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Abstract

This paper addresses the problem of semantic hetero-
geneity between data representations with particular em-
phasison CAD tool data representations. The combination
of powerful mapping operations and a flexible procedural
interface are proposed as a possible solution to this prob-
lem. A practical application of the inter-operation of data
representations is used to illustrate the techniques. The
datarepresentations used arethe ICL COT data format [1]
and the TRACKER data format [2].

1 Introduction

Inter-operability isfast becoming amajor issueininfor-
mation technology. It may beregarded asan essential facil-
ity for controlling, preserving, exchanging and utilisingin-
formation between two or more tools. Inter-operability, of
CAD toolsin particular, is complicated by the need to fre-
guently adapt to changes in the design representations used
by the individual tools. This has led to the advent of soft-
ware environments called frameworks[3, 4, 5, 6, 7] which
help reduce the time and cost needed to develop or mod-
ify acomponent in response to changing end user require-
ments. |nter-operability isenabled by integrating toolsinto
the framework environment [8].

The need for tool inter-operability cannot be underes-
timated. Data representations (conceptua models) of dif-
ferent tools are typically developed independently, which
means that they are usually incompatible with one another
(semantic heterogeneity). In addition, conceptual models
are oftenin astate of continuousevolution, in order to sup-
port changing tool requirements, so that different versions
of the same tool are likely to have incompatible models.

Asaconsequence of semantic heterogeneity, equivalent
information may have completely different naming, typing,
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level of abstraction and underlying structures in two tool-
specific conceptual models [9]. However, increasingly so-
phisticated user requirements dictate that the users should
no longer be required to manage low leved details of send-
ing and receiving datain different representationsin anum-
ber of information sources. Anideal scenario would be one
inwhichauser isprovided global, integrated access to mul -
tipledatarepresentationswithasingle, relatively simplere-
guest. This paper describes the efforts made towards mak-
ing this scenario a practical redlity.

In [8], afine-grained procedura interface for support-
ing tool integration is described. The procedura inter-
face (GPIC) is based on a minimal set of generic proce-
dures. Flexibility is obtained by providing additional in-
terface procedures to interpret conceptual models of data.
This paper describes apractical application of the procedu-
ra interface in bridging underlying semantic differencesin
the conceptual models of multipletoolsin a CAD frame-
work.

This paper is organised as follows. Section 2 briefly re-
views the principles of GPIC and its underlying concep-
tual model CMDL (CAD Meta Data Language). The need
for mappingsto support tool inter-operability isintroduced.
Section 3 gives a practical example of inter-operation of
data representations using mappings and GPIC. The repre-
sentations used are the ICL COT data format [1] and the
TRACKER dataformat [2]. The paper isconcluded with a
comparison to similar work and an outline of future work.

2 Background

Two componentshavebeenidentified asthekey require-
ments for the definition of a procedura interface to a data
repository [10]: a conceptua model describing the organi-
sation of datain the repository, and the access procedures
linking the environment to the repository. Since the na-
ture and content of the data stored in a CAD repository
is constantly evolving, it is necessary to define conceptual
model components that can survive these changes. Exam-
ples of domain independent concepts include objects, at-



tributesand relations. In contrast, examples of domain de-
pendent concepts include nets, cells and ports. A domain
independent conceptual model ensures a relatively stable
interface that is independent of the complexity or changes
in the application domain. A comparison with other styles
of interface (e.g CFl DR [11]) isgivenin[8, 10, 12] and is
beyond the scope of this paper.
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Figure 1: Principlesof CMDL

The GPIC interface is based on an underlying concep-
tual modelling notation called CMDL. The principles of
CMDL are summarised in figure 1. The interface has two
layers of access procedures. meta-data access and data ac-
cess. Design data may be regarded as occurrences of con-
cepts defined by a conceptual model whereas meta-data
may be regarded as occurrences of meta-concepts defined
in a meta-conceptual model. This speciaisation of con-
ceptsisfurther illustratedin figure 2.

A major requirement for tool inter-operability is that
tools must agree on the meaning of exchanged data. The
manifestation of this agreement isin the form of a set of
mappings between the concepts of the respective tools.
These mappings describe removal, addition and structural
changes to entities within a schema as well as transforma-
tionson theindividual attributes. The need for mappingsin
the CAD domain has already been recognised [8, 13, 14].
Extension of GPIC with mappings has many potential ap-
plicationsfor CAD frameworks including:

o Mappings between different views of the same data,

o Mappings between data and semantic information for
the same object,

o Mappings between different versions of conceptua
models,

o Mappings between different CAD standards.
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Figure 2: Hierarchy of Models
3 A Practical Integration Example

This section describes the practica efforts made to-
wards integrating the ICL COT [1] data format with the
TRACKER routing data format [2]. The ICL COT for-
mat is afixed field text representation used to describe |CL
DAX data. DAX isthel CL designsystemfor PCB and chip
design. The TRACKER format isalso afixed field text rep-
resentation used to describe connectivity and tracking in-
formation for a routing tool. Figure 3 illustrates how the
respective environmentsinterfaceto each other using GPIC
as acentral datarepository.

