
A Scheduling Algorithm for Synthesis of Bus-Partitioned Architectures

Vasily G. Moshnyaga, Fumiaki Ohbayashi and Keikichi Tamaru

Department of Electronics & Communications, Kyoto University
Yoshida-Honmachi, Sakyo-ku, Kyoto 606-01, JAPAN

Phone: +81 75-753-5949 Fax: +81 75-751-1576

Abstract--- Due to efficient interconnect structure and
internal parallelism bus-partitioned architectures are very
beneficial for sub-micron chip design. This paper presents
a new approach for integrated scheduling and interconnect
binding of bus-segmented data-paths. Experiments show
that the approach provides better results than existing
methods and is quite flexible.

I. Introduction

A. Motivation
Due to a simple layout, low area and good extension capability,
busses are the most commonly used interconnection units in
actual chip and system design. In order to satisfy given
timing requirements, the number of busses traditionally is not
constrained during data-path synthesis and determined in a
post scheduling/allocation phase. For the current 1.0�0.8�m
CMOS technology such a strategy is reasonable because busses
do not impact heavily on chip area and delay. However, as chip
density increases and transistor sizes are scaled below 0.5�m
level, the bus characteristics dominate in design. Experts
predict that if metal lines and interline spacing are narrowing
with the same slope as device feature sizes, data transfers
via long lines in chips fabricated in 0.25�m technology will
consume 50% of cycle time[1],[2]. Introducing a ‘‘fat’’ scheme
[3] for global nets reduces this delay but significantly affects
the chip area. Figure 1 plots area estimation results for two (8-

%
 o

f
da

ta
 p

at
h

ar
ea

20

50

0.5 0.8 1.2 1.5

10

0.25
0

Technology (m)µ

multipliers

registers

buses

adders

register

Notes:multiplier

bus

adder

Notes:

Figure 1: Area distribution between data path components of
Differential Equation Solver example vs. technology scaling.
(The black marks represent 8-bit implementations, the white
marks show 16-bit implementations)

Bus 1 ; Bus Segment 1,1

Bus 2 ; Bus Segment 2,1

Bus 1 ; Bus Segment 1,2

Bus 2 ; Bus Segment 2,2

Switch Latch

Reg

Operational Block 2

FUReg FU

Operational Block 1

clock

Figure 2: The bus-partitioned architecture

and 16-bit) implementations of Differential Equation Solver
Design[4] obtained for different CMOS technologies. In the
experiment, we assumed that both implementations had linear
topology (2 multipliers, 3 adders, 8 registers and 4 busses)[5]
and the width of bus lines was not less than 1�m. The figure
clearly shows the price of the ‘‘fat’’ scheme at 0.25�m level:
busses occupy approximately half of the total data path area.

In the deep sub-micron design, bus issues are much important
to the chip quality than that of adders or registers, for example,
and can not be ignored until the last stage. In contrast, since
busses are very expensive, their number might be one of
resource constraints in the future chip design.

When the number of busses is limited, bus-partitioning[6]
is an efficient way to achieve high throughput. In a bus-
partitioned architecture (Fig.2), each bus is split into segments
which are functionally connected or disconnected by switches.
The disconnected segments can convey different data-transfers
simultaneously. So functional units sharing the same bus
can operate in parallel. The architecture provides an easier
placement, routing and better compaction. Moreover, it is
very suitable for power reduction. By enabling the switches to
separate electrically the bus segments (with attached hardware
units) which are not active in a clock cycle, the total power
consumption can be lowered as more as twice[7].

The partitioned busses, however, has a drawback. Since
each segment can only communicate with its two neighbor
segments, the amount of possible communication between
the segments is severely restricted. As result, the transferred
data can not be available whenever it is required and, hence,
scheduling has to be based on bus binding. An approach to
scheduling of the bus-partitioned architectures with limited
number of communications paths is presented in this paper.

