
A Hardware-Software Co-simulator for Embedded System Design and Debugging

A. Ghosh, M. Bershteyn, R. Casley, C. Chien, A. Jain, M. Lipsie, D. Tarrodaychik, O. Yamamoto

Mitsubishi Electric Research Laboratories, Inc.

Sunnyvale, CA 94086

Abstract
One of the interesting problems in hardware-software co-design
is that of debugging embedded software in conjunction with
hardware. Currently, most software designers wait until a work-
ing hardware prototype is available before debugging software.
Bugs discovered in hardware during the software debugging
phase require re-design and re-fabrication, thereby not only
delaying the project but also increasing cost. It also puts software
debugging on hold until a new hardware prototype is available.

In this paper we describe a hardware-software co-simulator that
can be used in the design, debugging and verification of embed-
ded systems. This tool contains simulators for different parts of
the system and a backplane which is used to integrate the simula-
tors. This enables us to simulate hardware, software and their
interaction efficiently. We also address the problem of simulation
speed. Currently, the more accurate (in terms of timing) the mod-
els used, the longer it takes to simulate a system. Our main con-
tribution is a set of techniques to speed up simulation of
processors and peripherals without significant loss in timing
accuracy.

Finally, we describe applications used to test the co-simulator
and our experience in using it.

1 INTRODUCTION

Design of embedded systems containing both hardware and
software requires solving several unique and difficult prob-
lems [4] [5] [12]. One of the interesting problems is that of
debugging embedded software in conjunction with hardware.
The traditional co-design process, where the software is
debugged after hardware is fabricated, produces large design
delays due to late discovery of errors in the hardware and in
the interface between hardware and software. Integration on a
chip will make this problem worse because currently used
tools like In-Circuit Emulators (ICE) cannot be used and sig-
nals on a chip cannot be easily observed. There is an obvious
need for a change in the co-design methodology whereby soft-
ware and hardware can be jointly debugged earlier in the
design cycle. However, this change in methodology can only
happen when appropriate design tools are available.

There are two approaches to debugging hardware and soft-
ware without building the actual hardware. The first one is
based on emulation of hardware using, for example, Field Pro-
grammable Gate Arrays (FPGA) and using a separate board
for the processor and memory. A designer can generate a pro-
totype relatively quickly and debug software and interfaces on
the prototype. After bugs are detected, the entire system can
be recompiled within a relatively short time. In most cases,
hardware emulators run only an order of magnitude slower

than the actual system, allowing the designer to test the system
with a large number of test cases. However, due to its high
cost, this technique is economically feasible only in certain
cases. It also cannot be used to model timing constraints accu-
rately and in many cases designs have to be modified to suit
emulation. Moreover, re-compiling hardware takes more time
than compiling software or a HDL (Hardware Description
Language) model for simulation. Finally, it is not always pos-
sible to observe the internal state of the circuit, both in the
FPGA and in the processor, making debugging complicated
and slow.

A complementary approach is to build software models for all
the components of the system and use simulation to analyze
behavior. There are many advantages of this approach. First,
software can be combined with behavioral-level hardware
descriptions to detect bugs as early as possible in the design
phase. Hardware, software and interface routines can be
designed and debugged in parallel. Second, timing constraints
can be accurately modeled. Third, re-compilation of either
hardware or software is quick. Detailed debugging, where
internal states of all components can be accessed and altered at
all time points can be easily supported. Finally, this approach
is not as expensive as emulation.

Simulators have been mostly used for the design of hardware
and there are few tools for co-simulation. In this paper, we
describe a hardware-software co-simulator that can be used in
the design, debugging and verification of embedded systems.
This tool contains a simulation backplane which can be used
to integrate processor, hardware (HDL) and dedicated simula-
tors for peripherals, forming a co-simulator capable of effi-
ciently simulating hardware, software and their interaction.
Each simulator implements debugging functions like setting
breakpoints, examining and altering internal states, single
stepping,etc. In order to feed stimulus to the system and to
observe its response a set of virtual instruments have been cre-
ated. The co-simulator and the virtual instruments can be used
to create a virtual laboratory that will provide users with a
platform for rapid virtual prototyping. Performance metrics
(like clock cycles needed to execute software) can be easily
evaluated, allowing the user to explore different algorithms,
hardware and software implementations and hardware-soft-
ware trade-offs.

The main drawback of simulation is its speed. In many cases,
simulation runs orders of magnitude slower than the actual
system. Simulation time depends on the (timing) accuracy of
the models, with time increasing with increased accuracy.

Therefore, reducing simulation time without sacrificing timing
accuracy becomes a very important problem. Our main contri-
bution is a set of techniques to speed up simulation of proces-
sors and peripherals without significant loss in timing
accuracy. Processor simulation speed is improved by accu-
rately (in terms of timing) simulating only those cycles where
there is interaction with peripherals and by caching results of
instruction decoding. Suppression of periodic signals and
other techniques to be described speed up simulation of
peripherals. Simulation overhead is kept low by managing
time more efficiently.

We expect this tool to be used at any point after the initial
architecture is determined. Software designers may use behav-
ioral hardware models for initial debugging, evaluation and
exploration of algorithms and implementations. System archi-
tects may use the tool to determine hardware-software trade-
offs. Hardware designers can use prototype software to evalu-
ate, test and debug their hardware. Finally, when hardware and
software are ready, designers can work on testing and debug-
ging the entire system.