The interface requires conceptual models of ICL-COT
and TRACKER aong with their associated mappings,
stored as data within the GPIC repository. Reader/writers
for both these representations have been constructed so as
to avoid making modification to existing tools (though it
is quite feasible for applications to be integrated directly
through GPIC). The readers and writers a'so use GPIC to
build a set of parsing/writing rules for each data object in
the representation. These rules consist of alist of lega at-
tribute classes that have to be defined for a data object. At
run-time, the meta-data routines of GPIC are used to re-
trievetheterminal types (e.g string, character, integer ...) of
adataobject by interpreting therespective conceptual mod-
els. The use of GPIC in thismanner allows the conceptua
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Figure 3: Integration of ICL-DAX and TRACKER envi-
ronments

model (and hence the representation rules) to evolve with-
out the need to change the readers or writers.

The problem that has to be addressed in this case is that
both environments have essentialy alocal view of thedata
in the repository. It isthe responsibility of the GPIC inter-
face to solve conflicts between theviews and present anin-
tegrated view to each environment. Thisisachieved by us-
ing mappings to ensure consistent names, values and for-
mats. Thus, the integrated system makes heterogeneous
components appear homogeneousby hidingthedifferences
amongst them. The following section gives a detailed ac-
count on how mappings can be used to solve semantic het-
erogeneity between data representations.

3.1 Mapping
( 7
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Figure4: An Example of Semantic Heterogeneity Between
COT and the TRACKER Formats

Asalready noted, the problem of semantic heterogeneity
refers to the storage of related informationin incompatible
data representations. The application described here con-
cerns the problem that the information required for running

TRACKER is stored as COT data, but the COT format is
not interpretable by TRACKER. A simple example of this
isshown in figure 4; in COT aboard areais generaly rep-
resented as an arbitrary polygon, whereas TRACKER re-
quires the board area to be represented as a bounding rect-
angle and an appropriate collection of no-go areas.

The proposed general solution to semantic heterogene-
ity isto support mapping facilitiesin GPIC. Mappings are
directional réelationships from a source schema to atarget
schema. In general, the definition of a mapping requires
careful consideration of thestructural differencesand com-
putational transformations between two representations.
There aretwo crucia issuesinvolved in the structural con-
sideration. Firstly, equivalence relationships must be es-
tablished between components of the two schemes; equiv-
alence being loosaly defined as representing the same real
world concept, without constraining the way in which the
information is represented. Non-equivalent source com-
ponents are del eted and non-equivalent target components
are added in a mapping. Secondly, the differences in the
detailed structure of the two schemas must be determined.
Thisdifferenceis manifest by the existence of one-to-many
or many-to-one relationships between components of the
two schemas, even though the real world concepts being
represented in the source and target schemas may be the
same. This representation of identical information by dif-
ferent representational structureswill bereferred to as non-
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Figure 5: Mapping from COT Format to TRACKER For-
mat

The explicit specification of the structure of a mapping
isachieved by insertion of various structural operators (see
figure 5) that establish unique paths for deriving target en-
titiesand attributes from the source schema. For example,
in figure 5, the split operator generates a unique path to
each of thetarget attributes. The definition of amapping in
termsof the structural operatorsisimportant meta-datathat
shoul d be associ ated with therespective schemas withinthe
framework. This meta-datawill providevauable informa-



tion for the maintenance of mapping rel ationshi ps between
schemas, for example providing a log of the changes be-
tween different version of an evolving schema.

In addition to structural operators, a compute operator
may be associated with each mapping path. The compute
operator represents apath-specific transformation of the ac-
tual data values stored for a source schema into the re-
quired valuesinthetarget schema. Hence, the compute op-
erator captures the deep semantics of the mapping, while
the structural operators establish constraints on the values
transformed by the compute operator. This methodology
for describing mappings is illustrated below by a worked
example.