step 1 *A + -

1 2 3

step 2 + -A*

1 2 3

-step 3
* + A

1 2 3

Figure 3: An example

B. Related research
Several high-level synthesis tools support design of bus-
partitioned architectures. APPOLON[8] interactively compiles
a behavioral specification onto a system of 2 segmented buses
and 2 data-paths. ASYL[9] utilizes a rule based approach for
operator, register and bus/segment assignment. PARBUS[6]
applies an iterative approach consisting of scheduling, parti-
tioning of data-flow operations into clusters, linear ordering of
the clusters, register allocation and bus/segment assignment.
Although these synthesizers utilize different methods, they
have one common feature: they assign operations to clock
cycles and functional units assuming no constraints in schedul-
ing on availability of buses and segments. The communication
conflicts are relegated to the bus/segment binding phase, which
is too far in the design pipeline to meet the design constraints
by itself. The problem is that not only a sequence of segments
needs to be determined for a data transfer, but also the cycle
steps in which it is going to take place needs to be resolved.
Consider Figure 3 which shows the availability of bus segments
in a data path during 3 cycle steps. Here, bold lines represent
busy segments; thin lines represent free segments. Assume
that value A produced in cycle step 1 in partition 1 is needed
in step 3 in partition 3. Since no path available to convey A

to the partition 3 in one cycle step, the only way to perform
the data transfer is to transmit A first to partition 2 in step 2,
store there temporarily and then transfer it to the destination
in step 3. The existing binding models fail to consider this
decision and hence prevent tools from finding a high-quality
designs. Also no efficient algorithms exist yet which are able
to combine the bus-binding with scheduling. As result, either a
large number of buses is required to sustain all the parallel data
transfers that might occur on any of the clock cycles or extra
control steps have to be added to the schedule to satisfy the
interconnect requirements. In the best case, several iterations
over scheduling and connectivity binding are needed to obtain
an acceptable design solution.

C. Contribution
This paper proposes a new model for the data-path synthesis
of bus-partitioned architectures and presents algorithms for
scheduling and register allocation. We model the design be-

havior by a stick diagram in which sticks reflect execution of
operations on functional units, storing of variables in registers
and data transfer through busses. This allows us not only
to combine scheduling, with binding and register allocation
but apply powerful layout generation techniques to find an
efficient solution. The model supports different styles of data-
transfers, single- and two-phase clocking schemes, pre-defined
constraints on number of busses, segments and registers. The
algorithms are based on the model. In contrast to existing
approaches, our first algorithm incorporates bus-binding into
scheduling; it dynamically binds data-transfers to bus-segments
as operations are assigned to control steps. The second algo-
rithm integrates bus binding with register allocation to find the
minimal number of registers under the bus constraints. Its main
feature is an extra allocation flexibility, by which a value can
be assigned to different registers in different control steps such
that the total number of registers is minimized.

II. Problem Statement

We suppose that scheduling follows the operation partitioning
phase as it done in [12], and the following inputs are known:

(1) a hypergraph H(V,E,R), whose vertex set V=fvg rep-
resents control/data flow graph operations, the directed edge
set E=feg represents dependences between the operations and
the hyperedge set R=frg (unordered subsets of V) represent
partitioning of V into a number of clusters r1; r2; : : : ; rK , each
of which will be implemented on a separate functional unit.
We assume that the feasibility of clusters is determined, and
the following is true:

S
r = V , ri

T
rj = 0, (i 6= j), j r � 1.

(2) a system architecture with K operational blocks, N
parallel busses andK bus segments on each bus. (For simplicity
of explanation, we assume that N = 2). Each operational
block includes one functional unit of a pre-selected type (e.g.
multiplier, adder, ALU) and several registers. The components
of a block can be connected to corresponding segments of all
parallel N buses. Depending on the existence of latches, one-
or two-phased clocking is applied to synchronize operations
and data transfers. In the one-phase clocking, reading the data
out of the registers and writing the data to the registers occur
in the same clock phase, while in the two-phase clocking they
take place in different phases: �2 and �1, respectively. In
this case, the system controller outputs a new control word on
every control phase.

Since the number of clusters is equal to number of operational
blocks, we assume that mapping � : R! Z of clusters r 2 R

to operational blocks z 2 Z is known or can be easily found by
applying the linear ordering algorithm similar to that presented
in [11]. Figure 4 illustrates the linearly ordered hypergraph
representation for the HAL example[4]. In the figure, the
shaded edges represent partitions, the numbered rectangles
represent the operational blocks and the edges between the
rectangles show the number of data-transfers between the
corresponding clusters.

The problem outputs include:
(1) a schedule for the CDFG operations and data-transfers;
(2) assignment of data-transfers to communication buses and

bus segments;
(3) register assignment for each of K functional blocks.

