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Abstract | We investigate the problem of hazard-

free gate-level implementation of speed-independent

circuits speci�ed by event-based models, such as Sig-

nal Transition Graph (for processes with AND causal-

ity and input choice) or its extension, called Change

Diagram (which allows OR-causality). The main re-

sult of the paper is twofold: (1) the proof that any

speed-independent behavior can be implemented at

the gate-level without hazards, and (2) an e�cient

method for such an implementation. This method is

based on transformations of the speci�cation to the

form satisfying the Monotonous Cover requirement.

Since this method is based on standard gate cells it

can be used both in the full-custom and semi-custom

VLSI design. Experimental results demonstrate area

and performance e�ciency of our method.

I. Introduction

Speed-independent circuits rely on the unbounded delay

model , which provides pessimistic assumptions on gate
delays (no bounds are known) and realistic assumptions
on wire delays (the skew of wire delays at multiple fanouts
is less than one gate delay). In such circuits every input
change is acknowledged by the circuit to indicate that
the environment can apply next input pattern. There-
fore speed-independent circuits enjoy the property of be-
ing self-checking to stuck-at faults [12, 15] and are easier

to verify than bounded delay circuits [5, 6].
Signi�cant progress has recently been achieved in au-

tomating the synthesis of speed-independent circuits [2,
11] from Signal-Transition Graph (STG) speci�cations.
From a STG speci�cation it is possible to generate a
state-transition description, called here Transition Dia-
gram (TD). The existing techniques for synthesis of speed-
independent circuits [2, 1, 15, 11, 4, 17] despite cover-
ing a rather large subclass of circuits, still fall short of
providing a universal implementation methodology for
the largest possible class of speed-independent behaviors.
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The monotonous cover [8] and the corect cover [1] condi-
tions were introduced as su�cient (and actually close to
necessary) conditions for the hazard-free implementation
under the standard RS- and C-implementation architec-
tures. The synthesis method was formulated in [8] as a
set of Boolean constraints under the rules of introduc-
ing additional signals. The solution can be found using
the Boolean satis�ability solvers. This approach allows
handling only relatively small speci�cations due to the
exponential growth of the size of satis�ability task.
The summary of the results of the paper is as fol-

lows. For the speed-independent implementation of cor-
rect STG speci�cations (the basic concepts are de�ned in
Section II) we choose a standard RS -implementation and
a standard C-implementation structures, based on a two-
level combinational logic and a latch (either an RS ip-
op or a C-element) for each output signal (Section III).
Section IV presents a constructive procedure which allows
to equivalently transform the initial speci�cation to the
form that meets the monotonous cover requirement [8].
From the latter, a speed-independent standard implemen-
tation can be directly derived. Only such transformations
that preserve the language generated by the speci�cation
are allowed here. These results are further extended in
several ways. Section V describes how the use of nega-
tive feedbacks and complex gates for implementation of
up- and down-excitation functions can help in ensuring
the monotonous cover requirement. In Section VI the
monotonous cover theory is generalized to allow hazard-
free implementation for a wider class of speci�cations,
STGs without Unique Entry Condition and speci�cations
with OR causality, called Change Diagrams. We also
present experimental results (Section VII) to compare our
method with SIS [9] and method from [1].

II. Modelling Circuit Behavior

A. Signal Transition Graphs

A Signal Transition Graph (STG) is a free-choice Petri
net (PN) [13] whose transitions are interpreted as the sig-



nal transitions on the circuit inputs (input transitions) or
gate outputs (output transitions). A signal transition can
be represented by +aj for the j-th transition of signal a
from 0 to 1 or �aj for its j-th transition from 1 to 0. �aj
is used to denote either a \+aj" transition or a \�aj"
transition. The functioning of STG is similar to that of
Petri nets [13]. A transition is enabled if all its predeces-
sor places are marked. When an enabled transition �res,
the marking of each predecessor place is decremented, and
the marking of each successor place is incremented. STG
is graphically represented by a directed graph with tran-
sitions denoted by their names and places by circles, with
places that have only one predecessor and successor tran-
sition are usually omitted. Transitions of input signals
are underlined.