The rest of this paper is organized as follows. Previous work is
described in Section 2 followed by a description of the co-
simulation framework in Section 3. Simulator coordination is
the topic of Section 4. Simulation of processor is described in
Section 5 followed by simulation of custom hardware in Sec-
tion 6. Simulation of standard peripherals is described in Sec-
tion 7. Interface to other simulators is described in Section 8.
Example applications used to test the co-simulator are
described in Section 9. Conclusions and directions for future
work are presented in Section 10.

2 PREVIOUS WORK

In [7], a debugging tool for embedded system software is pre-
sented. The software is cross-compiled for the embedded pro-
cessor and then executed on a model of the system. The
system is modeled completely in hardware and simulated
using a hardware simulator. During simulation, which may
take several days, all interaction between the processor model
and the surrounding hardware is logged. After simulation, the
designer switches to a software debugging environment on a
host workstation where the code is compiled for the host and
re-linked to pseudo hardware drivers that interact with the
logged information. The primary advantage of this approach is
that during debugging, software can run at the host computer
speed. However, when a bug is fixed, the entire system may
have to be re-simulated, thereby increasing the debugging
time. Further, during debugging, there is no way of interac-
tively affecting system behavior by feeding the system a dif-
ferent set of inputs. In our opinion, such a debugger has
limited usefulness.

An interesting approach presented in [1] is based on distrib-
uted communicating processes modeling hardware and soft-
ware. Software is run on a host workstation and all

interactions with hardware are replaced by remote procedure
calls to a hardware simulator process. The main drawback of
this approach is that there is no notion of timing accuracy as
neither the software execution speed nor the interface between
hardware and software are accurately modeled.

The Poseidon co-simulator is described in [4]. An event
driven simulator is used to co-ordinate the execution of a hard-
ware and a software simulator. The processor simulator is tied
closely to the DLX microprocessor [4] model. There is no spe-
cial handling of standard peripherals and little information
regarding the debugging environment, simulation speed and
accuracy is available.

In [6] the use of Ptolemy [2] in hardware-software co-design
for a digital signal processing (DSP) application is described.
The emphasis in [6] is on the use of the capabilities of
Ptolemy for heterogeneous simulation and code synthesis for
single and multiple processors. After code generation and
hardware synthesis, co-simulation is performed using the
hardware simulatorThor [13] and a simulator for the digital
signal processor DSP56000. It is our belief that though what is
described here in terms of the backplane and what is provided
by Ptolemy may be similar in principal, Ptolemy does not
address the efficiency issues related to hardware-software co-
simulation, especially the simulation of processors and periph-
erals. From [6], few details are available regarding speed of
simulation, accuracy, the way standard peripherals are handled
and about the debugging environment.

The use of virtual instruments was introduced in [3] in the
context of simulation of hardware systems. Currently, the tool
described in [3] does not have any capabilities for hardware-
software co-simulation. Use of a simulation backplane in
mixed mode simulation is described in [10] and similar back-
planes for the integration of hardware simulators are commer-
cially available.

3 CO-SIMULATION FRAMEWORK

In designing the co-simulator the main goals were:

• to provide fast and timing-accurate simulation;

• to provide an extensible and flexible simulator-indepen-
dent framework where new simulators can be easily inte-
grated;

• to provide adequate debugging capability for both hard-
ware and software;

• to provide virtual prototyping capability through the use of
virtual instruments;

• to provide means for evaluation of performance metrics.

The architecture of the co-simulator is shown in Figure 1. We
believe that different parts of an embedded system will be
simulated using different simulators and therefore we need to
allow for heterogeneity in the simulation environment. To

allow different simulators to interact with one another, a simu-
lation backplane is used. This backplane, also called the simu-
lation manager, is the main component of the tool. It manages
simulation and debugging as well as communication with vir-
tual instruments. A well-designed Graphical User Interface
(GUI) makes the use of the co-simulator easy and natural for
both software and hardware debugging. At the time of writing,
only one processor simulator for an M16 microprocessor [8]
and several dedicated simulators for standard peripherals have
been integrated. A commercial simulator, Verilog-XL [14], is
used for the simulation of hardware described in Verilog HDL.

The system to be simulated can be broadly divided into elec-
trical and mechanical components (or even chemical compo-
nents). The electrical components could be either hardware or
software. The hardware could further be digital or analog. For
example, to simulate a motor control system, we need to simu-
late the controller (electrical) as well as the motor (mechani-
cal). Simulators for standard components are provided. It is
our assumption that for special components like motors,
engines,etc., the user will be supplying their own models and/
or simulators.

The input to the co-simulator is a description of the system to
be simulated. It consists of the following items: a list of blocks
and their simulators; a list of nets connecting the blocks; a list
of virtual instruments and their connections; and a list of
source/object files used by the software debugger and source/
library files used by the hardware simulator. The simulation
manager reads the system description, allocates necessary data
structures and initializes all the simulators that would be
needed to simulate the system. Once the system is loaded, the
user may interact with any simulator, setting breakpoints,
examining registers,etc. During simulation, virtual instru-

ments are used for human interaction. When a breakpoint in
any simulator is reached, simulation is stopped and the user is
prompted for commands. Whenever a prompt is displayed, the
user can issue commands for any simulator. Batch mode simu-
lation can also be selected when no interactive input is
required.