EQUI VALENT( COT_BOARD, ROUTER BQARD) ;
ADD( NOGO_AREA) ;

DELETE( COT_BQARD. VERTI CES) ;
ADD( ROUTER_BOARD. BOUNDI NG _BOX) ;
ADD( ROUTER_BOARD. NOGO_AREAS) ;
ADD( NOGO_AREA. VERTI CES) ;

SPLI T( COT_BOARD. VERTI CES, [ A1, A2, A3]) ;
/* NB, Al, A2 and A3 are copies of
COT_BQOARD. VERTI CES */

COVPUTE([ Al] ,
[ ROUTER_BOARD. BOUNDI NG BOX] ) ;

COVPUTE([ A2] ,
[ ROUTER_BOARD. NOGO_AREAS] ) ;
COVPUTE( [ A3] , [ NOGO_AREA. VERTI CES] ) ;

Figure 6;: An Example of Mapping Pseudo-Code

Figures5 and 6 depict the structural specification of the
mapping from the COT to TRACKER formats for the rep-
resentation of theroutingarea of aboard. It can be seen that
there exists an equivalence between the source and target
entities representing the concept of a board area. In addi-
tion, the TRACKER format introduces a new entity repre-
senting theconcept of ano-goareafor routing. There exists
non-isomorphismin that al attributesin the target schema
are derivable from the single source schema attribute; the
list of coordinates representing the COT board’s vertices.
A copy of theoriginal source attributevalue (variables A1,
A2 and A3infigure 6) is passed independently along each
one of the pathsin the mapping and can be transformed in-
dependently of the other paths.

Asnoted above, thefunctionrepresented by the compute
operator is unigque to each path, though the structural con-
straintsmay be used to provideatemplate for that function
(e.g, identifyingthetype and source of its parameters). Ex-
ampl e pseudo-code for one of the computefunctionsfor the
board area mapping is depicted in figure 7, showing how

the required pair of coordinates representing the bounding
box of therouting area, as used by TRACKER, can be ex-
tracted fromthelist of coordinatesrepresenting thevertices
of the board areain COT. In the current implementation of
GPIC, thistype of mapping functionisrepresented as hand-
written C code, optionally associated withthe CMDL rela
tionshipsrepresented in GPIC.

ROUTER_BQOARD. BOUNDI NG_BOX. COVPUTE(
Al : SET OF Coordinate) :
[ Coor di nat e, Coor di nat e] ;

Coor di nate m n_coord, max_coor d;
m n_coord. x M n(X_val ues(Al));
m n_coord.y M n(Y_val ues(Al));
max_coor d. X Max( X_val ues(Al));
max_coord.y Max(Y_val ues(Al));
RETURN [ mi n_coord, max_coord];

Figure 7: An Example of Path-Specific Mapping Function

The examples so far in this section have assumed datais
stored inthe COT format and accessed by TRACKER. For
true inter-operability the reverse must aso be true; board
datastored in TRACKER format must be accessible by ex-
ternal COT applications. Indeed, the results produced by
TRACKER must bereturnablein COT format. Inthiscase,
implementation of the reverse mapping presents no major
problemsas (withrespect to routing dataonly) theinforma-
tion content of both representationsisidentical. It follows
that the mapping functions are bijective[14].

Moregeneraly, theinformation content of two schemas
will not be identical. Mapping becomes problematic be-
cause amapping function itself may need to provide addi-
tional data, beyond that held by the source schema. For ex-
ample, the COT format is capable of representing all VLSI
design data, not just that associated with routing. To pro-
duce complete COT datafrom the router results, in theory,
requiresall non-routingdatato be accessed from €l sewhere
during mapping. This problem was avoided in this appli-
cation because it was possibleto isolate the COT data con-
cerned solely with routing, hence the mapping is confined
to the relevant subset of COT.

A detailed discussion of the problem of non-bijective
mappings is beyond the scope of this paper. A number of
possiblesolutions can beidentified, however. The question
is how to supply the additional data when that held in the
source schema isinsufficient. In some cases, the appropri-
ate action will be to prompt a user at the time the mapping
functionis carried out. It will then be the users responsi-
bility to provide the additional information. For some ap-
plications, it may also be acceptable to rely on default val-
ues for when a specific value is not provided by a map-



ping. Alternatively, where mappings are bi-directional, it
may be possible to generate the data required to complete
the reverse mapping while carrying out the forward map-
ping. It is necessary to identify where the forward map-
ping results in information loss. The discarded informa
tion should be stored in anew datarepository specifictothe
mapping functions. As an example, assume that the source
schema holds the x, y and z dimensions for a 3D artifact
and that these values are used to compute a volume value
inthetarget schema. Informationlosscan beidentified (be-
cause COMPUTE is a many-to-one operator). Hence, the
forward mapping should not only generate a value for the
target schema, but record the origina x, y and z values in
the mapping data repository. Thisinformation can then be
recovered during the reverse mapping.
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Figure8: Indirect Data Access viaa Mapping Function

Finally, the practica implementation of mapping needs
tobeconsidered. A generd schemeisshowninfigure8, for
access of routingdataby TRACKER. Therequired datacan
be stored either within the COT data repository or within
a new data repository that is loca to TRACKER. When
TRACKER makes arequest for data, such as an attempt to
navigate a particular CMDL réation, two possible access
paths exists:

1. The datacan be found directly withinthe TRACKER
database, hence the access is as for a normal GPIC
cal.

2. The data is not found in the TRACKER database.
Thisimpliesthat data access must occur viathe COT

schema. Where equivalence relationships have been
established between the schemas, the return of a data
object handle can be direct. However, the more gen-
eral case will beto trigger an external mapping func-
tion associated with the CMDL réation being navi-
gated in the TRACKER schema. This function will
access the appropriatedataviathe COT schema, carry
out necessary transformations and return the relevant
vauefor the TRACKER's schema.

