserting
a link between the reference node and any node i 2
N , it is reduced the most if the link connects to the
maximum delay (skew) node n 2 N . This is because
a link to n would reduce R0

nj more than a link to any

other node, and therefore the delay at node n, D0
n, is

reduced the most. SinceD0
n provides a lower bound for

D0
max (which may now exist at a node other than n),

one would expect that D0
max would also be the lowest

among all possible links. This is formally stated in the
following lemma.

Lemma 3 For an inserted link e with �xed values of
Re and Ce, D0

max is minimized if e is connected to the
maximum delay (skew) node n 2 N .

Notice that if the Ce value of the tapered link is �xed,
its routing area

P
i2e liWi is also �xed. So Lemma 3

implies that for any amount of routing resource con-
sumption, a link to node n will reduce the maximum
delay more than a link to any other node.
When the width W of an uniformly sized link in-
creases, D0

n decreases if W is below a certain value
Wlimit and increases when W > Wlimit. Without the
loss of generality, we can assume that the best sizing
solution of each link will follow the same relationship
(which is lower than the delay value by uniform siz-
ing). Thus following corollary can be established using
Lemma 3.



Corollary 3 To achieve a certain amount of reduc-
tion in D0

max, a link connecting to n consumes less
routing area than a link to any other node.

3.3.2 Uniform vs Non-uniformWiresizing
For any two links with the same Re value, the changes
in Rij should be the same regardless of the segment
widths of the links since same amount of additional
admittance is introduced at node n. But D0

max also
depends on the distribution of capacitance along e,
which can be adjusted by wiresizing. Intuitively, large
capacitive loads should be placed close to the source
so that Rij ; 8i, is small for node j 2 e with large Cj .
This means that non-uniform wiresizing can yield a
larger reduction in maximum delay than uniform wire
sizing.

Lemma 4 For any tapered link e inserted between
node n and reference node 0 with �xed values of Re,
Ce, non-uniform wiresizing of e can yield smaller
D0

max than uniform wiresizing.

Lemma 4 implies that for any amount of routing re-
source consumption, non-uniform wiresizing can al-
ways achieve larger reduction in D0

max than uniform
wiresizing. Analogous to the analysis for Corollary 3,
the following corollary can be established.

Corollary 4 To achieve a certain amount of reduc-
tion in D0

max, non-uniform wiresizing consumes less
routing area than uniform wiresizing.

Corollary 4 also implies that it is possible that
non-uniform wiresizing may generate a solution with
smallerD0

max and less routing area than uniform wire-
sizing. This will be shown by our experimental results.
3.3.3 Max Delay vs Skew Reduction
Corollary 2 in Section 2 implies that an inserted link
at the maximum delay (skew) node can e�ectively re-
duce the maximum skew, which means that when the
inserted link is connected to node n, maximum delay
and skew reductions are consistent. This is formally
stated in the following lemma.

Lemma 5 If an inserted tapered link is connected to
the maximum delay (skew) node n 2 N and wiresized,
the maximum delay and maximum skew reductions
are consistent, i.e., larger reduction in D0

max leads to
larger reduction in �D0

max.

Lemma 5 implies that the conclusions for maximum
delay reduction can also be extended to maximum de-
lay skew reduction, so the following corollary can be
established according to the de�nition of Kmax.

Corollary 5 Lemma 3,4 and Corollary 3, 4 are all
valid for reduction of Kmax.

Based on the analysis above, the optimality of the
algorithm proposed in Sec. 3.2.1 can be established.

Proposition 1 Among all tapered link insertion and
wiresizing approaches which satisfy given performance
constraints (Kmax < 0), the proposed algorithm is op-
timal in terms of routing resource consumption.

4 Experimental Results
The post routing performance optimization algorithm
has been implemented in C and tested on a DEC3100
workstation. The followingMCM parameters are used
in the delay evaluation (courtesy of Prof. Wayne Dai
of UC Santa Cruz from data provided by AT&T): driv-
ing resistance Rd = 25:0
, unit resistance and capac-
itance R = 0:008
=�m, C = 0:06fF=�m, loading ca-
pacitance Cs = 1000fF .