The co-simulator is implemented as a multithreaded program
to allow easy integration of stand alone simulators. The simu-
lation manager and some dedicated simulators constitute the
main thread. Verilog-XL and the simulator for M16 are sepa-
rate threads.

3.1 SIMULATION MANAGER

The simulation manager, hereafter SM, is the backbone of the
co-simulator. It performs the following important functions.

• It manages the simulation and debugging session. All user
commands are relayed by the GUI to the SM. It under-
stands commands for loading the system to be simulated,
for running simulation as well as for debugging (e.g. set-
ting breakpoints at certain times). The SM also directs
commands to simulators.

• It manages communication between the co-simulator and
virtual instruments.

• Simulation of a system involves coordinating the activities
of simulators, each of which is responsible for simulating a
part of the system. The SM controls when a simulator is
invoked, what events are passed to it,etc. This is the most
important function of the SM and is discussed in Section 4.

3.2 GRAPHICAL USER INTERFACE

The graphical user interface, built usingTcl/Tk [9], allows the

Simulation Manager
(Backplane)

update_nets()
schedule_simulator()
unschedule_simulator()
report_internal_time()
current_time()
.
.
.

ICU Simulator
DMA Simulator

Clock Simulator

CPU Simulator

Memory Simulator

Parallel Port

Timer Simulator

Simulator

UART Simulator

Verilog-XL

configure()
initialize()
run_until_time()
reset()
end()
mindelay()
maxdelay()

Virtual Instruments
(Actors)

G.U.I

FIGURE 1. Architecture of the co-simulator

user to interact with the SM and the simulators easily and
effectively. A snapshot of this interface is shown in Figure 2.
The GUI consists of a source display window where source
(for both software and hardware) and assembly-level code is
displayed. There is also a command window for entering com-
mands and a configurable button panel for frequently used
commands. The source display window is used to display
breakpoints, the current line where execution has stopped, and
other relevant information found in most software debuggers.
Additional windows are used to display variables, waveforms,
etc.

3.3 VIRTUAL INSTRUMENTS

Virtual instruments, also calledactors, are used primarily for
human interaction with the system being simulated. They are
used to provide stimulus as well as to observe response. As
such they model parts of the environment with which the sys-
tem interacts and enables the user to use the co-simulator as a
virtual laboratory. They are implemented usingTcl/Tk [9].
Each virtual instrument is a separate process that communi-
cates only with the SM using Unix sockets. The SM manages
the socket traffic as well as the starting and termination of
each actor. The virtual instruments that have been imple-
mented include a variable voltage/current source, a switch, a
simple LED probe, a meter, an oscilloscope, a video monitor,
an electric motor and an automobile engine. The voltage
source, electric motor and oscilloscope actors are used for a

virtual prototype of a 3-phase motor control system shown in
Figure 2. The voltage source actor (FREQ) has a slider that
can be pulled to change the value of the voltage generated.
Waveforms are viewed on the oscilloscope actor (PHASE).
The motor actor (VELOCITY) shows the current motor r.p.m.
Using virtual instruments, users can get both a quantitative
measure as well as a qualitative feel for the system. In the
example of Figure 2, the user can see the actual waveforms
that would be generated by the system without building hard-
ware and using an oscilloscope.

3.4 Simulators

It is possible to represent an entire system, including proces-
sor, memory, peripherals and custom circuitry in a HDL like
Verilog and simulate it using a simulator like Verilog-XL.
Using the right models, simulation can be accurate but will be
very slow [7]. Our approach to speed up simulation is to create
dedicated simulators for standard components like processors
and peripherals and integrate them into a co-simulator using
the simulation backplane.

The simulator for M16 is also a software debugger with
sophisticated debugging capabilities. It allows both source-
level as well as assembly-level debugging. It can also evaluate
performance metrics like the number of clock cycles needed to
execute a piece of code. Verilog-XL is a hardware debugger
with capabilities that include display of waveforms (as shown

FIGURE 2. The graphical user interface, virtual instruments, and waveform display window

in the WAVES window in Figure 2), monitoring of signal val-
ues, determination of set-up and hold time violations at
latches,etc. Simulators for peripherals allow very primitive
debugging like examining and setting internal registers. The
debugging capabilities of simulators combined with those of
the SM provide a powerful debugging and verification envi-
ronment for embedded systems. It should be emphasized that
a natural debugging environment is provided for both software
and hardware, so neither the software nor the hardware
designer is at a disadvantage.

4 SIMULATOR COORDINATION

The interface between the SM and a simulator consists of a set
of functions, some implemented in the simulator and some in
the SM (shown in Figure 1). A simulator simulates one or
more blocks of the same type, with each block having a set of
input and output pins. From a simulator’s point of view, it is
given a set of events at a particular time, which indicate a
change in signal value on the input pins, and asked to simulate
until some time in the future. During simulation, if the signal
value at one of the output pins of a block changes, the simula-
tor reports to the SM the new value and the time this event
happened and stops simulating further. The SM sees the sys-
tem as a set of blocks connected by nets. Whenever there is an
event on a net, simulators for the blocks affected by the event
are invoked. Simulator coordination includes determining
which simulators to invoke, what events to pass to them and
the simulation time when a simulator should stop simulating
and return control to the SM. Simulator coordination overhead
can be reduced by decreasing the number of events, allowing
simulators to run uninterrupted for as long as possible, and
managing time efficiently.