Two binary relations, called precedence and concur-

rency, are de�ned for signal transitions. Let �aj and �bk
be two arbitrary signal transitions. If in every feasible
sequence in the STG every i-th occurrence of �aj enters
before the i-th occurrence of �bk, then �aj precedes �bk,
denoted by �aj ) �bk. If there is a reachable marking
M such that two sequences of signal transitions: �aj ; �bk
and �bk; �aj , can �re from M , then �aj and �bk are said
to be concurrent, denoted �aj k �bk.
An example of STG is shown in Figure 1,a. This STG

has only one free-choice place p1 that is initially marked.
This place is a predecessor one for transitions +a1 and
+b2 and both of them are enabled initially. The �ring
of any transition, say +a1, disables +b2 and enables the
events +c1 and +d1 that are successors for +a1). One of
the �ring sequences that is feasible in this STG is +a1 +
c1 � a1 + d1 + b1 � c � b � d : : :. It is clear that in this
example transition +a1 precedes +b1 and transition +d1
is concurrent to �a1.
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Fig. 1. Example of STG (a) and corresponding TD (b)

De�nition II.1 An STG is correct i� it satis�es the

following four conditions: (1) Each feasible sequence of

signal transitions is switchover correct. (2) The set of

reachable events contains no autoconcurrent transitions.

(3) STG is bounded (the underlying Petri net has to be

bounded) (4) Any free-choice place precedes only input

transitions.

The STG correctness is necessary and su�cient for
implementability of the STG by a speed-independent
circuit[6]. Derivation of logic functions for output signals
is usually solved by a state based model, called Transi-
tion Diagram (TD) that can be easily generated from the
STG.

B. Transition Diagrams

TD is a directed graph where each vertex is in one-
to-one correspondence with the markings reachable from
initial marking M0 of a given STG. A TD vertex (state)
is labeled with a boolean vector s =< s1; : : : ; sn >, rep-
resenting the value of STG signals (n is the number of
signals in STG). Two states s1 and s2 corresponding to
markings M1 and M2 are connected with an edge in TD
(s1 ! s2) ifM2 is reachable fromM1 by the �ring of some
event �a of the STG (edge of TD can be labeled with the

�a name: s1
�a
! s2). Transition �a is called enabled in

state s1. Figure 1,b shows the TD that corresponds to
the STG from Figure 1,a.
The notion of speed-independence can be formalized in

terms of states as follows[12, 15]. A state w of TD is a
conict state if for a pair of signals, a and b, excited in w
the �ring of b disables a. If a is an output signal, then w
is an output conict state; otherwise it is an input conict

state. A TD is semimodular with respect to state u if no
output conict state is reachable from u. A state w is
said to be detonant with respect to output signal a if and
only if there exists a pair of states u and v that directly

follow w (i.e., w
�b
! u;w

�c
! v) such that transitions �b and

�c are concurrent and a is stable in state w and is excited
in states u and v. A TD is distributive with respect to
state u if it is semimodular and no detonant states are
reachable from u.
Output conict states localize the states in TD where

hazards corresponding to output signals can occur. Input
conicts determine the states where the circuit's environ-
ment chooses the control ow. In its initial state 0*0*00
(Figure 1,b), both a and b signals are excited but the �r-
ing of any one of them disables the excitation of the other
(see states 100*0* and 010*0). Thus 0*0*00 is a conict
state and the presented TD is not semimodular. As a and
b signals are the input signals, state 0*0*00 is an input
conict state. There are no other conict states in our
TD, so it is semimodular and can be implemented by a
speed-independent circuit. Distributivity is an important
case of semimodularity. There are no detonant states in
the TD of Figure 1,b and this TD is distributive.
Important structural properties of TDs are given by the

following de�nitions.
An excitation region[15] of signal a in TD is a maximal

connected set of states in which a has the same value and
is excited. A quiescent region[1] of signal a in TD is the



maximal connected set of states in which a has the same
value and is not excited. A state u is a minimal state
for the excitation region ER(�ai) if it has no predecessors
within the region. It is denoted as umin(�ai). An excita-
tion region satis�es the unique entry condition (UEC) if
it has exactly one minimal state. A transition �bj (as well
as its underlying signal b) is called a trigger one for transi-
tion �ai if by �ring �bj we can enter the excitation region
ER(�ai). A trigger transition �bj is non-persistent [3] to
�ai if b is concurrent to �ai; otherwise, it is said to be per-
sistent . A TD is persistent if for each excitation region
ER(�ai) the corresponding transition �ai is persistent to
its trigger signals.
The excitation region corresponding to transition �ai