Table 1. Physical Characteristics of Nets
Net # of Total wire Inserted link Wub

no. pins length (mm) length (mm) (xW0)
1 8 90 60 4
2 8 130 60 4
3 8 160 40 4
4 9 130 80 6
5 11 160 90 6
6 12 180 80 6
7 12 220 100 6
8 20 480 80 8

Table 1 lists the physical characteristics of eight test
topologies, including both tree and mesh structures
(See Fig. 4). In our experiments, the number of line
segments of each link, k, is set to 6 and segments on
each link share the same width upper bound Wub (W0

is the minimum wire width). For nets 3; 5; 7;8, the
length of link e is longer than the Manhattan distance
between node 0 and n, since the shortest path is either
unroutable or can not be wiresized to Wub.
Two di�erent wiresizing approaches for the inserted
link e are compared: one wiresizes e uniformly; the
other approach applies the tapered link wiresizing al-
gorithm discussed in Section 3.
Table 2 shows the performance improvement of each
net achieved by link insertion and wiresizing. MD and
MS denote Maximum Delay and Skew of the topology
respectively. For each net, these quantities must be re-
duced by the speci�ed reduction percentages in order
to satisfy the performance requirements. The Kmax

values before optimization indicate that the original
maximum delay and skew values are high above their
speci�ed bounds. After optimization, it can be ob-
served that:
1. Both the uniform and non-uniform wiresizing ap-
proaches can improve net performance signi�cantly.
On average, maximum delay and skew are reduced by
approximately 40% and 60% respectively by both ap-
proaches. Kmax is reduced from an average of 1:54 to
0:031 and �0:004 by uniform and non-uniform meth-
ods, respectively. This shows that post routing link
insertion and wiresizing is very e�ective at improving
net performance.
2. The tapered link non-uniform wiresizing approach
can achieve better maximum delay and delay skew
than the uniform wiresizing approach. In all cases
where the uniform wiresizing approach fails to reach
the speci�ed bounds for both maximum delay and
skew (Kmax > 0), the non-uniform wiresizing ap-
proach can generate feasible solutions which satisfy
the performance requirement(Kmax < 0). The opti-
mization process stops when Kmax < 0, better results



Table 2. Net Performance Improvement by Link Insertion and Wiresizing
Before Optimization After Optimization

Net Spec. Reduction Uni. Sizing Non Uni. Sizing
No. MD(-%) MS(-%) Kmax MD(-%) MS(-%) Kmax MD(-%) MS(-%) Kmax

1 35 56 1.27 33.72 56.44 0.020 35.53 57.00 -0.008
2 47 69 2.23 45.93 68.93 0.020 47.15 69.56 -0.003
3 30 61 1.56 26.12 59.22 0.055 30.81 61.36 -0.003
4 51 64 1.39 49.19 59.64 0.037 51.50 64.12 -0.003
5 33 62 1.63 30.05 60.40 0.044 33.34 62.11 -0.004
6 35 60 1.50 32.10 42.61 0.045 36.07 44.85 -0.002
7 47 58 1.38 45.97 57.43 0.019 47.01 58.03 -0.001
8 43 64 1.39 42.03 64.81 0.003 43.04 64.92 -0.003
avg 40.13 61.75 1.54 38.14 60.67 0.031 40.56 62.14 -0.004

in performance are possible if it continues.

Table 3. Area Consumption by Link Insertion
and Wiresizing
Area Consumption

Net Uni. Sizing Non Uni. Sizing Saving
No. (xW0) (xW0) (-%)
1 204 169 17.16
2 240 204 15.00
3 312 259 16.99
4 400 343 14.25
5 486 402 17.29
6 456 350 23.25
7 520 419 19.42
8 624 554 11.22

The major advantage of non-uniform wiresizing is
demonstrated in Table 3 which compares the rout-
ing resource consumption by the two approaches. To
achieve the performance listed in Table 3, the non-
uniform wiresizing approach consumes an average of
16:83% less area than the uniformwiresizing approach.
In summary, the tapered link insertion and wiresizing
approach can achieve better maximum delay and skew
with less area than the uniform wiresizing.
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