To manage time efficiently, the SM counts time in units of a
fixed time called thesimulation period and also bounds the
size of the timing wheel. This has several important conse-
quences. Since events can be produced only at certain times
and a limited time into the future, the number of unique times
to manage is smaller. It allows us to statically allocate the tim-
ing wheel before simulation begins. This reduces the run-time
overhead in managing time and the timing wheel. Discretiza-
tion of time allows us to take advantage of the cycle accuracy
of processor and peripheral simulators which produce events
only at discrete times. However, when timing accurate simula-
tors (like circuit simulators) are used, events can be produced
at any time. The interface routines round event times to the
nearest discrete time value, thereby introducing errors in sim-
ulation. A small enoughsimulation period can reduce this
error, but may offset the benefit obtained from using discrete
time.

Simulator coordination and synchronization can be under-
stood by following a co-simulation session. After the system
description is read, the SM determines the simulators that
need to be run and calls theconfigure() routine to let the sim-
ulators know that their services would be needed. Subse-

quently, for each block, the SM calls theinitialize() routine
with a pointer to the block, the pins of the block and the nets
connected to the pins. This allows simulators to initialize their
internal data structures and their interface routines. After this,
the SM allocates and initializes the timing wheel. Each simu-
lator is asked to report the minimum and maximum delay of
each block it is going to simulate through themindelay() and
maxdelay() functions. The minimum and maximum delays
are the minimum and maximum time required, respectively,
for any event at an input to propagate to an output. Simulators
that can ascertain the value of minimum and maximum delay
may report it and the rest (like a circuit simulator) report a
negative value, indicating unknown delays. Thesimulation
period is decided on the basis of the timing accuracy required
for simulation and is usually chosen to be the time between
successive clock transitions of the processor/bus clock. The
maximum of the maximum delays is used to guide the selec-
tion of the size of the timing wheel. This size is advertized to
all simulators which can then use it during self-scheduling (to
be described shortly).

During simulation, the SM first determines events at a particu-
lar time and the simulators that need to be run. If there is only
one simulator to run, the SM determines the time for the next
event on the timing wheel (if there is no event on the timing
wheel, this time is considered to be infinity). It then calls the
run_until_time() function in the simulator with an event list
and a variablestop time set to the time of the next event on the
wheel. If there are more than one simulator to run, the SM
determines the minimum of the minimum delays of the simu-
lators. This minimum delay is added to the current time to
determine thestop time. This ensures that no simulator simu-
lates beyond a time where an external event for it may be pro-
duced, thereby obviating the need to roll back simulation time.
This is called running in lock step.

Each simulator, duringrun_until_time() transfers all external
events to its internal event queue and simulates until thestop
time. If an event on an external net is produced at or before the
stop time is reached, the simulator suspends itself and reports
the event to the SM by callingupdate_nets(). It reports the
time at which it has stopped by calling
report_internal_time() and then passes control back to the
SM. When a simulator stops, if there are events to be pro-
cessed in its internal queue, the simulator requests that it be
called again at a specific time in the future (as determined by
the time of the earliest internal event) by calling
schedule_simulator(). This procedure, called self-scheduling
allows simulators to stop before exhausting all internal events.
A simulator can schedule itself at any (discrete) time in the
future provided it does not exceed the current time by the
advertized maximum size of the timing wheel. Simulators that
schedule themselves in the future but are invoked before that
time by events at their inputs can remove their self-scheduling
events by callingunschedule_simulator(). Note that when a
simulator returns control to the SM, it is required to save its
internal state so that simulation can be continued from where

it was stopped. For simulators that run as separate threads,
state is automatically saved on a thread switch. Other simula-
tors have to implement this feature explicitly.

Apart from coordinating simulators, the SM controls the
trade-off between simulation accuracy and speed. As will be
explained in Section 5, the simulator for M16 has the capabil-
ity to choose the appropriate level of speed and accuracy when
the processor is trying to read from or write to a certain
address. When the address is in the range of memory, no sig-
nals are produced on the bus, but when the address is outside
the range, phase-accurate bus signals are produced. This is
adequate for the simulation of most peripherals. However,
there are certain peripherals, like a DMA controller, that ‘lis-
ten’ to the bus in order to detect vacant bus cycles and perform
cycle-stealing DMA. For such situations, even when the pro-
cessor is accessing memory, signals on the bus have to be pro-
duced. Therefore, each simulator like the DMA is marked as a
bus listener. Whenever a bus listener has to be run in lock step
with a processor simulator, the SM sets a special flag indicat-
ing to the processor simulator that bus signals should be pro-
duced. This ensures correct simulation of systems with DMA
controllers and other bus listeners.

Another important function of the SM is the mapping of inter-
nal values of simulators to a uniform representation and back
to allow mixed-level (e.g. gate and transistor) and mixed-
mode (e.g.analog and digital) simulation. It should be noted
that standard templates are provided for the interface functions
that make the job of integrating simulators easier.

5 PROCESSOR SIMULATOR

Processor simulators can be divided into three categories
depending on accuracy and speed of simulation.

• Instruction Set Simulator (ISS) simulates the instruction
set and values in memory and registers accurately. Signals
at the pins of the processor can be produced only at the
boundaries of instructions. It does not model superscalar
ordering effects, delayed branch, pipeline stalls, wait
states, and cache access. Therefore accurate clock cycle
count for code execution cannot be determined. However,
it is the fastest processor simulator and can be used for
pure software simulation and debugging.

