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Abstract

Most existing high-level synthesis(HLS) systems at-

tempt to generate a circuit from a behavioral descrip-

tion \out of the void", using the entire design space as

the search domain. Because of the vastness of the search

space, it is impossible to do more than a coarse grain

search, often resulting in ine�cient designs. This ap-

proach, ignores the designer's knowledge of the general

structure of the circuit to be synthesized. In this paper,

we describe the HLS system SIDER (Synthesis by Initial

Design Extension and Re�nement). SIDER utilizes de-

signer knowledge about the design space in the form of

an initial circuit. By limiting search to the neighborhood

of this initial circuit, much �ner grain search can be per-

formed yielding a higher quality design. The e�ectiveness

of the SIDER approach is shown by HLS of a 300 line C

description of 27 instructions from a MC6502 CPU.

I. Introduction

The major goal of current HLS research is to tie the

behavioral level to the intermediate RT level. Algorithms

for scheduling, allocation, binding and various combined

methods have been available for some time. However,

even with these methods, the circuits generated by even

current state-of-the-art HLS synthesizers are of too low a

quality to be commercially practical.

In HAL[1, 2, 3] and SAM[4] operators associated with

the respective branches of a conditional statment can only

share a single functional unit, and the control and inter-

connect cost for sharing is not taken into account. In

MAHA[5] while the number of steps along the critical

path can be reduced, when the critical path goes through

a conditional branch, depending on which branch is taken

during actual execution, the number of control steps may

not be minimal. In ILP methods such as OASIC[6], cir-

cuits with a large number of operations can not be syn-

thesized in a reasonable amount of time.

In path-based As Fast As Possible(AFAP) scheduling[7,

8], all paths from an initial node to a �nal node are ex-

tracted. Then, overlapping steps can be merged and a

�nal schedule produced. However, the execution time for

this method increases exponentially with the number of

operations.

An allocation method[9] for use with AFAP scheduling

has also been proposed. Each path extracted during the

scheduling phase is broken down into sub-paths. Each

sub-path along a path is assigned to a di�erent state.

Global optimization can be performed on the initial al-

location result obtained as described above. All sub-paths

are analized to �nd mutually exclusive conditions on reg-

isters and functional units. The problem of �nding the

optimal sharing of registers and functional units is solved

as a graph coloring problem. Since this is an NP complete

problem, heuristics are used to �nd a solution.

In Tree-Based Scheduling[10], a Control/Data Flow

Graph (C/DFG) with conditional statments is trans-

formed into a tree structure by replicating the nodes after

the end of each conditional. In this method, sharing of

operators associated with di�erent conditional branches is

taken into account, but the e�ect of connection cost due

to the sharing is not considered. Also, as of yet, there are

no allocation algorithms associated with this scheduling

method.

In a real-world design, the intractably large search

space makes it infeasible to explore all possible designs.

Because of this, most synthesis systems do a coarse grain

search of this design space, often resulting in a circuit far

from an optimal point.

The basic system structure can be taken as an initial

value in the search for the optimal point in the design

space. By searching for an optimal point near this initial

value, the demand on the HLS can be greatly reduced.

Therefore, in addition to the behavioral description, this

basic system structure should also be made an input to a

HLS system.

In one of recent study[11] for generating a control unit

from data path information. Scheduling and allocation

is performed using data path information given by a de-

signer. However, this method requires designer to give

complete data path information to the HLS system.

In this paper we propose a system in which the designer

supplies an initial guess in the form of an initial circuit.

The initial circuit need not be complete, as additional

necessary connections will be added automatically.
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The number of components and RTL description result-

ing from incremental synthesis is much better than those

produced when synthesizing a whole description at once.

II. Basic System Structure

In this section the basic structure of SIDER is de-

scribed. In the following sections, each phase of the syn-

thesis process will be discussed.

Input is taken in the form of a behavioral description

and an initial circuit. Behavioral descriptions are written

in C language.

The initial circuit �le describes the basic structure of

the data path, including the input and output terminals,

the functional units, the registers and interconnect. Pro�t

values are given to components of the circuit to guide

selection in the hardware allocation phase. Components

with a high pro�t value are more likely to be selected,

than those with a lower value.

The basic synthesis algorithm is outlined in Figure 1.

Given a C/DFG G and an initial circuit D0, the C/DFG

is �rst factored by \condition pattern" into the individ-

ual DFGs Gi. Each of the Gi are then scheduled and

partioned into \G-path" partionings Pi. The Pi are then

mapped onto the \current design" Di�1 and any neces-

sary additional circuitry is synthesized to generate the

new current design Di. Each of the steps in this process

will be described in greater detail in the following sections.