III. Approach

The problem has been approached in the following two steps:

1. bus-driven scheduling

2. bus-driven register minimization

u dx 3 x u dx x dx

a

c

yy

u dx

*

*

-

-

*

*

* *

+

+

<

O1

O5

O7

O8

O6

O3 O9

O4 O10

O11

O2

x1

y1

u1

e5

e1
e2

e7
e6

e4R2

R1

R3

R4

e3

(a)

(b)

R1R4 R3
1

2 32

1

1 2 3 4

R2

Figure 4: The HAL example: (a) hypergraph; (b) ordering of
partitions.

A. Bus-Driven Scheduling
A.1. Binding Model
Our scheduling is based on two dimensional binding model
(Z; T) (similarly to [10], where each vertical slice z 2 Z cor-
responds to an operating block and each horizontal slice t 2 T

corresponds to a time slot. (The latter is related to the phase in-
terval). The model, however, has one main departure as can be
seen from Fig.5. Additionally to modeling of code operations,
we explicitly determine storing of variables on registers and
latches and transferring the variables via busses. The key idea
behind the model is to represent routes of data processing in
time/space domains by abstracting from details of how the data
is transformed and transferred. Each data processing route is
defined by a collection of operational and transportational
sticks. The operational sticks model execution of data-flow
operations on functional units. (We depict them by gray pat-
terns in the figure). The transportational sticks (depicted
by bold lines) model data transfers through time and space
domains without any transformation. The length of a vertical
transportational stick corresponds to time during which a value
is stored in a register or latch, whereas length of a horizontal
stick indicates the number of bus-segments required to convey
a value along operational blocks (i.a space). The symbol (X)
at the intersection of horizontal and vertical sticks reflects
a data transfer between the corresponding bus and register
(latch) pair. The square symbol shows data transfers at inputs
(outputs) of functional units. (In order to distinguish data
consumption from data production, the data transfers on inputs
and outputs of functional units are shown by white and black
patterns, respectively).

Thus the Figure 5 shows that value e1 generated by operation
o1 in time step 1, phase (�2) is transferred to a register in the
same operational block 1, stored their and then in step 2, phase
�1, it is transmitted back from the register to the ALU of the
same block. The symbols 4 and 5 mark the border registers.

The user can restrict the maximal number of registers in
each operational block or the number of busses in the design
by specifying the number of available tracks (dotted lines in the
figure) in corresponding hardware or time slots, respectively.
In this case, sticks are located on the available t racks only.
Consequently, a code operation can be assigned to a time/space
slot if and only if sticks, which model the propagation of its
input data, can be routed to the slot. The model has several

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

x

Rg (+)

Op.block 1Space

Time

Op.block 2 Op.block 3 Op.block 4

Rg

1

2

3

4

φ1

φ1

φ1

φ1

φ2

φ2

φ2

φ2

x

o1

xu
dx

(+,<) (*)(*)

o2e1 x1

x

3x
x

dx

e2 e2 e2

x
x

y

x

o3

x
x

x
x e1

o5

x

x e5

e5

x

x
x x1

a

cx
e3

x

xdx

xu u

o6

dx

e6e6

x

x
e4

xy
e4

o9
x

x

x

x

x
e4

o7

x u1 y1

e7

x

x

Rg Rg

o8

o4

o10

o11

Figure 5: A binding model for the HAL example

advantages. (1) It clearly shows what bus segments are busy
in each clock phase, how many registers are required to
support the behavior and where the registers are located. The
maximum density of the vertical transportational sticks across
all time steps defines the number of registers required. A
register belongs to that operational block whose vertical slice
contains the register’s stick. By extending the horizontal sticks
which convey a value from one block to another, we can easy
reassign the value to a vacant register such that the total number
of registers in the design is reduced. Such ability of values to
be stored on different registers during their lifetimes introduces
a new degree of freedom which has not been exploited before
in bus-oriented synthesis.

(2) It explicitely models utilization of i/o ports at each clock
phase. Hence, constraints on i/o ports can be easily considered.

(3) The model unifies scheduling, register allocation and
connectivity binding tasks and allows to solve them concur-
rently by moving from timing domain to space domain and one
task to another while preserving the integrity of the tasks.

(4) The model allows us to formulate the high-level synthesis
as a layout design problem and thus apply a well elaborated
theory of layout design to find effective solutions.

