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Abstract

This paper addresses the problem of semantic hetero-
geneity between data representations with particular em-
phasis on CAD tool data representations. The combination
of powerful mapping operations and a flexible procedural
interface are proposed as a possible solution to this prob-
lem. A practical application of the inter-operation of data
representations is used to illustrate the techniques. The
data representations used are the ICL COT data format [1]
and the TRACKER data format [2].

1 Introduction
Inter-operability is fast becoming a major issue in infor-

mation technology. It may be regarded as an essential facil-
ity for controlling, preserving, exchanging and utilising in-
formation between two or more tools. Inter-operability, of
CAD tools in particular, is complicated by the need to fre-
quently adapt to changes in the design representations used
by the individual tools. This has led to the advent of soft-
ware environments called frameworks [3, 4, 5, 6, 7] which
help reduce the time and cost needed to develop or mod-
ify a component in response to changing end user require-
ments. Inter-operability is enabled by integrating tools into
the framework environment [8].

The need for tool inter-operability cannot be underes-
timated. Data representations (conceptual models) of dif-
ferent tools are typically developed independently, which
means that they are usually incompatible with one another
(semantic heterogeneity). In addition, conceptual models
are often in a state of continuous evolution, in order to sup-
port changing tool requirements, so that different versions
of the same tool are likely to have incompatible models.

As a consequence of semantic heterogeneity, equivalent
information may have completely different naming, typing,
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level of abstraction and underlying structures in two tool-
specific conceptual models [9]. However, increasingly so-
phisticated user requirements dictate that the users should
no longer be required to manage low level details of send-
ing and receiving data in different representations in a num-
ber of information sources. An ideal scenario would be one
in which a user is provided global, integrated access to mul-
tiple data representations with a single, relatively simple re-
quest. This paper describes the efforts made towards mak-
ing this scenario a practical reality.

In [8], a fine-grained procedural interface for support-
ing tool integration is described. The procedural inter-
face (GPIC) is based on a minimal set of generic proce-
dures. Flexibility is obtained by providing additional in-
terface procedures to interpret conceptual models of data.
This paper describes a practical application of the procedu-
ral interface in bridging underlying semantic differences in
the conceptual models of multiple tools in a CAD frame-
work.

This paper is organised as follows: Section 2 briefly re-
views the principles of GPIC and its underlying concep-
tual model CMDL (CAD Meta Data Language). The need
for mappings to support tool inter-operability is introduced.
Section 3 gives a practical example of inter-operation of
data representations using mappings and GPIC. The repre-
sentations used are the ICL COT data format [1] and the
TRACKER data format [2]. The paper is concluded with a
comparison to similar work and an outline of future work.

2 Background
Two components have been identified as the key require-

ments for the definition of a procedural interface to a data
repository [10]: a conceptual model describing the organi-
sation of data in the repository, and the access procedures
linking the environment to the repository. Since the na-
ture and content of the data stored in a CAD repository
is constantly evolving, it is necessary to define conceptual
model components that can survive these changes. Exam-
ples of domain independent concepts include objects, at-



tributes and relations. In contrast, examples of domain de-
pendent concepts include nets, cells and ports. A domain
independent conceptual model ensures a relatively stable
interface that is independent of the complexity or changes
in the application domain. A comparison with other styles
of interface (e.g CFI DR [11]) is given in [8, 10, 12] and is
beyond the scope of this paper.

Entity

Class

Relationship

Contains Reference HasAttributeAttributeObject

is_a is_a

is_ais_ais_ais_ais_aref ref

ha

con ha

ref

con

ha

is_a - is sub class

- reference

- contain

- has_attribute

Figure 1: Principles of CMDL

The GPIC interface is based on an underlying concep-
tual modelling notation called CMDL. The principles of
CMDL are summarised in figure 1. The interface has two
layers of access procedures: meta-data access and data ac-
cess. Design data may be regarded as occurrences of con-
cepts defined by a conceptual model whereas meta-data
may be regarded as occurrences of meta-concepts defined
in a meta-conceptual model. This specialisation of con-
cepts is further illustrated in figure 2.