will be denoted as ER(�ai). We will call an exci-
tation region that corresponds to a \+a"(\�a") tran-
sition an up-excitation region (down-excitation region).
The quiescent region of transition �ai, QR(�ai), is the
set of states between ER(�ai) and ER(�ai+1), where
�ai+1 denotes the next transition of signal a. A con-
stant function region, CFR(�ai), corresponding to tran-
sition �ai is ER(�ai) [ QR(�ai). On Figure 1,b the up-
excitation region ER(+d1) and the following quiescent
region QR(+d1) are shown by dashed lines. The notion
of \unique entry condition" is important because it is a
necesssary condition for the existence of a single cube to
cover an excitation region.
If a trigger transition �bj is non-persistent to �ai, there

has to be a state v in ER(�ai) in which �bj+1 is excited.
This is easily seen in our TD example. We can reach
the minimal state of ER(+d1) (state 100*0* see Figure
1,b) only by �ring trigger transition +a1. However, inside
ER(+d1), transition �a1 is excited, which leads to the
non-persistency of transition +a1 with respect to +d1.

III. Basic Implementation Structures

We consider two implementation structures: one with
Muller C-elements and the other with RS -latches used as
asynchronous memory elements for restoring output sig-
nals. We call them a standard C-implemenetation and a
standard RS -implemenetation, respectively. Both struc-
tures are essentially the same except that the latter is
dual-rail encoded. A structure implementing a function
for one signal is called a signal network .
Our synthesis strategy for deriving a signal network for

each output signal consists of the following steps (for the
case of a standard C-implementation):
(1) for each excitation region ER(�ai) derive a region

function Sa(i) or Ra(i) as a single cube implemented by
AND gate;
(2) combine the region functions corresponding to

the up-excitation regions (down-excitation regions) with
an OR gate to create an up-excitation function Sa
(down-excitation function Ra) for a;
(3) combine the functions Sa and Ra with the C-

element to create the signal network, as depicted in Figure
2,a.
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Fig. 2. Signal network for standard C- (a) and RS- (b)

implementation structures

For implementing a cube of an excitation function with
inverse literals in C-implementation AND-gates with in-
put inversions are needed. When RS ip-ops are used, all
the internal signals of a circuit are already implemented
in dual-rail form that allows to replace all the inverse oc-
currences of each internal signal in the region functions by
the signal from the inverse output of a corresponding RS
ip-op. If all input signals are also presented in dual-rail
form, all the region functions can be implemented sim-
ply by AND-gates (or better NAND-gates) without input
inversions. From the suggested implementation architec-
ture follows that the main synthesis task is to ensure the
correspondence one AND gate ! one excitation region.
This is possible for TDs satisfying the Monotonous Cover
requirement.

De�nition III.1 (Cover cube) A cube c = c1; : : : ; ck
is said to be a cover cube for the excitation region

ER(�ai), denoted as c(�ai), if each literal cj corresponds

to some signal b ordered with ai and cj = b if b has the

value 1 in ER(�ai), otherwise cj = b.

De�nition III.2 (Monotonous cover (MC)) A

cover cube c(�ai) is said to be a Monotonous Cover

(MC) for ER(�ai) if (1) c(�ai) covers all states ER(�ai),
(2) c(�ai) changes at most once in any trace of states in-

side QR(�ai) and (3) c(�ai) can cover only states from

CFR(�ai) and does not cover any reachable state from

other CFR(�aj).

If for every excitation region of output signals in TD
there exist a corresponding monotonous cover cube, then
we will say that TD satis�es the Monotonous Cover (MC)
requirement. To optimize the logic of region function we
can allow the cover cubes for di�erent excitation functions
to be implemented on one AND-gate. To deal with such
kind of optimization, the de�nitions of monotonous cover
can be generalized to cater for a set of transitions [8].



Theorem III.1 [8] If the excitation function Ra and Sa
for each output signal a from the TD is represented as sum

of cubes c(�a1); : : : ; c(�ak), and c(+a1); : : : ; c(+ak), re-
spectively, where 1) c(�ai) corresponds to the monotonous

cover of some excitation regions ER(�ai1), ER(�bi2),
: : :, ER(�dik) and 2) each region ER(�ai) is covered

by exactly one cube, then both standard RS- and C-

implementations are semimodular.

