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Abstract
For a logic design with level-sensitive latches, we need to vali-
date timing signal paths which may flush through several latches.
We developed efficient algorithms based on the modified short-
est and longest path method. The computational complexity of
our algorithm is generally better than that of known algorithms
in the literature. The implementation (CYCLOPSS) has been
applied to an industrial chip to verify the clock schedules.

1. Introduction
For the logic design of a digital computer using edge-

triggered flip-flops, signal delays through all combinational logic
paths must be less than the clock period. (See Figure 1(b)). For
the timing verification of such a design, one needs only to per-
form a path analysis of combinational logic network within one
clock cycle [3]. For designs using level-sensitive latches, signals
may flush through latches. This permits the use of a combina-
tional logic path with delay longer than one clock cycle, so long
as it is compensated by shorter path delays in the subsequent
cycles. This technique is called cycle stealing or slack sharing.
An example is shown in Figure 1(c). Since a flush path may
extend to many cycles, the path analysis for timing verification
becomes more complex.
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Figure 1. A finite-state machine. (a)Block diagram. (b)Flip-flops.
(c)Latches. The delay from L1 to L2 is longer than one clock cycle.

A general formulation of clock schedule verification and
optimization problem in terms of timing constraints was pre-
sented by Sakallah, Mudge, and Olukotun in [1]. These SMO
timing constraints have been applied to many timing problems,
such as timing verification [1,2,4], clock optimization [5,6], and

retiming, etc. Pattern-independent timing analysis programs
were developed in [1,4] to calculate the earliest and latest arrival
times satisfying SMO timing constraints, with a worst case
bound O(1/ ) where  is the smallest loop gain. Szymanski and
Shenoy in [2] made an elegant analysis of SMO timing con-
straints, and developed a timing verification algorithm with an
improved worst case bound O(N × G ), where N is the number
of latches and G is the set of timing constraints. In these algo-
rithms, NP-hard false path problem is not considered.

In this paper, we shall show that above timing verification
problem can be transformed into a modified longest path and
shortest path problem on a latch delay graph. We then use a
modified Bellman-Ford method to find the earliest and latest ar-
rival times. This algorithm has a worst case bound O(b × G )
where b is the number of latches which have fan-in feedback
edges. This bound is better than the best worst-case bound O(
N ×

 
G 

 
) in the literature. Experimental results also show that

the average run times of this algorithm are significantly better.

2. Timing Model
A finite-state machine consists of a combinational logic

network, memory elements(latches or flip-flops), and primary
inputs (PIs) and outputs (POs) as shown in Figure 1. Even
though the combinational logic network is acyclic, the feedback
through memory elements introduces loops in such a design. The
presence of loops makes the timing analysis more difficult. For
example, the traditional timing verification method [3] based on
a good topological ordering of circuit elements does not apply.
Another consequence of feedback loops is a big increase in the
number of signal paths. To analyze timing properties, it is con-
venient to abstract such a network with a latch graph, as shown
in Figure 2(a). Here a node represents either a memory element
of the network, a PI, or a PO, while an edge represents a pair
of worst-case early and late path delays. Flip-flops may be re-
garded as special cases of latches in which the region of active
phase shrinks to a sharp edge as shown in Figure 1(b). Each
latch is associated with a clock waveform, which is characterized
by a clock period, , a setup time, Si, a hold time, Hi, a latch
opening time Bi, and a latch closing time Fi. Each edge is asso-
ciated with a short-path weight i,j = i,j − Ei,j and a long-path
weight Λi,j = ∆i,j − Ei,j, where i,j and∆i,j represent respectively the
minimum and maximum combinational logic delays from latch
i to latch j, and Ei,j represents the time-zone adjustment [1,2] from
latch i to latch j.