A major requirement for tool inter-operability is that
tools must agree on the meaning of exchanged data. The
manifestation of this agreement is in the form of a set of
mappings between the concepts of the respective tools.
These mappings describe removal, addition and structural
changes to entities within a schema as well as transforma-
tions on the individual attributes. The need for mappings in
the CAD domain has already been recognised [8, 13, 14].
Extension of GPIC with mappings has many potential ap-
plications for CAD frameworks including:

� Mappings between different views of the same data,

� Mappings between data and semantic information for
the same object,

� Mappings between different versions of conceptual
models,

� Mappings between different CAD standards.
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3 A Practical Integration Example

This section describes the practical efforts made to-
wards integrating the ICL COT [1] data format with the
TRACKER routing data format [2]. The ICL COT for-
mat is a fixed field text representation used to describe ICL
DAX data. DAX is the ICL design system for PCB and chip
design. The TRACKER format is also a fixed field text rep-
resentation used to describe connectivity and tracking in-
formation for a routing tool. Figure 3 illustrates how the
respective environments interface to each other using GPIC
as a central data repository.

The interface requires conceptual models of ICL-COT
and TRACKER along with their associated mappings,
stored as data within the GPIC repository. Reader/writers
for both these representations have been constructed so as
to avoid making modification to existing tools (though it
is quite feasible for applications to be integrated directly
through GPIC). The readers and writers also use GPIC to
build a set of parsing/writing rules for each data object in
the representation. These rules consist of a list of legal at-
tribute classes that have to be defined for a data object. At
run-time, the meta-data routines of GPIC are used to re-
trieve the terminal types (e.g string, character, integer ...) of
a data object by interpreting the respective conceptual mod-
els. The use of GPIC in this manner allows the conceptual
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Figure 3: Integration of ICL-DAX and TRACKER envi-
ronments

model (and hence the representation rules) to evolve with-
out the need to change the readers or writers.

The problem that has to be addressed in this case is that
both environments have essentially a local view of the data
in the repository. It is the responsibility of the GPIC inter-
face to solve conflicts between the views and present an in-
tegrated view to each environment. This is achieved by us-
ing mappings to ensure consistent names, values and for-
mats. Thus, the integrated system makes heterogeneous
components appear homogeneous by hiding the differences
amongst them. The following section gives a detailed ac-
count on how mappings can be used to solve semantic het-
erogeneity between data representations.

3.1 Mapping
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Figure 4: An Example of Semantic Heterogeneity Between
COT and the TRACKER Formats

As already noted, the problem of semantic heterogeneity
refers to the storage of related information in incompatible
data representations. The application described here con-
cerns the problem that the information required for running

TRACKER is stored as COT data, but the COT format is
not interpretable by TRACKER. A simple example of this
is shown in figure 4; in COT a board area is generally rep-
resented as an arbitrary polygon, whereas TRACKER re-
quires the board area to be represented as a bounding rect-
angle and an appropriate collection of no-go areas.

The proposed general solution to semantic heterogene-
ity is to support mapping facilities in GPIC. Mappings are
directional relationships from a source schema to a target
schema. In general, the definition of a mapping requires
careful consideration of the structural differences and com-
putational transformations between two representations.
There are two crucial issues involved in the structural con-
sideration. Firstly, equivalence relationships must be es-
tablished between components of the two schemes; equiv-
alence being loosely defined as representing the same real
world concept, without constraining the way in which the
information is represented. Non-equivalent source com-
ponents are deleted and non-equivalent target components
are added in a mapping. Secondly, the differences in the
detailed structure of the two schemas must be determined.
This difference is manifest by the existence of one-to-many
or many-to-one relationships between components of the
two schemas, even though the real world concepts being
represented in the source and target schemas may be the
same. This representation of identical information by dif-
ferent representational structures will be referred to as non-
isomorphism.
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Figure 5: Mapping from COT Format to TRACKER For-
mat

The explicit specification of the structure of a mapping
is achieved by insertion of various structural operators (see
figure 5) that establish unique paths for deriving target en-
tities and attributes from the source schema. For example,
in figure 5, the split operator generates a unique path to
each of the target attributes. The definition of a mapping in
terms of the structural operators is important meta-data that
should be associated with the respective schemas within the
framework. This meta-data will provide valuable informa-



tion for the maintenance of mapping relationships between
schemas, for example providing a log of the changes be-
tween different version of an evolving schema.