Theorem III.1 provides both necessary and su�cient
conditions for guaranteeing implementation correctness if
two special cases are taken into account:
Degenerative Sum-of-Product . A SOP implementation

becomes degenerative, for example, if a cube c consists of
one literal (b or b) and/or the corresponding excitation
function (e.g., Sa) consists of cube c only. Then we can
remove the AND and OR-gate from its implementation
and connect the output b directly to the corresponding
input of C-element or RS ip-op. In this case it is not
necessary to demand from c to change only once in corre-
sponding quiescent region.
Extending don't cares for the standard

C-implementation. To operate correctly, an RS -ip-op
based on NOR-gates requires the R and S functions to
be disjoint, i.e., the following condition should be met:
R � S � 0. For the standard C-implementation this con-
dition is not necessary, which allows one to expand the
dc-set for the R and S functions. Indeed, if the output a
of a C-element is in the state 1 and its Sa input has also
the value 1, the value on the other input Ra is of no impor-
tance for the output behavior. Therefore function Ra can
be set to 1 before ER(�a), i.e. in the states of QR(+a)
where Sa = 1, which formally violates the monotonous
cover condition.

IV. Reduction to the MC form

If the initial speci�cation does not satisfy the MC re-
quirement, it has to be altered without changing the
input-output behavior of the speci�cation. These trans-
formations preserve the language generated by the speci�-
cation. The task thus stated is, to reduce the speci�cation
to the MC-form by adding extra signals in such a way that
these signals will be internal for the implementation. For
the outer observer, the implementation will show the same
behavior as the initial speci�cation, except, probably, for
timing/performance characteristics.
Two questions however arise here:
1. Is such a reduction always possible?
2. What are the methods of doing it?
For a correct STG the answer to the �rst question is

positive. This fact will be proved in a constructive way,
i.e. by presenting an e�cient technique that allows the
reducing of any STG to its MC form, so the solution for
the second problem will be shown altogether.
In [8] it was shown that the violation of Complete State

Coding requirement [3] is a particular case of Monotonous

Cover violation. However, the problem of ensuring the
Complete State Coding is well investigated and has e�-
cient methods for its solving [6, 14, 10]. Therefore, further
for simplicity, we will work with the speci�cation that al-
ready satis�es the CSC property assuming that the nec-
essary transformation is done in advance. Similar reasons
apply to the Unique Entry Condition. We shall thus re-
fer to STGs that are safe1 and satisfy both the CSC and
UEC conditions as strongly correct STGs.
We will reduce STGs to MC form in two steps:
1. STG reduction to the persistent form.
2. Reduction of the persistent STG to the MC form.

A. Eliminating non-persistency

The idea of transformation ensuring the persistency is
illustrated in Figure 3 (where indirect precedence rela-
tions are shown by dotted lines). It is quite straightfor-
ward: if the trigger transition �bj is non-persistent to �ai,
to eliminate this non-persistency we can introduce the
transition of an additional signal x (e.g., +x), between
�bj and �ai, in such a way that the opposite transition of
signal x (�x) will be ordered with �ai and thus +x will
become persistent to �ai. Of course, such a transforma-
tion can be done in di�erent ways { transition +x must
be inserted between �bj and �ai but for the opposite tran-
sition we have more freedom. Finding the right place to
insert a new signal transition can strongly a�ect the size
of logic and create opportunities for logic optimization.
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Fig. 3. Reduction of STG to a persistent form

Although, in general method of Figure 3 not always pos-
sible the following theorem gives the upper bound on the
number of signals that have to be inserted to remove non-
persistency for a given pair of transitions in STGs with
choices. Moreover, it shows where these signals should
be inserted. In many practical cases, the required trans-
formations can be simpli�ed in the way that was shown
earlier.

Theorem IV.1 Assume that there is non-persistency be-

tween a pair of transitions �bj and �ai in a safe correct

STG. If �bj does not violate Unique State Coding require-

ment, then non-persistency between �bj and �ai can be

eliminated by introducing two aditional signals and no

new non-persistencies arise.

1A PN is called safe if for every reachable marking each place

can have at most one token.