• Cycle-Accurate Simulator (CAS) can simulate the instruc-
tion set, the pipeline and the local cache of a processor and
can provide the signals at the pins of the CPU at each clock
transition and also provide accurate clock cycle counts.
Superscalar ordering effects, pipeline stalls and wait states
can be simulated accurately. However, it can be more than
an order of magnitude slower than an instruction set simu-
lator. In addition to software simulation, it can be used to
model interaction with hardware components, though there
might be inaccuracies in timing. A variation of a cycle-
accurate simulator is a phase-accurate simulator (PAS)
where the behavior of the processor in each clock phase is

accurately simulated.

• Timing Accurate Simulator (TAS) can simulate the com-
plete functionality of a processor with full timing accuracy.
Because each pin can change at potentially unique times
and the detailed timing behavior of the CPU together with
the instruction set and the pipeline has to be simulated, this
is the slowest of all simulators.

For M16, which is a scalar processor without a local cache,
assuming that all memory accesses take the same amount of
time, an ISS can be used to simulate the processor with little
loss in accuracy. This is also based on the assumption that the
interaction between processor and memory does not have to
be debugged. However, an ISS cannot be used to simulate
interaction with peripherals.

The choice between CAS/PAS or TAS depends on the level of
accuracy required. Since a CAS/PAS produces signals at pins
only at discrete times, the internal model for a CAS/PAS can
be simpler and can run faster. The extra accuracy gained by
using a TAS is that the signals can be produced in between
clock cycles at the exact time they would be produced by the
processor. Since the price for this increase in accuracy is steep,
it is worthwhile investigating when full timing accuracy is
required and when a CAS/PAS is adequate.

To determine whether a CAS/PAS is adequate, the first ques-
tion to be answered is whether it is possible that certain signal
transitions may not be generated or caught by a CAS/PAS.
The M16 processor uses a synchronous bus protocol for the
transfer of data to and from memory and peripherals. Address
and data are latched by the processor and peripherals only at
certain clock edges. The few fully asynchronous pins (like
Data-Complete, Interrupt, Hold) are internally synchronized
and therefore have to be active for at least one clock cycle. In
other words, two events on the same net or that affect one
another never happen without a clock edge in between. Our
initial study of other processors indicates that this is true for
the Intel i960 processor family and the Motorola MC68030
processors. Therefore, for these processors, a CAS/PAS that
produces and samples bus signals only at each clock transition
is equivalent to a TAS except for timing accuracy.

When the user is interested in determining if set-up and hold
times are being violated, or when he/she is debugging an
ASIC with tight timing constraints, the exact time when inputs
arrive and when outputs are produced are important and there
is no alternative to using a TAS. Therefore, a CAS/PAS can be
sufficient only when the system has been designed so that set-
up and hold times are not violated and all custom circuitry and
peripherals meet their timing constraints. The M16 processor
ensures that set-up and hold times are not violated in its
peripherals by producing signals on the bus well in advance of
the clock edge where they would be latched. Users manual
also require that peripherals produce data a certain time before
the clock edge where it will be latched by the processor. If a
system is carefully designed and conservative design rules are

followed, there may be few set-up and hold time violations.
These violations can be detected using bus functional models
and timing accurate simulation. Therefore, with an appropriate
design methodology, the use of CAS/PAS may be sufficient
for hardware-software co-simulation. We are conducting fur-
ther study to validate this assertion.

The simulator for M16 is an integrated ISS and a PAS. Each
processor clock cycle is divided into six periods and the PAS
produces bus signals at the boundary of each period, while the
ISS does not produce any bus signals. During execution of a
program, depending on the instruction and operand address,
the simulator automatically switches from ISS to PAS andvice
versa. The ISS is used to simulate program execution when
nothing but memory is accessed. Whenever the processor tries
to access some region that is outside the address range allo-
cated to memory or when the SM sets a flag that indicates that
signals on the bus have to produced, the PAS is used. Note that
switching between ISS and PAS requires that the ISS maintain
some information about the state of the pipeline during execu-
tion. The PAS consists of a pipeline simulator and a bus inter-
face module. The pipeline simulator simulates the pipeline of
the CPU accurately while the bus interface generates the
appropriate signals. Using the less accurate but fast ISS when
only memory is accessed and switching to the more accurate
but slower PAS only when required cuts down on the number
of events too and speeds up simulation by more than an order
of magnitude in most cases.

Most ISS can simulate anywhere between 2000 and 20,000
instructions per second [11]. In order to speed up the ISS and
PAS for M16, we exploited the locality of reference in the pro-
gram memory. Many embedded programs execute a group of
instructions over and over (as in a loop). Each instruction,
which includes opcode and operand(s), is decoded and the
result is stored in a cache. Before decoding, a new instruction,
it is looked up in the cache. For a cache hit, the decoded form
is used directly, thereby avoiding the simulation of the compli-
cated and time consuming decoding phase. This can increase
the execution speed of the ISS and PAS by about a factor of 2.
Currently, the M16 ISS can simulate about 50,000 instructions
per second for typical programs on a Sun Sparcstation 10. The
PAS can simulate about 4,000 instructions per second. The
PAS does not simulate the instruction fetch cycle, assuming
that no events for peripherals can be produced during this time
and that instruction memory can only introduce a fixed num-
ber of wait states.