A typical latch has three sets of pins: input and output pins
for data signals, and input pins for clock signals. The data paths
through a latch can be represented by a set of edges, each of
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which is directed from a data input pin to the corresponding data
output pin, as shown in Figure 2(b). Each edge is also associated
with weights i,j and Λi,j which are respectively the minimum and
maximum internal latch delays. With this decomposition of
latches into their constituent data pins, the latch graph is trans-
formed into a latch delay graph G = (V, E), in which nodes are
either PIs, POs, or latch data pins, as shown in Figure 2(c). On
G, latch output nodes are drawn as triangles and all the other
nodes are drawn as circles. We made this distinction because
data signals arriving at circular nodes immediately continue their
propagation, while signals arriving at the triangular nodes are
regulated by the clock in the following way: If a data signal
arrives before the latch opens, its propagation from the latch
output has to wait until the opening time of the latch. If a signal
arrives after the latch opens, it propagates (flushes) through the
latch immediately. We shall call it a non-flush signal in the
former case, and a flush signal in the latter case. For example
in Figure 1(c), a2 is a flush signal, while a1 and a3 are non-flush
signals.
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Figure 2. Timing model: (a)A latch graph (b)The latch model. (c)The
latch delay graph.

The worst case times satisfy SMO timing constraints [1]:

di = max(ai + i, Bi);
Di = max(ai + Λi, Bi);

ai = min
j → i

(dj + j,i).
Ai = max

j → i
(Dj + Λj,i).

(1)

where di, Di, ai, Ai, i and Λi are respectively the earliest and latest
signal departure times, the earliest and latest signal arrival times,
and the internal short and long path delays of latch i. Latch hold
and setup constraints for correct machine operation are then re-
spectivelyai ≥ Fi −  + Hi andAi ≤ Fi − Si.

On G, we add a global source node V0 to represent the time
origin and an edge from V0 to each PI node Vj, as shown in Figure
2(c), with user-asserted early and late arrival times as short and
long edge weights. This way, all the signal paths originated from
PI nodes may extend to the common source node. To account
for the signal paths originated from latches, we add an edge from
V0 to each latch output node Vj, as shown in Figure 2(c), with
Fj and Bj as short and long edge weights. The long weight Bj may
be regarded as the lower bound of the late arrival times, while
Fj may be regarded as the upper bound of early signals. On G,
V0 becomes the single source node from which all signal paths

originated. Next, we shall modify the definition of the path
length to reflect the signal arrival times through each such path.

Definition 1: Short path length, l(p), of a path p is defined as
the sum of weights i,j along its edges. Similarly, long path
length, L(p), is defined as the sum of weights Λi,j along its edges.

Definition 2: Let path p be U1U2U3 ... Un (U1 = V0, and Un = Vi)
and its sub-paths pm be U1U2 ... Um with m ≤ n. The early and late
signal arrival times along path p are respectively defined by two
new "path length" functions, a(p) and A(p):

a(p1) = 0;

a(pm) = { max(a(pm − 1) + m, Bm)
a(pm − 1) + m

for triangular Um;
for circular Um. }

A(p1) = 0;

A(pm) = { max(A(pm − 1) + Λm, Bm)
A(pm − 1) + Λm

for triangular Um;
for circular Um. }

m = (Um − 1, Um); Λm = Λ(Um − 1, Um).

(2)

where functions (Vs, Vt) and Λ(Vs, Vt) are respectively defined
as the short-path and long-path weights of edge (Vs, Vt).

Definition 3: Let p1 and p2 be two paths from V0 to Vi. We say
that p1 is earlier (or later) than p2 if and only if a(p1) < a(p2) (or
A(p1) > A(p2)). The earliest and thelatest arrival times among
various paths from V0 to Vi on G are respectively defined as ai

and Ai:

ai = min
p

(a(p)); Ai = max
p

(A(p)). (3)

Lemma 1: The earliest and the latest arrival times, Ai and ai,
satsify Equation (4).

ai = { min
j → i

(aj + j,i) for circular nodes;

max(Bi, min
j → i

(aj + j,i)) for triangular nodes.}
Ai = { max

j → i
(Aj + Λj,i) for circular nodes;

max(Bi, max
j → i

(Aj + Λj,i)) for triangular nodes.}
(4)

For circular nodes, Equation (4) is exactly the same as
Equation (1). In the following, we shall show that for triangular
nodes, Equation (4) is also equivalent to Equation (1). Let Vi

be a latch output node. Its two fan-in nodes are Vk (the corre-
sponding latch input node) and V0. For the late mode, we have
Ai = max(Bi, max

j → i
(Aj + Λj,i)) = max(Bi, Ak + Λk,i). This is exactly

the SMO late mode timing constraint on latch i. For the early
mode, we have ai = max(Bi, min

j → i
(Aj + j,i)) =

max(Bi, min(Fi, ak + k,i)). This reduces to the SMO early mode
timing constraint, for the normal operation in which ak + k,i

≤ Fi. Whenak + k,i falls beyond the window bound,Fi, Equation
(4) clips it back to Fi. Therefore, the timing verification problem
is transformed into the latest and earliest path problem on G with
modified "path length" functions A(p) and a(p).