B. Reduction of persistent STG to MC-form
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We can now consider the reduction of STGs to the MC
form as applied only for persistent strongly correct STGs.
First, we illustrate the method by example of the speci�-
cation shown in Figure 4,a, with input signal c and output
signals a; b; d. In this STG, all output signals are persis-
tent. The Karnaugh map corresponding to the logic func-
tion of signal a is shown in Figure 4,c. Excitation region
ER(+a) consists of three states. The only signal that is
ordered with +a is b, and thus cube b is chosen to cover
ER(+a). However, this cover is neither monotonous nor
even correct because cube b also covers two states from
the o�-set of the function for a. To make this cover cor-
rect, we need to split cube b into two cubes bd and c (term
takeover phenomenon [15]) but this violates the MC re-
quirement because two cubes will now be turned on in
state 0110 (underlined in Figure 4) inside one excitation
region. Therefore, function Sa does not meet the MC re-
quirement and is thus hazardous when implemented by
simple gates. For all other excitation functions the MC
requirement is satis�ed and the logic for their implemen-
tation is hazard-free. The set of excitation functions is:
Rb = acd+adc; Sb = d+ac; Rd = ab; Sd = c; Ra =

bcd; Sa = bd+ c (1)
To reduce the cover for ER(+a) to the MC-form, we

need to distinguish the two situations: when signal b is
equal to 1 after �ring +b1 (a has to be equal to 1); and b is
still in 1 (after +b2) but a has to become 0 after �a. This
can be done, e.g., by adding signal x that will be high in
ER(+a) and will become low before �a (see Figure 4,b).
Such a transformation will result in the following logic:
b = acd + x; Rd = ab; Sd = c; Ra = cbx; Sa =

bx; Rx = ad; Sx = d (2)
The area estimate of the logic corresponding to stan-

dard C-implementation for (1) and (2) in the SIS library
shows that the hazard-free implementation is even smaller
than the original hazardous one: 464 area units for (1)
and 374 for (2). The area of hazard-free implemenetation

can be further reduced down to 344 units by extending
don't cares for signal x. This allows to implement signal
x simply by a C-element with an inverted output. The
result strongly depends on the place where the transitions
of signal x are inserted. In our case, the logic is reduced
because after adding x signal b can be implemented by a
hazard-free combinational circuit without a latch. This is
an issue of the logic optimization strategy.
The following statement, similar to Theorem IV.1,

holds for the reduction to MC form.

Theorem IV.2 Let, in a persistent strongly correct STG

G, the MC-requirement be violated for some excitation

region ER(�ai) that corresponds to transition �ai. Then,
by inserting new signals, a persistent strongly correct STG

G0 equivalent to G can be derived, where this violation is

eliminated and no new violations of the MC-requirement

arise.

V. Extending implementation structures

In this section, we show that even minor re�nements of
implementation structure may signi�cantly improve the
e�ciency of the implementation.

A. Inverse feedback

All states of the excitation region ER(+ai) (or
ER(�ai)) belong to the on-set of the corresponding ex-
citation function Sa (or Ra). The states of the quies-
cent region QR(+ai) (or QR(�ai)) belong to the dc-set

of the corresponding excitation function. According to
MC-requirement, additional constraints exist for the use
of the states from dc-set as the cover cube can change
only once inside a quiescent region. One way to obtain a
monotonous cover is to set the excitation function inside
the excitation region and to reset it immediately after it.
Note that, in all states of the excitation region ER(�ai),
the value of signal a is inverse to its value in all states of
the following quiescent region. For example, in the states
of ER(+ai) signal a has value a = 0 and in all states of
the quiescent region QR(+ai), a = 1. Signal a has a con-
stant value in ER(�a) and so can be added to the cover
cube. This will restrict the cover only by the states from
the excitation region. In such a case, the requirement for
the cover cube to change only once inside the quiescent
region is ful�lled automatically.
The use of the self-dependent covers of excitation

regions allows softening the MC-requirements and refor-
mulating their De�nition III.2 in the following way: A

cover cube a0c(�ai), where a0 = a if �ai = �ai and a0 = a

if �ai = +ai, is a monotonous cover for ER(�ai) if (1)

c(�ai) covers all states of ER(�ai) and (2) c(�ai) can

cover only states from CFR(�ai) and does not cover any

reachable state from other CFR(�aj).
At the implementation level, self-dependent cover in-

volves an additional inverse feedback wire from the latch



output to its corresponding signal network. Note that
for a C-implementation this feedback does not require an
additional inverter.