Based on the model, the scheduling problem may be stated as
follows: Given a linearly ordered hypergraph H(V,E,Z), define
locations and lengths of sticks Sv; Se that map the nodes v 2 V

and the edges e 2 E into two-dimensional grid (Z; T) such
that the stick area is minimized under the constraints:

� 8vi 2 V ! Sv(vi)
T
Sv(vj) = ;;

8ei 2 E ! Se(ei)
T
Se(ej) = ; (no stick overlapping);

� 8vj 2 zx ! Sv(vj) 2 zx (assignment of operational
sticks is given);

� 8Shoriz
e 2 t; (t 2 T) !

S
Se � N (the number of

horizontal tracks is limited);

One approach to this problem is to use simulated annealing
when operations are randomly moved to slots such that a
cost function with factors of module cost, execution time and
interconnection is minimized[10]. While the approach is able
to find good solutions, the considerable execution time makes a
direct solution more desirable. Therefore a heuristic algorithm
was developed.

A.2. Scheduling Algorithm
The backbone of our algorithm is a list scheduling tech-
nique[15]. Unlike others, our list scheduler determines data-
transfer routes and binds them to buses simultaneously as
scheduling proceeds. The process is simplified by the fact
that assignment operations to functional units (or blocks) is
done before scheduling, therefore the source of a signal and its
destination are known. However, such a scheduling becomes
more complicated in that an unfortunate decision can lead to
a deadlock, when the transferring of data to FU’s inputs is
impossible. Therefore a check for the deadlocks must pre-
cede assignment of operations to control steps. The following
ALGORITHM 1 outlines our scheduling method.

ALGORITHM 1
INPUT: H(V; E;Z)
OUTPUT: � : V ! t, � : E ! g

begin
for all z 2 Z do
GET READY OPS(Vz; LISTz), FUz ! free;
endfor
t = 0; Tlist = ;; Dlist = ;;

while (9LISTl 6= ;) do
t = t+ 1;

for all z 2 Z do
if LISTz 6= ;then
begin
if (FUz is free) then

select v with the highest priority;
T list = T list+ (v; z);

endif
end

endfor
Dlist=CHECK DEADLOCK(Gcurrent; T list; t);
if (Dlist 6= ;)

then Tlist=DELETE(Tlist,Dlist);
endif
if (Tlist 6= ;) then
f SCHEDULE OP(Tlist,t);
DELETE(fLISTz; z = 1; ldots; j Z jg,Tlist);
Gcurrent = Gcurrent+OUT TRACE(Tlist);
SEGMENT ALLOCATOR(Gcurrent; t);
g; endif

for all z 2 Z do
GET READY OPS(Vz; LISTz);
endfor

endwhile;
end

The algorithm uses a priority list LISTz for each cluster
z 2 Z. The function GET READY OPS scans the set of nodes,
Vz , determines if any of unscheduled operations in the set
are ready (i.e. all its predecessors are scheduled), deletes
each ready node from the set Vz and appends it to LISTz.
Initially, all nodes that do not have predecessors are inserted
into the appropriateLISTz. The while loop extracts the highest
priority operation from each list LISTz whose corresponding
functional unit is free, and maps the operation to the slot (z; t)
if there is no deadlock in data transfers. The priority is given
to an operation which has:

(i) minimum fmobility(v)� urgency(v)g,
where mobility(v) = ALAP (v)� ASAP (v),
urgency(v) = ASAP (u) � fASAP (v) + delay(v)g and u

is a direct successor of v;
(ii) the longest path to the output;
(iii) the large number of successors.
The set of highest priority operations is stored in list T list.

The function CHECK DEADLOCK determines nearest loca-
tions (za; ta) and (zb; tb) of the sticks (Sa

e ; S
b
e) which have been

assigned to input data-transfers of the operations v 2 T list,
and tries to find traces from them to the slot (z; t) without
deadlocks. The trace is built first down till horizontal slice t
and then in left (or right) direction till vertical slice z. The
LEFT EDGE algorithm[13] is used to map horizontal traces to
N busses in each slice t. The sticks which already are assigned
to the slice t are also considered. A deadlock exists when
the number of horizontal traces to be assigned to the slice t