In addition to structural operators, a compute operator
may be associated with each mapping path. The compute
operator represents a path-specific transformation of the ac-
tual data values stored for a source schema into the re-
quired values in the target schema. Hence, the compute op-
erator captures the deep semantics of the mapping, while
the structural operators establish constraints on the values
transformed by the compute operator. This methodology
for describing mappings is illustrated below by a worked
example.

EQUIVALENT(COT_BOARD,ROUTER_BOARD);
ADD(NOGO_AREA);

DELETE(COT_BOARD.VERTICES);
ADD(ROUTER_BOARD.BOUNDING_BOX);
ADD(ROUTER_BOARD.NOGO_AREAS);
ADD(NOGO_AREA.VERTICES);

SPLIT(COT_BOARD.VERTICES,[A1,A2,A3]);
/* NB, A1, A2 and A3 are copies of

COT_BOARD.VERTICES */

COMPUTE([A1],
[ROUTER_BOARD.BOUNDING_BOX]);

COMPUTE([A2],
[ROUTER_BOARD.NOGO_AREAS]);

COMPUTE([A3],[NOGO_AREA.VERTICES]);

Figure 6: An Example of Mapping Pseudo-Code

Figures 5 and 6 depict the structural specification of the
mapping from the COT to TRACKER formats for the rep-
resentation of the routingarea of a board. It can be seen that
there exists an equivalence between the source and target
entities representing the concept of a board area. In addi-
tion, the TRACKER format introduces a new entity repre-
senting the concept of a no-go area for routing. There exists
non-isomorphism in that all attributes in the target schema
are derivable from the single source schema attribute; the
list of coordinates representing the COT board’s vertices.
A copy of the original source attribute value (variables A1,
A2 and A3 in figure 6) is passed independently along each
one of the paths in the mapping and can be transformed in-
dependently of the other paths.

As noted above, the function represented by the compute
operator is unique to each path, though the structural con-
straints may be used to provide a template for that function
(e.g, identifying the type and source of its parameters). Ex-
ample pseudo-code for one of the compute functions for the
board area mapping is depicted in figure 7, showing how

the required pair of coordinates representing the bounding
box of the routing area, as used by TRACKER, can be ex-
tracted from the list of coordinates representing the vertices
of the board area in COT. In the current implementation of
GPIC, this type of mapping function is represented as hand-
written C code, optionally associated with the CMDL rela-
tionships represented in GPIC.

ROUTER_BOARD.BOUNDING_BOX.COMPUTE(
A1 : SET OF Coordinate) :
[Coordinate,Coordinate];

{
Coordinate min_coord,max_coord;
min_coord.x = Min(X_values(A1));
min_coord.y = Min(Y_values(A1));
max_coord.x = Max(X_values(A1));
max_coord.y = Max(Y_values(A1));
RETURN [min_coord,max_coord];

}

Figure 7: An Example of Path-Specific Mapping Function

The examples so far in this section have assumed data is
stored in the COT format and accessed by TRACKER. For
true inter-operability the reverse must also be true; board
data stored in TRACKER format must be accessible by ex-
ternal COT applications. Indeed, the results produced by
TRACKER must be returnable in COT format. In this case,
implementation of the reverse mapping presents no major
problems as (with respect to routing data only) the informa-
tion content of both representations is identical. It follows
that the mapping functions are bijective [14].

More generally, the information content of two schemas
will not be identical. Mapping becomes problematic be-
cause a mapping function itself may need to provide addi-
tional data, beyond that held by the source schema. For ex-
ample, the COT format is capable of representing all VLSI
design data, not just that associated with routing. To pro-
duce complete COT data from the router results, in theory,
requires all non-routingdata to be accessed from elsewhere
during mapping. This problem was avoided in this appli-
cation because it was possible to isolate the COT data con-
cerned solely with routing, hence the mapping is confined
to the relevant subset of COT.