B. Poly-term covers

Let us extend the basis of standard gates for the im-
plementation of SOP structure to complex gates (AND-
OR). Since the basis is more powerful, the requirements
for hazard-free implementation can be relaxed:

� The persistency requirement is not necessary. In the
STG shown in Figure 1,a the excitation function of
the non-persistent signal c can be implemented with-
out hazards by a complex gate as Sc = a + bd. No
additional signals are needed.

� The Unique Entry Condition is not necessary. Sev-
eral cover cubes corresponding to di�erent minimal
states of one excitation region can be combined to-
gether by one AND-OR gate.

However, the complex gate implementation has its own
correctness criteria. It was shown in [7] that to ensure the
hazard-free behavior of complex gate inside the excitation
region it is necessary to satisfy the so-called internal tran-

sition condition, i.e. any transition within one excitation
region is internal for at least one of the cover cubes of com-
plex gate. The following de�nition summarizes the formal
properties of the hazard-free implementation in the basis
of complex gates.

De�nition V.1 (Poly-term monotonous cover)

The union of cubes C = fc1(�ai) + : : : + cr(�ai)g is a

poly-term monotonous cover for ER(�ai) if: (1) C

covers all states in ER(�ai), (2) The logic function cor-

responding to C changes at most once in any trace of

states inside QR(�ai), (3) C can cover only states from

CFR(�ai) and does not cover any reachable state from

other CFR(�aj), (4) Any signal transition u
�b
�! v in-

side ER(�ai) is an internal transition for at least one of

the cubes from C, i.e., both u and v are covered by some

cj 2 C.

VI. Extending class of specifications

In this section, we expand the method of hazard-free
synthesis to STGs without Unique Entry Condition and
to speci�cations with OR-causality between signal transi-
tions.

A. Revising the Unique Entry Condition

Up to now, we required the excitation regions of STG to
satisfy the UEC requirement, i.e., to have only one min-
imal state. However this requirement is not satis�ed for
every correct STG. In Figure 5,a transition +c is triggered

either by +a or by +b and the corresponding excitation
region ER(+c) (Figure 5,b) contains two minimal states.
For implementing such STG we need to soften the UEC
requirement.
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Fig. 5. STG (a) and TD (b) with violation of unique entry

condition

De�nition VI.1 (Generalized UEC) An

excitation region satis�es the generalized unique en-

try condition if each of its minimal states has the same

set of trigger transitions.

An excitation region satisfying the UEC condition with
several minimal states, still can be covered with one cover
cube. So the task of equivalent transformation is to reduce
the original STG to such \good" cases. For our example of
Figure 5, one can add a new signal, e.g. e, which triggers
+c in both alternative branches of the process (see Figure
5,c). This technique works generally, too [7]: Any correct

STG can be reduced to the MC form and thus can have a

hazard-free implementation in the basis of simple gates.

B. Change Diagrams for modeling processes with OR-

causality

The STGs considered so far have only one type of causal
relation between signal transitions. It is called AND-type
as any transition can occur only if all of its direct prede-
cessors have occurred. However, for the speci�cation of
processes in semimodular logic circuits, OR-causal rela-
tions between signal transitions are also necessary [6, 16].
Any circuit with an OR-gate (or, dually, AND-gate) has
an OR-causal relation, if concurrent rising (dually, falling)
transitions can occur at the inputs of the gate. In terms of
TD the OR-causality corresponds to the notion of a deto-
nant state. In [6] it was proved that the TD derived from a

correct STG is always distributive. From this theorem fol-
lows that the semimodular but not distributive processes
cannot be speci�ed by STG. The latter is the reason why
most of the synthesis methods impose the restriction of
distributivity on the original processes [4, 1, 9]. To bridge
this gap we will extend the STG model to the Change Di-
agram model with the two types of causal relations and



will modify the methods of implementation to deal with
the entire class of semimodular processes.
Unlike STGs, Change Diagrams (CDs) have two types

of transitions: (1) the AND-transition that occurs only af-
ter all its direct predecessors occur; (2) the OR-transition
that occurs after at least one of its direct predecessors oc-
cur.
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Fig. 6. Process with OR-causality

De�nition VI.2 CD G is a tuple hN ; A; �; �i, where N
is a free-choice net, A is the set of signal changes, � :
T ! A is the labeling function and � : T ! fAND;ORg
is the function that de�nes the type of transition.