6 SIMULATION OF HARDWARE

Custom hardware represented using Verilog HDL is simulated
using a commercial simulator, Verilog-XL [14]. Since a com-
mercial simulator is designed to be a stand alone tool and does
not implement the interface functions required by the SM, its
integration poses certain problems. For Verilog-XL, the inter-
face functions were implemented using the Programming Lan-
guage Interface (PLI) for the simulator [14]. The PLI allows

user defined functions (written in C) to be called from Verilog-
XL during simulation. It also allows these functions to call
certain functions for simulation control in Verilog-XL. The
details of the implementation are skipped for the sake of brev-
ity.

In our implementation, the user is required to call the function
$codebug in an initial block of the top level module in the
custom circuit description. There are some requirements on
the way input, output and bi-directional lines are represented.
There is no other restriction, and hardware can be represented
at any level of abstraction allowed in Verilog. Verilog-XL is
currently the only timing accurate simulator in our framework.
Since other simulators are only phase-accurate, the interface
functions for Verilog-XL may introduce errors during round-
ing of event times if proper care is not exerted in describing
the hardware.

7 SIMULATION OF STANDARD PERIPHERALS

Embedded processors are often used in conjunction with a set
of standard peripherals. Instead of describing them in some
HDL and using a hardware simulator, we use dedicated simu-
lators to simulate each type of peripheral. Each simulator con-
sists of a behavioral model written in C and a bus interface.
The behavioral model simulates the phase-accurate behavior
of the peripheral and the bus interface generates the appropri-
ate signals at every clock transition.

There are several advantages of using dedicated simulators.
First, multiple instances of the same standard peripheral can
be simulated more efficiently. Consider, for example, a system
that has several parallel ports. When the processor writes to
one of them, events are generated for each parallel port which
then decode the address to determine the recipient. In most
cases, only one parallel port will respond to the write while
others will ignore it. Therefore, for all but one parallel port,
decoding of the address is a useless operation that cannot be
prevented if a hardware simulator is used. Using a dedicated
simulator, all parallel ports can be simulated together so that
when a processor writes an address on the bus, only one set of
events is created for all the parallel ports and given to the sim-
ulator. The simulator decodes the address only once to deter-
mine which one of the parallel ports the CPU is talking to.
Therefore, not only is the number of events reduced, but use-
less decode operations are avoided.

The second advantage of dedicated simulators is better han-
dling of periodic signals. Such signals impair simulation effi-
ciency by increasing simulation overhead. In [15], it was
shown that suppression of periodic signals during concurrent
fault simulation can produce significant savings in simulation
time. We adopt a similar approach here. Each clock generator
advertises its clock signal as a triple, describing the period, the
rise time and the fall time. The use of this information is illus-
trated by the timer simulator. A timer is a counter that is ini-
tialized with a value corresponding to the number of clock
pulses to be counted. On receipt of a start signal, the timer

starts to decrement the value of the counter at each positive/
negative edge of the clock. If simulated using a hardware sim-
ulator, clock events have to be fed to the counter periodically.
However, a dedicated timer simulator can use the advertised
clock signal and the value of the counter to determine at what
time the counter is going to expire. It can then schedule itself
at the right time in the future to produce the appropriate event.
This decreases the number of events generated, the number of
simulators invoked to handle each event, and the time spent in
simulating the timer. For the motor control application to be
described in Section 9.2, this can reduce the number of events
per revolution of the motor from 129,640 to 840. The other
advantage of this method is that other simulators, like the pro-
cessor simulator can run uninterrupted during the time the
timer is counting, thereby reducing synchronization overhead
further. Note that it is not possible to avoid the generation of
the clock signal at all times,e.g. when the clock is an input to
custom circuitry. In such situations, we use a local clock gen-
erator which uses the advertised clock signal to generate a
clock only for the module that needs it. Once again, this
reduces simulation overhead because periodic signals are pro-
duced locally where they are needed.

The third advantage of dedicated simulators can be illustrated
using an Interrupt Control Unit (ICU). The algorithm for inter-
rupt priority resolution requires complicated and deeply pipe-
lined hardware. Simulation of this hardware takes more time
than executing the algorithm directly in the simulator. The
advertized clock signal is used to determine the state of the
pipeline and how long it takes to generate an interrupt signal.
For an example application, replacing the dedicated ICU sim-
ulator with a RTL Verilog model slowed down simulation by
two orders of magnitude. Though a part of this slowdown can
be attributed to Verilog-XL and its interface to the backplane,
this result is still significant. Also, this technique is fairly rep-
resentative of the techniques that can be used to speed up sim-
ulation.

It is obvious from the discussion above that dedicated phase-
accurate simulators for standard peripherals may be able to
speed up simulation in ways that HDL simulators cannot.

However, there are certain drawbacks. For every new periph-
eral a new simulator has to be written and integrated into the
backplane. Also, it is not always possible to implement the
kind of techniques mentioned above for all standard peripher-
als. We are working on a tool that will solve the first problem
by providing the standard boiler-plate needed for a simulator.
For the second problem, we rely on the ingenuity of the simu-
lator developer.

8 OTHER SIMULATORS

We have developed an interface between the co-simulator
described in this paper and the Tsutsuji hardware simulation
system [3]. The Tsutsuji system is capable of efficiently mod-
eling and simulating signal processing functions. Systems that
have both control and signal processing functions, like motion
detectors, can be easily simulated. We are also in the process
of developing an interface to the Ptolemy simulator to allow
us to use the heterogeneous simulation environment of
Ptolemy.