A detailed discussion of the problem of non-bijective
mappings is beyond the scope of this paper. A number of
possible solutions can be identified, however. The question
is how to supply the additional data when that held in the
source schema is insufficient. In some cases, the appropri-
ate action will be to prompt a user at the time the mapping
function is carried out. It will then be the users responsi-
bility to provide the additional information. For some ap-
plications, it may also be acceptable to rely on default val-
ues for when a specific value is not provided by a map-



ping. Alternatively, where mappings are bi-directional, it
may be possible to generate the data required to complete
the reverse mapping while carrying out the forward map-
ping. It is necessary to identify where the forward map-
ping results in information loss. The discarded informa-
tion should be stored in a new data repository specific to the
mapping functions. As an example, assume that the source
schema holds the x, y and z dimensions for a 3D artifact
and that these values are used to compute a volume value
in the target schema. Information loss can be identified (be-
cause COMPUTE is a many-to-one operator). Hence, the
forward mapping should not only generate a value for the
target schema, but record the original x, y and z values in
the mapping data repository. This information can then be
recovered during the reverse mapping.
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Figure 8: Indirect Data Access via a Mapping Function

Finally, the practical implementation of mapping needs
to be considered. A general scheme is shown in figure 8, for
access of routingdata by TRACKER. The required data can
be stored either within the COT data repository or within
a new data repository that is local to TRACKER. When
TRACKER makes a request for data, such as an attempt to
navigate a particular CMDL relation, two possible access
paths exists:

1. The data can be found directly within the TRACKER
database, hence the access is as for a normal GPIC
call.

2. The data is not found in the TRACKER database.
This implies that data access must occur via the COT

schema. Where equivalence relationships have been
established between the schemas, the return of a data
object handle can be direct. However, the more gen-
eral case will be to trigger an external mapping func-
tion associated with the CMDL relation being navi-
gated in the TRACKER schema. This function will
access the appropriate data via the COT schema, carry
out necessary transformations and return the relevant
value for the TRACKER’s schema.

The decision as to which access route to support is appli-
cation dependent. For the first mode of data access, the
mappings can be used to implement a reader/writer trans-
lation such that data in the source database (i.e. COT data
in this case) can be read via GPIC and the equivalent data
stored in a new target (i.e TRACKER) database. This will
increase the efficiency of subsequent data access but car-
ries the over-head of redundant data storage. The second
alternative is to avoid data redundancy (and hence, avoid
possible problems with data inconsistency), at the cost of
requiring a large number of mapping function calls at the
run-time for the application. For the routing scenario dis-
cussed in this paper, the first alternative was favoured as
the nature of routing requires a very large number of data
accesses at run time, while at the same time it was known
that the routing data was not to be shared between multi-
ple applications, hence possible data inconsistency is not a
major problem.

4 Conclusions

In summary, this paper has described the use of a flexi-
ble and adaptable procedural interface as a means of tack-
ling the problem of semantic heterogeneity that frequently
occurs when two incompatible tools are required to com-
municate with each other. The procedural interface allows
two different data representations to be mapped onto a more
general conceptual model in a straightforward manner.

Once two schemas are converted to the same represen-
tation, mappings between them can be established. The ap-
proach advocated here is to use a set of operators to system-
atically capture the structure of the mapping in a declara-
tive manner. This provides a useful guide for maintaining
inter-schema mappings over time. In addition, the declara-
tive description of a mapping can be used to guide the gen-
eration of the its underlying C-code implementation.

A demonstration of the use of mappings has been built
using the GPIC procedural interface on top of the OMS
database. The material presented here has illustrated a
practical approach to inter-operability of CAD tools.

4.1 Related Work

The problem of overcoming semantic heterogeneity is
currently a hot topic in database research. Numerous ap-



proaches have been suggested (e.g. [15, 16]), of which just
a few notable examples can be covered here.