G �! G1 ; G2 ; : : : Gn

# # #

P1 P2 � � � Pn

# # #

D0 �! D1 �! D2 � � � � ! Dn

Fig. 1. Basic Synthesis Algorithm

A. C/DFG and Data Path Representation

We will consider a C/DFG to be a graph G, with nodes

ni and edges eij . Each node represents an operator, and

edges represent data ow. Nodes and edges are \colored"

by their activating conditions as indicated by the condi-

tional blocks in which they are contained.

In a similar mannar, the current design graph (CDG)

is represented as a graph D with nodes Ni and edges Eij .

The nodes represent functional units and the edges rep-

resent interconnect. The CDG D0 is generally the initial

circuit, the CDGs Di the design after re�nement for each

condition pattern, and the CDGDn the �nal circuit which

is translate into RTL.

B. Condition Analysis

The �rst step in condition analysis is to form a condi-

tion tree for the branching statments (e.g., if and switch

statments). The condition tree is formed by writing a tau-

tology expression yi + y
i
for each conditional statment in

the description. For a nested conditional j in the else

branch of conditional i, we write yi + y
i
(yj + y

j
). Condi-

tionals in series are simply the product of the tautology

expressions for each of the individual conditionals. The

condition patterns �i are obtained by expending the tau-

tology expression to a sum-of-products form.

Each term in the sum-of-products form corresponds to a

condition pattern. After the condition patterns have been

computed, the next step is to decompose the C/DFG G

into DFGs for each condition pattern.

G =

nX

i=1

�i �Gi

where the �i terms represent the condition patterns, and

the Gi represent the DFGs for each condition.

C. Scheduling

After obtaining the condition partioned Gi, the next

step is to perform scheduling on each one. AFAP schedul-

ing was selected for this prototype system because of the

simplicity in implementation. In this stage, the required

bit widths of the internal elements are computed from the

bit widths of the input and output terminals. Based on

this bit width, a hypothetical delay time for each opera-

tion is estimated. Scheduling is then performed according

to the hypothetical delay time and the clock cycle time

speci�ed in the external speci�cation. Operations that

can not be processed within the system clock time are

treated as multi-cycle operations.

Previous work [10, 9] has shown that substantial im-

provement in the design can be obtained when scheduling

and allocation are performed simultaneously. Preliminary

experimentation has shown that this capability could also

be incorporated into the present system.

D. G-Path Partioning

For each Gi, the next step is generate the G-path par-

tioning Pi. A G-path is a sequence of connected edges and

nodes of the form gk = [nj1 ; ej2j1 ; nj2 ; ej3j2 ; : : :] . Each

edge and node of a DFG falls into exactly one G-path.

Each G-path must start at either an input terminal or

an edge adjacent to another G-path, pass through a se-

quence of nodes and edges, and end at an output terminal

or another edge adjacent to another G-path.

In general, there are many ways of labeling a DFG Gi

to obtain a G-path partioning Pi. Currently G-paths are

obtained by repeatedly extracting the longest path, until

all edges in the graph have been selected. Figure 2 is an

example of G-path partioning.
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Fig. 2. An example of G-path partioning

E. Candidate D-Path Selection

After obtaining the G-path partionings Pi, it is neces-

sary to �nd a set of candidate \D-paths" for each G-path.

A D-path is a sequence of nodes and edges in the CDG

of the form dki = [Nj1
; Ej2j1

; Nj2
; Ej3j2

; : : :]. Unlike G-

paths, nodes and edges in a D-path may be repeated as

long as the sequence forms a path.

A D-path dki is \compatable" with a G-path gk if and

only if corresponding elements are compatible. Elements

are compatible if they are both nodes, and the design

graph nodes represent functional units that can execute

the operation corresponding to the DFG nodes. Terminal

nodes have the addition restriction that they must have

the same label (i.e., G-path input terminal \A" must map

to D-path input terminal \A"), and G-path terminals for

constants are considered \free" and do not need to match

a D-path element.

The candidate D-paths are generated by depth �rst

search of the CDG. A search tree is formed with each

element of the G-path as a decision node, and compatible

elements from the current design as the decision branches.

Each element of the current design has a pro�t value

associated with it. The decision branches are selected

randomly using the pro�t values to weight the selection.

This process is repeated to extract as many D-paths as

required. The random nature of the selection helps to pro-

vide D-path candidates that are distributed more evenly

about the design space than simply taking the paths with

the highest total pro�t values.

When no D-path candidates can be extracted from

the current design, additional connections and functional

units are added to the current design. The position to

add the additional components is determined by the pro�t

values of the existing components, and the pro�t for the

I1 I2 I3

O1

ADD1

R1

ADD2

R2

d2,5d2,4

d2,3

d2,2
d2,1

d1,2

d1,1

Fig. 3. An Example of Initial Circuit

new components is set lower than the surrounding com-

ponents.