In addition, a simulator for a three-phase electric motor and
for a rudimentary automobile engine has been developed for
the design and debugging of motor and engine control sys-
tems. It is our hope that as this system finds more and more
use, a large library of simulators for diverse application areas
will develop and will increase the usefulness of this tool.

9 EXAMPLE APPLICATIONS

Several applications were used to test the capabilities of the
co-simulator. They include an engine control unit, a three-
phase motor control unit, a real-time operating system for the
M16 microprocessor, a motion detector and a computer
modem. The first three applications and our experience in
using the co-simulator are described briefly in this section.

9.1 ENGINE CONTROL UNIT

The operation of an engine is controlled by varying the air-
flow, the duration for which fuel is injected into each cylinder
and the spark time. The engine control unit receives inputs
from the mass air flow sensor (MAS), the RPM sensor, the

M16

Timer ICU

Parallel Port

Custom Circuit

Throttle

RPM

RPM

MAS

EGO
Angular
Position

FIGURE 3. Architecture of an Engine Control Unit
Fuel Spark

Parallel Port

Parallel Port

Parallel Port

Parallel Port

Parallel Port

Parallel Port

Parallel Port

Parallel Port

exhaust gas oxygen sensor (EGO), the throttle position sensor
and the crankshaft angular position sensor. The controller con-
trols the idle valve (not shown in the figure), the throttle-body
fuel injectors, and the spark plugs.

An architecture of a simplified engine control unit is shown in
Figure 3. It consists of an M16 processor, a timer, an ICU,
nine parallel ports and some custom circuitry. The custom cir-
cuitry can be implemented in approximately 2000 gates. The
C source code for the engine controller is about 1000 lines
long.

The software for the controller and the RTL description of the
custom circuit were developed and debugged solely using the
co-simulator. 1500 CPU cycles (approximately 300 machine
instructions) could be simulated per second on a Sun Sparcsta-
tion 10. At this speed, it takes 40 minutes to simulate the
behavior of the engine and the controller as it goes from 0 to
7000 r.p.m. This represents a slowdown of about a factor of
400 over real time operation, an adequate speed for debug-
ging. Note that the emissions from the engine were not mod-
eled and a simplified dynamic control algorithms was used for
the controller.

9.2 THREE-PHASE MOTOR CONTROL

A three-phase motor controller, shown in Figure 4(a), takes as
an input the desired frequency of rotation and produces pulse
width modulated signals which are demodulated by the power
circuit, producing three sinusoidal signals at the required fre-
quency but phase shifted 120 degrees with respect to one
another.

An implementation of this controller using a microprocessor
and standard peripherals is shown in Figure 4(b). All compu-
tation required to produce the pulse width modulated signals is
performed in the microprocessor. At high frequencies, the

demodulated waveforms show a mean square error of 8%
from an ideal sine wave because the processor cannot keep up
with the required rate of calculation. An alternative architec-
ture is shown in Figure 4(c) where some custom circuitry is
used in conjunction with the microprocessor. The calculation
for pulse width modulation are still performed in the processor
but the actual generation of the signals is moved to custom
hardware. The demodulated waveforms now show a mean
square error of less than 1% from an ideal sine wave at all fre-
quencies. The amount of ROM required to store the program
and the tables is also smaller. This is a good example of how
the co-simulator may be used to determine hardware-software
trade-offs at the implementation level.

The controller of Figure 4(b), can be implemented in 600 lines
of C code and simulation runs about a factor of 3200 slower
than the actual system. The controller of Figure 4(c) can be
implemented with only 200 lines of C code while the custom
circuit is represented using 100 lines of behavioral-level Ver-
ilog. Simulation runs about 7400 times slower than the actual
system for the second implementation, showing the effect of
Verilog-XL on simulation time. It has been our experience that
use of custom hardware significantly slows down simulation.
Note that the power circuit and the motor is simulated using a
special simulator. A screen image of this simulation is shown
in Figure 2.

9.3 RTOS AND DEVICE DRIVER DEBUGGING

Traditionally, operating systems and device drivers have been
debugged using working hardware. A part of the real-time
operating system kernel and device drivers for a microcontrol-
ler based on the M16 processor has been debugged using the
co-simulator. The hardware used for this purpose consists of
an M16 CPU, an ICU, three timers and two parallel ports.
Interrupts are fed to the system from two external buttons and

Controller Power
Circuit MotorFrequency Input

M16

TimerICU

C
us

to
m

 T
im

er
s

Parallel Port

(a)

(c)
FIGURE 4. 3-phase motor controller (a) block diagram (b) first and (c) second implementation

To
 P

ow
er

 C
irc

ui
t

Frequency Input

M16

TimerICU

P
ar

al
le

l P
or

t

Parallel Port

(b)
To

 P
ow

er
 C

irc
ui

t

Frequency Input

are also generated by the timers.

The software running on this system consists of six tasks and
the real-time OS. Task1 is invoked when there is an interrupt
from any timer and counts the number of timer interrupts.
Task 2 is invoked when there is an interrupt from the first but-
ton and counts the number of button interrupts. Task 3 is
invoked when there is an interrupt from the second button and
resets the count kept by task 2. The rest of the tasks, numbered
4 to 6 are scheduled in round robin fashion. The task number
being executed is displayed through one parallel port and the
number of button interrupts is displayed through the other one.