An example of CD is shown in Figure 6,a. The places
that have only one predecessor and successor are omit-
ted. The only one OR-transition in CD Figure 6,a is +c
(denoted by dashed input arcs). It has two OR-causes
+a and +b and in the corresponding TD Figure 6,b the
initial state 0*0*00 is detonant and ER(+c) has two min-
imal states: 10*0*0 and 0*10*0. Thus, CDs have more
descriptive power than free-choice STGs and as was shown
in [6] the TD derived from a correct CD is semimodular.
The idea of a simple gate implementation for pro-

cesses with OR-causality is straightforward. If each OR-
transition c in CD has only two triggering transitions
a and b and the detonant excitation region ER(c) can
be covered by the sum of two cubes a and b (OR-
monotonous condition), then this excitation region can
be implemented in the signal network by simple OR-gate.
An e�cient technique for ensuring the OR-monotonous
condition in any CD by adding extra signals is presented
in [7]. Therefore, any CD allows the hazard-free imple-

mentation under the generalized C- or RS-architectures.

VII. Experimental results

The proposed approach has been tested on a set of
benchmarks known from [9]. The CAD tool \FORCAGE"
[6] was used to derive the excitation functions and check
the implementations with respect to their freedom from
hazards.
We will give the comparison of our solutions to the

speed-independent implementations obtained by [1] and

TABLE I

Experimental results

Circuit trans:= SIS Stanford MC-opt.

states Area/Del Area/Del Area/Del

chu133 14/24 352/5.2 240/4.8 216/4.8

chu150 14/26 232/7.0 240/4.8 232/4.8

chu172 13/12 104/1.6 152/3.6 112/2.4

converta 14/18 432/6.8 520/6.0 320/4.8

ebergen 14/18 280/5.6 344/4.8 280/4.8

full 8/16 224/5.2 112/2.4 112/2.4

hazard 10/12 296/6.6 256/4.8 224/3.6

hybridf 16/80 274/6.6 152/2.4 152/2.4

nowick 16/20 264/6.6 504/6.0 376/3.6

pe-send-ifc 53/117 1232/12.2 2072/7.2 1480/4.8

qr42 14/18 280/5.6 344/4.8 280/4.8

vbe10b 22/256 1008/10.0 800/6.0 640/4.8

vbe5b 12/24 272/4.2 264/4.8 192/3.6

vbe5c 12/24 224/5.2 264/4.8 200/3.6

wrdatab 24/216 824/7.0 840/4.8 744/4.8

var1 8/12 184/3.0 256/5.0 240/3.8

xyz 6/8 120/3.2 200/4.8 160/3.6

totals 6602/102 7560/82 5960/67.40

to the hazard-free implementations under bounded gate
delays[9] using SIS library of simple gates. The results
are shown in Table I. The column labeled \Trans./states"
shows the number of signal transitions in the initial STG
speci�cation and the number of states in the correspond-
ing transition diagram. Columns labeled \Area" give the
total area (excluding routing) of each circuit, using a
\generic" standard cell library from SIS. Columns labeled
\Del" give the maximum delay inside one signal network
based on SIS conventions for delay estimate. Although
this method does not allow one to observe the actual cy-
cle time of the circuit, we had to choose it in order to
be compatible with the delay estimate for Stanford's and
SIS methods. Columns labeled \SIS" and \Stanford" are
directly borrowed from [1]. The numbers for SIS were
obtained in [1] under the assumption of the �xed delay
model (when the lower and upper bounds for gate and
wire delays coincide) with an optimization script optimiz-
ing for area. The last column shows the best (with respect
to area) between standard C- and RS-implementations
based on monotonous cover technique. We summarize
the experimental results in Table II.

These results show that, in comparison with SIS im-
plementation, our area optimized standard implementa-
tion on the average reduces the area by about 10% and
increases the speed of the circuit by about 34%. SIS
needs to pad extra delay lines to ensure hazard-freedom.
These delays represent a signi�cant fraction of the over-
all delay through the circuit. On the opposite, speed-
independent standard implemenetations provide hazard-



TABLE II

Comparison with SIS tool and Stanford's tool

Parameter SIS Stanford MC-opt.
Area 1 1.15 0.90
Delay 1 0.80 0.66

freedom by construction. This is the reason for our speed
advantage in comparison with SIS. In comparison with
Stanford's method, our optimized implementation on the
average reduces the area by about 21% and increases the
speed of the circuit by about 18%.
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