The number of D-path candidates must be selected is

based on the size and complexity of the initial circuit. The

selection of this limit has a great e�ect on the CPU time

required for the subsequent processing, and on the quality

of the �nal circuit. This limit is given as the synthesis

parameter Td.

In general, there are an virtually unlimited number

of data path designs that can be used to implement a

C/DFG. The problem of �nding the optimal one from an

unconstrained design space is an NP hard problem. We

use the selection of an initial circuit to limit the search

space, and avoid the NP-hard problem. In other words,

we consider a limited number of D-paths for each G-path,

and �nd a local optimum near the initial circuit. Exam-

ples of D-paths are shown in Figure 3 for G-paths g1 and

g2 from the Figure 2 example. The paths d1;i correspond

to g1 and the paths d2;i correspond to path g2 are shown.

D-paths for other G-paths are not shown.

F. D-Path Optimization

After generating D-path candidates for each G-path,

the next step is to choose a non-conicting combination

of bindings. A conict occurs when two D-paths use the

same functional unit or path in the same clock cycle.

Three types of conicts are considered: functional unit,

interconnect and I/O port.

The optimal solution is the conict free set of bindings

that maximize the total pro�t. We solve this as a modi�ed
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form of the knapsack problem:

max z =

mX

i=1

nX

j=1

pijxij

s.t.

nX

j=1

wijxij � ci; i 2M = f1; : : : ;mg;

mX

i=1

xij = 1; j 2 N = f1; : : : ; ng;

xij 2 f0; 1g; i 2M; j 2 N

where xij is 1 if node i of the DFG is bound to register

or functional unit j of the CDG, pij is the pro�t for this

binding, wij is the bit-width of element i when realized

on element j of the CDG, and ci is the total bit capacity

of the register or functional unit i in the CDG. In the

analogy to the knapsack problem, functional units and

registers of the CDG are the knapsacks, and operators

and edges in the DFG are the objects to be placed in the

knapsacks.

The problem is solved using a branch-and-bound based

algorithm, choosing a D-path for each G-path. When

searching a D-path branch dij , for G-path gi, if dij con-

icts with any of the previously assigned bindings. If

not, we then try place all of the G-path objects in the

corresponding D-path knapsacks. If the capacity of any

knapsack is exceeded, the path was in conict, or the es-

timated maximum pro�t from this point is less than the

current bound, we must abandon the branch and try an-

other binding.

G. Conict Resolution

In applying the branch-and-bound algorithm, it is pos-

sible that all bindings conict and no solution can be

found. When this occurs, we must apply the conict res-

olution procedure, and add hardware to the CDG to re-

move the conict.

In doing conict resolution, we start at the search path

which failed at the deepest point, and among those we

take the one with the highest pro�t. We then record the

G-path on which the conict occurred, and continue the

search without a binding for that G-path.

After obtaining a solution and a set of G-paths that

caused a conict, we then compute the minimal set of

components that need to be added to the circuit to resolve

the conicts.

III. Experimental Results

To demonstrate the e�ectiveness of SIDER, a 300 line

description was prepared. The description, written in C,

encoded 27 instructions of a MC6502 processor.

Condition Pattern
100 200 300 400 500

C
om

po
ne

nt
 C

ou
nt

2

4

6

8

10

12

14

16

18

20

0

And gate count
Comparator count
Register count
Connection count (×10)

Fig. 4. Synthesis Result for Td = 10
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Fig. 5. Synthesis Result for Td = 23
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Fig. 6. Synthesis Result for Td = 24
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Fig. 7. Synthesis Result for Td = 64

There are if statments nested up to 12 levels deep for

instruction decoding, and a total of 422 condition pat-

terns.

The initial circuit consists of the input and output

ports, four registers, and functional units for each of the

operators in the descriptions. Two functional units are

provided for some of the more common operations (addi-

tion, logical AND, and logical OR). Some initial connec-

tions are also given.

Figures 4 through 7 show the size of the CDG (in terms

of number of components for several component types) as

it is extend for each condition pattern �i. The �gures

show the results for Td of 10, 23, 24 and 64 respectively.

In all of the cases, most of the circuitry is added to the

CDG early in the synthesis process. For DFGs Gi with a

large number of G-paths, many components are added at

once. After about the i = 50, nearly all of the necessary

functional units have been added, and only the connection

count changes signi�cantly.

Consider the graphs for Td = 10 and Td = 23. Up

to i = 50, the two graphs are identical. At this point,

however, the Td = 23 case is able to �nd connections that

were not found in the Td = 10 case. This results in a

savings of one (multi-bit) AND unit and one register.