Simulation of the RTOS can be performed at a speed of
23,000 instructions per second. This represents a slowdown of
1500 compared to the RTOS running on an M16. This speed is
adequate for the debugging of the RTOS. The debugging envi-
ronment is natural for a software developer and the greater
observability of the internal state of the processor during sim-
ulation also helps debugging.

Our experience so far suggests that a PAS is adequate for
debugging the interface between hardware and software.
However, we recommend the use of more accurate timing
simulation using bus functional models in conjunction with
co-simulation.

10 CONCLUSIONS AND FUTURE WORK

We have presented a hardware-software co-simulator for
embedded system design and debugging. This tool provides a
natural environment for joint debugging of software and hard-
ware and is also useful for evaluating system performance,
selection of algorithms and implementations and also for
exploring hardware-software trade-offs. We have addressed
the problem of simulation speed and have outlined various
methods to speed up simulation. The improved speed of the
co-simulator comes from various sources. First, our co-simu-
lator is targeted towards phase-accurate simulation. Switching
between ISS and PAS during simulation, caching of decoded
instructions and not simulating instruction fetch cycles all
contribute to the increased speed of simulation of processors.
Use of dedicated simulators, suppression of periodic signals
and associated events, and specific short cuts reduce the time
required for simulation of peripherals. Making time discrete
and using a statically allocated timing wheel helps keep coor-
dination overhead low. We have demonstrated the use of the
tool in three design examples and have shown that the simula-
tion speed is adequate.

The usefulness of this tool will depend on several factors. First
amongst these is the availability of simulators for standard
components. Second, is the adequacy of cycle-accurate simu-
lation in system verification. We are continuing our research
in this area. We feel a co-design methodology with conserva-
tive design rules, use of bus functional models to ensure com-
pliance and an overall design style to aid simulation may be
required.

Apart from the items mentioned before, in the future we are
looking at incorporating other processor and hardware simula-
tors into our framework. We believe that the next major
increase in simulation speed will come from compiled simula-
tion and we are investigating promising techniques in this
area, especially in the simulation of processors. We are also
investigating the use of a network of workstations to speed up
simulation. There is ongoing work on a better user interface
that includes system schematic capture, dynamic attachment
of virtual instruments,etc. so that a virtual laboratory can be
created on the desktop. Improving the efficiency of the simu-
lation backplane is another area of ongoing work. The actor
library is being enhanced to include commonly used compo-
nents in embedded system design. We are also developing
links to compilers and hardware design tools so that the co-
simulator can be easily integrated into a design methodology.

References
[1] D. Becker, R. K. Singh and S. G. Tell, “An Engineering Environment for
Hardware/Software Co-simulation”,Proceedings of the 29th Design Automa-
tion Conference, Anaheim, CA, 1992.

[2] J. Buck, S. Ha, E. A. Lee and D. G. Messerschmitt, “Ptolemy: a Frame-
work for Simulating and Prototyping Heterogeneous Systems”,International
Journal of Computer Simulation, special issue on “Simulation Software
Development,” January, 1994.

[3] W. B. Culbertson, T. Osame, Y. Ohtsuru, J. B. Shackleford and M.
Tanaka, “The HP Tsutsuji Logic Synthesis System”, Hewlett-Packard Journal,
August 1993.

[4] R. K. Gupta, C. N. Coelho Jr. and G. De Michel, “Synthesis and Simula-
tion of Digital Systems Containing Interacting Hardware and Software Com-
ponents”,Proceedings of the 29th Design Automation Conference, Anaheim,
CA, 1992.

[5] IEEE Design and Test Magazine Roundtable, “Hardware/Software Code-
sign”, IEEE Design and Test Magazine, March 1993.

[6] A. Kalavade and E. A. Lee, “A Hardware/Software Codesign Methodol-
ogy for DSP Applications”,IEEE Design and Test, September, 1993.

[7] Y. Kra, “A Cross-Debugging Method for Hardware/Software Co-design
Environments”,Proceedings of the 30th Design Automation Conference, Dal-
las, TX, 1993.

[8] The M31000S2FP Users Manual, Mitsubishi Electric Corporation, Japan.

[9] J. K. Ousterhout,An Introduction to Tcl and Tk, Addison-Wesley Publish-
ing Company, 1994.

[10] H. El Tahawy, D. Rodriguez, S. Garcia-Sabiro and J-J. Mayol,
“VHDeLDO: A New Mixed Mode Simulation”,Proceedings of the European
Design Automation Conference, CCH Hamburg, 1993.

[11] J. A. Rawson, “Hardware/Software Co-simulation”,Proceedings of the
31st Design Automation Conference, San Diego, CA, 1994.

[12] D. E. Thomas, J. K. Adams and H. Schmit, “A Model and Methodology
for Hardware-Software Codesign”, IEEE Design and Test of Computers, Sep-
tember, 1993.

[13] Thor Tutorial, VLSI/CAD Group, Stanford University, 1986.

[14] Verilog-XL Reference and Programming Language Interface Manuals,
Cadence Design Systems, 1992.

[15] T. Weber and F. Somenzi, “Periodic Signal Suppression in a Concurrent
Fault Simulator”,Proceedings of the European Conference on Design Auto-
mation, Amsterdam, 1991.

	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