exceeds the number of tracks N . In this case, the function
CHECK DEADLOCK tries to map the untraced data transfers
to the upper slices t � 1; t � 2; : : : ; tsource. If it succeeds, the
tracing down is applied again to connect the obtained horizontal
traces with free segments of the destination slice t. The func-
tion returns the set Gcurrent of traces constructed and the list,
Dlist, of deadlocked operations v 2 Tlist whose input data
transfers were not traced at the current step t. These operations
are deleted from the T list by function DELETE(Tlist,Dlist).
The remaining in T list operations are then sticked (i.a. sched-
uled) to time step t and deleted from the corresponding priority
list LISTz . The length of an operational stick equals the sum:
t + delayz, where delayz is the delay of a functional unit in
block z. For all this time, the functional unit,z is considered
busy. The function OUT TRACE(Tlist) routes the data from the
scheduled operations to the first free bus. The function SEG-
MENT ALLOCATOR maps the constructed traces Gcurrent to
sticks. Figure 5 shows the results of applying the algorithm to
the HAL example. (Here, a 2-phase clocking scheme with the
input latching has been considered).

Extensions of the algorithm
Operator chaining: For the chained operations, specific

edges are needed in the hypergraph representation. The func-
tion GET READY OPS includes both chained operations in the
specific LIST0 which has the highest priority among the other
lists. Among the operations in the chain, the first operation
has the highest priority. All the chained operations are sticked
to the same horizontal slice t as others. The binding however
differs in that the function OUT TRACE traces the chained
data transfers only in horizontal direction, because no registers
and latches are allowed. If both chained operations belong to
the same cluster, the OUT TRACE assigns a stick to a free
track segment in the same vertical slice. If they belong to
different clusters (e.g. z1; z2), the stick is assigned to free
segments in z1; z2 as well as in between, respectively. A dead-
lock in this case is solved by adding an extra track between the
corresponding blocks.

Multicycle operations: For these operations we use corre-
sponding multicycled delay values.

Pipelining: The pipelined functional units are considered
busy for a specified number of phases which correspond to
the delay of the pipelined stage. Operations can be assigned to
the different pipelined and thus share a functional unit in one
clock cycle.

Conditional operations: We assume that disjointness of
operations is determined before scheduling. Mutually exclusive
operations and data transfers can occupy the same spatial and
temporal location. Therefore, they are scheduled so as to use the
same hardware (functional units, registers and bus/segments)
at the same time.

B. Bus-Driven Register Minimization
Research on register minimization in a post-scheduling phase
has already resulted in many effective techniques which em-
ploy the Left-Edge Algorithm, clique partitioning algorithm,
bipartite edge coloring algorithm, scanline sweep algorithm,
simulated annealing, etc. Good surveys of the previous efforts
in this field can be found in [14],[15]. Comparing to related
techniques, our algorithm has two main features: (1) It com-
bines register assignment with bus-binding to obtain a minimal
number of registers under the bus constraints. (2) It utilizes
an extra allocation flexibility by breaking the lifetime of each
value into segments of one control step and allows different
segments of a value to be assigned to different registers.

The algorithm can be outlined as follows.
ALGORITHM 2

INPUT: H(V;G;Z; T)
OUTPUT: H(V;G�; Z; T)
begin
G� = G;
GET LIFETIMES(G�,TG);
CList=LEFT EDGE(G�,TG);
for all Chnl 2 CList do

Clist=DELETE(CList,Chnl);
for all intrv=EMPTY INTRVL(Chnl) do

search=.true.;
zi=LOCATION(intrv);
ts=START(intrv);
te=END(intrv);
OvList=OVERLAP(intrv,Clist) do

while (OvList 6= ;^search) do
zj=LOCATION(l);
Glist=TRACE(zi ! zj ; ts; te);
if (Glist6= ;) then
G�=SEGMENT ALLOCATOR(G�; Glist);

search=.false.;
endif

endwhile
endfor

endfor
end

The function GET LIFETIMES extracts vertical nets from
the set of all nets G and determines their lifetimes (set TG).
The function LEFT EDGE runs the Left-Edge algorithm that
allocates the vertical nets to a set of channels CList. (The
allocation is done for each vertical slice separately). If there
is an empty interval intrv in these channels, the algorithm
determines its start and end time ts; te, respectively, the vertical
grid slice z, where the interval is located and the list OvList
of nets which overlap the interval. The while loop determine
the location of the first-left overlapping net, and exams the
possibilities to move its cut < ts; te > to vertical slice zi.
The function TRACE searches for two deadlock-free paths
in horizontal slices ts; te, respectively, to convey data from
zj to zi and back. If both the data-transfers possible, the
function SEGMENT ALLOCATOR maps the set of routed
segments (Glist) to nets. These iterations continue for all
empty intervals.