The number of interconnects is decreased from 104 to

86. When we increase Td from 23 to 24, we �nd that

number of interconnects drop sharply to 60, representing

a local minima in the solution space. Further increase of

Td results in no additional reduction of the circuit size.

The synthesis result as a function of Td are shown in

Figure 8. The number of comparators, registers, and

"AND"-gates converge to 14, 11, and 7, respectively (for

Td = 10). For small Td, the generated RTL-description

is over 10; 000 lines. As Td is increased to 23, the RTL

description drops to 6; 200 lines. When Td goes from 23

to 24, there is a sudden drop to 2; 856 lines and the result
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And gate count
Register count
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Execution time
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HDL line count

Fig. 8. Synthesis Result by Td

does not change for further increases in Td. Logic synthe-

sis of the Td = 24 RTL description yields a circuit with

1.2K gates.

The main cause of the circuit size reduction is the re-

duction in number of connections, since this simpli�es the

control circuitry generate by the logic synthesizer. The

number of connections drops from 1; 450 at Td = 1 to 86 at

Td = 23 and 60 at Td = 24. When we examine the result-

ing RTL descriptions for the Td = 23 and Td = 24 cases

we notice that in the Td = 23 case there are many opera-

tions with many di�erent conditions, but in the Td = 24

case, there are many more operations controlled by the

same condition.

The empirically estimated CPU time between Td = 1

and Td = 23 is t = 120(Td)
0:36. The decrease in the

circuit size at Td = 24 reduces the search space and thus

the CPU time actually drops.

IV. Incremental Design

Practical circuits in the �eld are often designed incre-

mentally. To show how SIDER is useful in incremental

design, we broke down the 27 instructions of the MC6502

into the four design groups.

Results from the incremental design experiment are

shown in Table I. The design groups are created one at a

time and merged into the design Bn =
P

n

i=0
bi. Note that

B3 is the same as the full speci�cation used in Section III.

Design B0 is synthesized with the same initial circuit (D0)

as in the previous example, and each Bi is synthesized us-

ing the result from the previous step as the initial circuit.

The number of connections manually added are shown in

parenthesis in the column for number of connection in the

initial circuit.

In the synthesis results section of the table, the num-

ber of connections broken down into those that were in
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Design Initial Circuit Synthesis Result

Name Td Inst. Name Conn. Name Conn. Eq. Reg. AND RTL CPU

B0 24 4 D0 67 D1 6 + 5 = 11 3 0 3 340 2.3

B1 24 8 D1 11 D2 11 + 7 = 18 8 0 4 1101 19.7

B2 24 16 D2 20(2) D3 13 + 8 = 21 8 0 4 1778 126.9

B3 24 27 D3 47(26) D4 44 + 44 = 88 9 11 4 8742 411.5

B3 24 27 D0 67 D5 17 + 43 = 60 14 10 7 2856 231

B3 48 27 D3 47(26) D6 30 + 27 = 57 9 11 4 2795 314.8

TABLE I

Incremental Synthesis Results

Initial Circuit Synthesis Result

Name FUs #Reg. #Reg. #Terms. #States

count 1xINC, 1xDEC, 1x(==) 1 0 7 1

gcd 1xSUB, 1x( < ), 1x( != ) 2 0 9 1

hal 3xMUL, 1xSUB, 1xADD 3 3 15 4

MAHA 1xADD, 1xSUB, 6xINPUT 3 3 6 8

TABLE II

Data on Initial Circuits

the initial circuit and new ones added to the circuit, are

given along with the number of components for several

component types, the number of lines in the generated

RTL description and the synthesis time are given.

The results indicate that while the number of com-

ponents resulting from the incrimentaly produced result

is comparable to those produced when synthesizing the

whole description at once, the RTL descriptions size is

much larger (8742 lines versus 2856 lines). If we resyn-

thesize using a large Td, however, the number of lines

generated in the incrmental case drops to 2795, actually

better than in the non-incrmental design case. These re-

sults compare favorably to our experinces in the case of

human designers.

Four HLS benchmarks, rewritten in C , where cho-

sen for comparison with other methods, one benchmark

(HAL) without conditional statements, and three bench-

marks (count,GCD and MAHA) with conditional state-

ments. For each of these examples, an initial circuit was

supplied. Data on the initial circuits are shown in Ta-

ble II.

In the HAL example, since there are no conditional stat-

ments, the synthesis reduces to a simple AFAP schedul-

ing result. In the MAHA initial circuit there are two

functional blocks (ADD and SUB), 6 input terminals,

and some simple interconnect. The shortest path is three

steps, and the longest is eight.

V. Conclusion

In this paper we have proposed a new HLS approach

which reduces the design space by use of an initial cir-

cuit. It is shown that by using an initial circuit to limit

the search space we can synthesize large-scale circuits in

reasonable time with results comparable to human design-

ers.
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