For the case in which G contains no feedback loops, G is
a directed acyclic graph which may be topologically sorted. A
block-oriented algorithm in [3] may be used to generate the ar-
rival times by using Equations (2) and (3), instead of the usual



 

path lengths. In the general case with feedback, the nodes in G
may be sorted in the following way:

Algorithm SORT (G)

1. Generate a depth-first spanning tree. A O(G) algorithm for
the depth-first tree can be found in [7]. Let Eb be the set
of back edges as shown in Figure 3(a).

2. Since the sub-graph (V, Ef = E − Eb) is acyclic, we can make
a breadth-first traversal on Ef to order the nodes :
V0, V1, .... This operation is again O(G).

With respect to this sort order, edges (Vi, Vj) in Ef are
forward-directed(i < j), while edges inEb arebackward-directed
(i > j), as shown in Figure 3(b). Let us call those nodes with
fan-in backward-directed edges feedback nodes. For example,
V1 is the only feedback node in Figure 3(b).
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Figure 3. SORT: (a)Depth-first spanning tree. (b)Breadth-first order.

Lemma 2: Algorithm SORT yields a sort order with the number
of feedback nodes, b = { Vj (Vi, Vj) ∈ Eb}  ≤ N (the number of
latches). The complexity of SORT is O(G).

Proof: We observe that each feedback node has at least
one forwarded-directed fan-in edge, at least one backward-
directed fan-in edge, and at least one forward-directed fan-out
edge. Then it is evident that V0, PI, or PO can not be a feedback
node. Also the input and output node of a latch can not both
be feedback nodes. Hence b ≤ N. Q.E.D.

Remark: Algorithm SORT does not guarantee that b is a mini-
mum. (Minimum feedback arc set problem is NP hard). How-
ever, b is usually much less than N. See Table 1 for numerical
examples.

3. Loop analysis

Consider a loop, c = U1U2 ... U2n, which contains n latches
with odd-numbered vertices as input nodes, and even-numbered
vertices as output nodes. Let p0 be a path from V0 to U1, and
path p(k)

i  be a path consisting of path p0, k − 1 loops around c, and
path U1...Ui, i.e., p(k)

i = p0ck − 1U1...Ui. Let a(k)
i = a(p(k)

i ), and
A(k)

i = A(p(k)
i ). An early(late) signal at the latch output nodes is

flush, if a(k)
2i > B2i (A(k)

2i > B2i), and non-flush, if a(k)
2i = B2i (A(k)

2i = B2i).
Equation (2) can be rewritten in terms of a(k)

i :

a(k)
i ={ a(k)

i − 1 + (Ui − 1, Ui)
max(a(k)

i − 1 + (Ui − 1, Ui), Bi)
if i = odd;
if i = even.}

A(k)
i ={ A(k)

i − 1 + Λ(Ui − 1, Ui)
max(A(k)

i − 1 + Λ(Ui − 1, Ui), Bi)
if i = odd;
if i = even.}

(5)

Definition 4: Short loop gain, l(c), of a loop c is defined as the
sum of weights i,j along its edges. Similarly, long loop gain,
L(c), is defined as the sum of weights Λi,j along its edges.

Lemma 3: Signal arrival times in consecutive traversals around
loop c satisfy the inequality: a(k)

i ≥ a(k − 1)
i + l(c), and

A(k)
i ≥ A(k − 1)

i + L(c). Equality holds when the signal flushes
through all latches during the path from the (k − 1)th loop trav-
ersal of Ui to the (k)th loop traversal of Ui.

Proof is omitted here.

The monotonic relation obtained by Szymanski and Shenoy
[2] may be applied to a(k)

i  and A(k)
i  in the following form: ∀ i, k

a(k + 1)
i ≤ a(k)

i
a(k + 1)

i = a(k)
i

a(k + 1)
i ≥ a(k)

i

if a(2)
1 < a(1)

1 ;
if a(2)

1 = a(1)
1 ;

if a(2)
1 > a(1)

1 ;

A(k + 1)
i ≤ A(k)

i
A(k + 1)

i = A(k)
i

A(k + 1)
i ≥ A(k)

i

if A(2)
1 < A(1)

1
if A(2)

1 = A(1)
1

if A(2)
1 > A(1) 

1

(6)

Hence, both {a(1)
i , a(2)

i , ...,a(∞)
i } and {A(1)

i , A(2)
i , ...,A(∞)

i } are
monotonic sequences.