Figure 6 illustrates how the ALGORITHM 2 works on an
example. Applying the Left-Edge algorithm, we can assign the
7 vertical nets g1 � g7.(shown by the bold lines) to 4 channels
Ch1 � Ch4. Since the second channel has an empty space in
the slice t3, the algorithm will try to fill it by the cut of the net
g6 (Fig.6 (b). If the tracing of the corresponding data transfers
is possible (nets n1; n2), the algorithm will allocate the nets
to 3 channels only and hence will save 1 register. Figure 7
shows how the algorithm reduces the number of registers from

Ch 1 Ch 1 Ch 1 Ch 1

t1

t2

t3

t4

Ch 1 Ch 1 Ch 1 Ch 1

t1

t2

t3

t4
g1

g2

g3

g4
g6

g5

g7

g1

g2

g3

g4
g6

g5

g7

Ch 1 Ch 1 Ch 1

t1

t2

t3

t4

g1

g2

g3

g4
g6

g5

g7
n1

n2

(a) (b) (c)

Figure 6: An illustration of the Algorithm 2.

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

x

Rg (+)

Op.block 1Space

Time

Op.block 2 Op.block 3 Op.block 4

Rg

1

2

3

4

φ1

φ1

φ1

φ1

φ2

φ2

φ2

φ2

x

o1

xu
dx

(+,<) (*)(*)

o2e1 x1

x

3x
x

dx

e2 e2 e2

x
x

y

x

o3

x
x

x
x e1

o5

x

x e5

x

x
x x1

a

cx
e3

x

xdx

x u u

o6

dx

e6e6

x

x
e4

xy
e4

o9x

x

x

x

x
e4

o7

x u1 y1

e7

x

x

Rg Rg

o8

o4

o10

o11

Figure 7: The final schedule of the HAL example.

10 (Fig.5) to 8 in the HAL example.

IV. Experimental Results

The proposed scheduling approach was implemented in C
language on SUN 3 system. The scheduling algorithm has a
complexity of O(jV j � jEj log jEj) where jV j is the number of
nodes in the CDFG, jEj is the number of edges. The register
minimization algorithm has a complexity O(jEj log jEj). To
demonstrate the efficiency of the proposed approach, two
examples were used. The first one is Differential Equation
Solver or HAL example (Fig.6) and the second is the 5-th
order elliptic wave filter [16]. The filter contains 26 additions
and 8 multiplications. Table 1 compares our scheduling
results for these examples with the results of PARBUS system
which implements the existing technique for synthesis of bus-
partitioned architectures[6]. In both examples, latches have
been inserted at the input and output ports of the functional
units and the two-stages pipelined multiplier delay was used.
The HAL examples was designed by 1 multiplier and 1 adder,
while in Elliptic Filter design 2 adders and 1 multiplier were

Table 2: Scheduling results of the Elliptic Filter
3*,3+ 2*,2+ 1*,2+ 1*(pipelined),2+

Program cs bus rg cs bus rg cs bus rg cs bus rg
FDS[4] 19 6 12 21 - - 19 5 - 17 6 12

ALPS[18] 19 5 19 21 6 19 18 5 15 17 6 16
FAMOS[20] - - - 21 4 13 18 5 15 17 6 16

InSyn[19] 23 3 8 22 4 8 18 6 8 18 6 8
SPAID[17] 18 6 21 21 6 19 18 6 16 - - -

Ours 19 2 11 21 2 10 18 2 11 17 2 11

Table 1: Comparison with PARBUS
HAL (1*(p),1+) ElF (1*(p),2+)

PARBUS Ours PARBUS Ours
c.steps 4 4 19 17

registers 5 5 12 11
bus/segm. 2/4 2/4 2/6 2/6

used. As can be seen, the schedule generated by our algorithm
is superior to PARBUS not only in the number of control steps
but also in less register count.

Table 2 shows the results of Elliptic Filter scheduling with
various resource restrictions. Here cs, bus, rg represent the
number of control cycles, busses and registers, respectively.
The results of several programs are summarized for compar-
ison. As in other papers, the functional unit types used are
adders with 1 cycle delay and multipliers with 2 cycle delay.
The last column makes use of the two-stage pipelined mul-
tiplier. Each schedule take less than 5 seconds to compute.
As a whole, our approach was able to equal the best results
published hitherto.