In [9], the approach advocated for integrating multiple,
heterogeneous databases is to construct a global schema
that is the union of all local schemas. The approach is sim-
ilar to the one taken here in that the integration is achieved
by first converting the data model of each specific database
into a general data model. Each object in a database schema
is represented by a single object in the global schema. In-
tegration is represented by sets of equivalent objects from
different databases mapping to the same object in the global
schema. In [9], a comprehensive, formal definition of the
sets of constraints and relationships between schemas in-
tegrated in this way is given. However, many practical
problems are not fully addressed. In particular, though it is
recognised that explicit mapping knowledge is required, in
order to convert data between the local and global schemas,
no methodology is provided for generating and applying
the mappings. The work described in this paper is a first
step towards tackling this general problem.

The alternative to integration via a global schema is that
of federated database systems [15]. In federated database
systems, each databaseremains autonomous despite the ex-
istence of inter-database cooperation. Unification only ex-
ists locally, between small, related groups of databases.
Again, the central issue is the constructionand maintenance
of inter-schema mappings. The practical example to inte-
gration described in this paper fits well with the federated
model, as it demonstrates inter-schema communication via
mapping while, through integration with GPIC, allowing
each of the external applications to remain independent of
each other. It can be concluded that continued develop-
ment of the GPIC procedural interface to incorporate map-
ping facilities will impact on research into heterogeneous
database systems.

4.2 Future Work

The work that remains to be done in tackling the inter-
operability problem using GPIC is as follows:

� Automating/semi-automating the declarative specifi-
cation of a mapping using the mapping operators.

� Providing assistance for the matching of objects and
concepts during mapping generation, e.g. using an en-
hanced data dictionary.

� Providing access to mapping data/meta-data through
the GPIC interface procedures.

� Providing facilities to deal with non-bijective map-
pings. This includes identification of which mapping
operators lead to information loss (and hence may re-
quire additional information to be stored to support the

reverse mapping). In addition, GPIC needs to be pro-
vided with extra facilities, such as default inheritance.

� Providing other practical examples of inter-operation,
e.g integration of CFI/EDIF, or schema evolution of
existing EDIF versions.

� Benchmark tests with respect to other approaches.

References
[1] International Computers Limited. DA-X User Manual, Vol-

ume I.

[2] D. Edwards, A. MacIntosh, Z. Moosa, and F. Hoyle. Univer-
sity of ManchesterPCB Software. University of Manchester,
October 1994. Version 2.4.

[3] Design FrameworkII User Guide, September 1992. Version
4.2.1.

[4] JCF 2.0 System Overview, 1992.

[5] T.G.R. van Leuken J. Wissenburgh, P. van der Wolf and
P. Bingley. An Introduction to the NELSIS CAD Frame-
work. Technical report, Delft University of Technology,
March 1991.

[6] Digital. PowerFrame Handbook, 1991.

[7] D. Harrison, A. Newton, R. Spickelmier, and T. Barnes.
Electronic CAD Frameworks. Proceedings of the IEEE,
78(2):393 – 416, 1990.

[8] N. Filer, M. Brown, and Z. Moosa. Integrating CAD Tools
into a Framework Environment Using a Flexible and Adapt-
able Procedural Interface. In European Design Automation
Conference, pages 200 – 205, September 1994.

[9] M P Reddy, B E Prasad, P G Reddy, and Amar Gupta. A
Methodology for Integration of Heterogeneous Databases.
IEEE Transactions on Knowledge and Data Engineering,
6(6):920–933, December 1994.

[10] T.C. Young. A Generic Procedural Interface to CAD Data.
Master’s thesis, University of Manchester, 1991.

[11] CAD FRAMEWORK INITIATIVE, INC. Design Repre-
sentation Programming Interface Electrical Connectivity.
CFI Version 1.0.0.

[12] Z. Moosa. GPIC User Manual. University of Manchester,
Draft Document, January 1994.

[13] P. Britton, M. Brown, Z. Moosa, and N. Filer. Storing and
Using Semantic Knowledge in the Framework. Technical
Report JCF/MAN/102-02, University of Manchester, 1993.

[14] P. Pun. Knowledge-Based Applications = Knowledge-Base
+ Mappings + Applications. PhD thesis, University of
Manchester, 1993.

[15] Special Issue on Heterogeneous Databases. acm computing
surveys, 22(3), September 1990.

[16] Special Issue on Heterogeneous Distributed Database Sys-
tems. Computer, 24(12), December 1991.


	EURO-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index