The decision as to which access route to support is appli-
cation dependent. For the first mode of data access, the
mappings can be used to implement a reader/writer trans-
lation such that data in the source database (i.e. COT data
in this case) can be read via GPIC and the equivaent data
stored in anew target (i.e TRACKER) database. Thiswill
increase the efficiency of subsequent data access but car-
ries the over-head of redundant data storage. The second
alternative is to avoid data redundancy (and hence, avoid
possible problems with data inconsistency), at the cost of
requiring a large number of mapping function cals at the
run-time for the application. For the routing scenario dis-
cussed in this paper, the first alternative was favoured as
the nature of routing requires a very large number of data
accesses at run time, while a the same time it was known
that the routing data was not to be shared between multi-
ple applications, hence possible datainconsistency isnot a
major problem.

4 Conclusions

In summary, this paper has described the use of aflexi-
ble and adaptable procedural interface as a means of tack-
ling the problem of semantic heterogeneity that frequently
occurs when two incompatible tools are required to com-
municate with each other. The procedura interface allows
two different datarepresentationsto be mapped ontoamore
genera conceptual model in a straightforward manner.

Once two schemas are converted to the same represen-
tati on, mappings between them can be established. The ap-
proach advocated hereisto use a set of operatorsto system-
atically capture the structure of the mapping in a declara-
tive manner. This providesa useful guide for maintaining
inter-schema mappings over time. In addition, the declara-
tive description of a mapping can be used to guidethe gen-
eration of the itsunderlying C-code implementation.

A demonstration of the use of mappings has been built
using the GPIC procedura interface on top of the OMS
database. The material presented here has illustrated a
practical approach to inter-operability of CAD tools.

4.1 Related Work

The problem of overcoming semantic heterogeneity is
currently a hot topic in database research. Numerous ap-



proaches have been suggested (e.g. [15, 16]), of which just
afew notable examples can be covered here.

In[9], the approach advocated for integrating multiple,
heterogeneous databases is to construct a globa schema
that istheunion of al local schemas. The approach issim-
ilar to the one taken here in that the integrationis achieved
by first converting the datamodel of each specific database
intoagenera datamodel. Each object in adatabase schema
is represented by a single object in the global schema. In-
tegration is represented by sets of equivalent objects from
different databases mapping to the same object intheglobal
schema. In [9], a comprehensive, formal definition of the
sets of constraints and relationships between schemas in-
tegrated in this way is given. However, many practical
problems are not fully addressed. In particular, thoughitis
recognised that explicit mapping knowledgeisrequired, in
order to convert data between thelocal and global schemas,
no methodology is provided for generating and applying
the mappings. The work described in this paper is a first
step towards tackling this general problem.

Thealternativeto integration viaagloba schemaisthat
of federated database systems [15]. In federated database
systems, each databaseremains autonomous despite the ex-
istence of inter-database cooperation. Unification only ex-
ists locally, between small, related groups of databases.
Again, thecentral issueisthe constructionand maintenance
of inter-schema mappings. The practica example to inte-
gration described in this paper fits well with the federated
model, as it demonstrates inter-schema communication via
mapping while, through integration with GPIC, alowing
each of the external applicationsto remain independent of
each other. It can be concluded that continued develop-
ment of the GPIC procedural interface to incorporate map-
ping facilities will impact on research into heterogeneous
database systems.

4.2 FutureWork

The work that remains to be done in tackling the inter-
operability problem using GPIC isas follows:

o Automating/semi-automating the declarative specifi-
cation of a mapping using the mapping operators.

¢ Providing assistance for the matching of objects and
concepts during mapping generation, e.g. using an en-
hanced data dictionary.

¢ Providing access to mapping data/meta-data through
the GPIC interface procedures.

o Providing facilities to deal with non-bijective map-
pings. This includes identification of which mapping
operators lead to information | oss (and hence may re-
quireadditional information to be stored to support the

reverse mapping). In addition, GPIC needsto be pro-
vided with extrafacilities, such as default inheritance.

o Providing other practical examples of inter-operation,
e.g integration of CFI/EDIF, or schema evolution of
existing EDIF versions.

o Benchmark tests with respect to other approaches.
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