V. Conclusions and Future Work

The main objective of our research is to reduce impact of
wiring in the high-performance VLSI circuits to be produced
in sub-micron technologies. The bus-partitioned architectures
are very promising for applications where high-speed and
compact circuits are needed. Their synthesis, however, requires
bus features to be considered as soon as possible in the
design trajectory. In this paper, we have presented a new
binding model and two new algorithms for scheduling and
register allocation suitable for synthesis of bus-partitioned
structures. The algorithms are actually one of the first attempts
which incorporate bus-binding into these synthesis procedures.
The experimental results demonstrated the reasoning of such
approach and its efficiency.

In the current formulation we have not considered scheduling
with loops. This will be investigated in the future. The
application of the approach on large designs will also be
examed.

Acknowledgements

The authors would like to acknowledge the support they
received for this research from the Ministry of Education,
Science and Culture of Japan under Grant No. A06780255.

References

[1] H.Schelttler, ‘‘Processor chip design on submicron ASICs’’,
Euro-ASIC’91, pp.58-62.

[2] L.Yamada, ‘‘Deep sub-micron IC design’’, Cadence seminar,
Tokyo, May 1994, unpublished.

[3] G. Sai-Halasz, ‘‘Performance trends in high-end processors’’,
Proceedings IEEE, Vol.83, No.1, Jan. 1995, pp.20-36,

[4] P.Paulin and J.Knight, ‘‘Force-directed scheduling in automated
data-path synthesis of ASICs’’, IEEE Trans.on CAD, Vol.8,
No.6, 1989, pp.661-679.

[5] B.Pangrle, et al., ‘‘Relevant issues in high-level connectivity
synthesis’’, Proc. 28-th DAC, 1991, pp.607-610.

[6] C.Ewering, ‘‘Automatic high-level synthesis of partitioned
buses’’, Proc. ICCAD’90, 1990, pp.304-307.

[7] K.Asada, M.Ikeda,‘‘Design of general purpose microprocessor
using partitioned bus architectures,’’ Proc. 1995 IEICE General
Conf., Fukuoka, 1995, pp.114-115 (in Japanese).

[8] R.Jamier, A.Jerraya, ‘‘Appolon, a datapath silicon compiler’’,
Proc. ICCD’85, pp.308-311.

[9] A.Mignotte, ‘‘Resource assignment with different target archi-
tectures’’, Proc. Euro-ASIC’91, pp.172-177.

[10] S.Devadas and R.Newton, ‘‘Algorithms for Hardware Allo-
cation in Data-Path Synthesis’’, IEEE Trans.on CAD, Vol.8,
No.7, July 1989, pp.768-781.

[11] S.Kang, ‘‘Linear Ordering and Application to Placement’’,
Proc. 20-th DAC, 1983, pp.447-464.

[12] J.Scheichenzuber, et al., ‘‘Global Hardware Synthesis from
Behavioral Dataflow Descriptions’’, Proc. 27-th DAC, 1990,
pp.456-461.

[13] A.Hashimoto, J.Stevens, ‘‘Wire Routing by Optimizing Chan-
nel assignment within Large Apertures’’, Proc. 8th DAC,1971,
pp.155-169.

[14] L.Stock, ‘‘Data Path Synthesis’’, Integration, the VLSI journal,
Vol.18, No.1, Dec. 1994, pp. 1-71.

[15] D.Gajski, etc., High-Level Synthesis: Introduction to Chip and
System Design, Kluwer A.P., 1992.

[16] S.Y.Kung, et al., ‘‘VLSI modern signal processing’’, Prentice
Hall, pp.258-264, 1985.

[17] B. Haroun and M.Elmasry, ‘‘Architectural Synthesis for DSP
Silicon Compilers’’, IEEE Trans.on CAD, Vol.8, No.4, 1989,
pp.431-447.

[18] J.Lee, et al., ‘‘A new integer linear programming formulation
for the scheduling program in the data path synthesis’’, Proc.
ICCAD-89, pp.20-23.

[19] A.Sharma and R.Jain, ‘‘InSyn: Integrated Scheduling for DSP
Application’’, Proc. 30th ACM/IEEE DAC, 1993, pp.349-354.

[20] I.Park, et al., ‘‘Fast and Near Optimal Scheduling in Automatic
Data Path Synthesis’’, Proc. 28-th DAC, 1991, pp.680-685.

	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