3.1 The short loop path problem

Problem: Among the family of paths {p(k)
i k = 1..∞} to node Ui,

find the path with the smallest ai = min{a(k)
i k = 1, 2..}, and the

first k
 
= min{k 

 
a(k)

i = ai}, if there are ties.
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Figure 4. A short loop path example. (a)Latch delay graph (b)Flush paths
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Lemma 4

1. For the case a(2)
1 ≥ a(1)

1 , we have ai = a(1)
i , and k = 1.

2. For the case a(2)
1 < a(1)

1 , we have l(c) < 0, with ai and k given
by Equation (7-9).

Proof: Part 1 of Lemma 4 follows from the fact that a(k)
i  is

monotonically non-decreasing in k.

We next consider the case a(2)
1 < a(1)

1 . Lemma 3 implies
l(c) < 0. In this case,a(k)

i is monotonically non-increasing ink.
This means that a non-flush signal during the (k)th loop, say
a(k)

2i = B2i, will remain non-flush during the (k + 1)th loop (
a(k + 1)

2i = B2i). Therefore once we reach the first non-flush signal,
say a(k0)

2i0 , the signal arrival times start to converge to minimum
values, i.e.,



 

ai = a(k0)
i ;

ai = a(k0 + 1)
i ;

k
 
= k0

k
 
= k0 + 1

for i ≥ 2i0.
for i < 2i0.

(7)

k0 can be derived as follows: The signal flushes through
all the latches on loop c, until k = k0 and i = 2i0. During this flush
period, a(k)

i  is reduced by the amount l(c) , each time when a
new loop is completed, according to Lemma 3. Let i=
(a(1)

2i − B2i)/ 
 
l(c) 

 
, and let [ ] be the ceiling function. During the

(k0 − 1)th loop traversal to nodeU2i, we have a flush signal
a(k0 − 1)

2i = a(1)
2i + (k0 − 2) × l(c) > B2i, which implies that

k0 − 1 < 1 + min i. So k0 − 1 ≤ min[ i]. Also a(k0)
2i0 is non-flush.

This implies that B2i0 = a(k0)
2i0  ≥ a(1)

2i0 + (k0 − 1) × l(c) and
[ i0] ≤ k0 − 1. Hence,

k0 = min
i

[ i] + 1; i = (a(1)
2i − B2i)/ 

 
l(c) 

 
. (8)

To find i0, we observe that during the (k0)th loop, the signal
flushes through latches until it reaches node U2i0. So for i < i0,
the quantity, ri= a(1)

2i + (k0 − 1) × l(c) − B2i, is positive, since it is
equal to a(k)

2i − Bi. For i = i0, ri becomes non-positive since
B2i0 = a(k0)

2i0 ≥ a(1)
2i0 + (k0 − 1) × l(c). Hence,

i0 = min{i 
 
ri ≤ 0}; ri = a(1)

2i + (k0 − 1) × l(c) − B2i. (9)

 Q.E.D.

Figure 4(a) shows a 4-latch example of the case a(2)
1 < a(1)

1 .
Only the short-path weights are shown, and the short loop gain
l(c) = − 10. The clock period is 100, setup times and hold times
are 0, and the latch opening times are B2= B4=B6=B8=50. The
early arrival times for first four loop traversals are shown in
Figure 4(c). From 1 = 2.6, 2 = 2.7, 3 = 1.9 and 4 = 2.2, we
have k0= 1+[1.9] = 3. From r1 = 6, r2 = 7, r3 = − 1 and r4 = 2,
we derive i0 = 3.

In the second case of Lemma 4, if l(c) = −  is a very small
negative number, then k0 ∝ 1/  will become very large. This is
why earlier algorithms [1,4] may need many iterations to con-
verge. With Equation (7-9), we can quickly calculate the earliest
arrival times after the loop is traversed the first time.

3.2 The long loop path problem

Problem: Among the family of paths {p(k)
i k = 1..∞} to node Ui,

find the path with the largest Ai = max{A(k)
i k = 1, 2..}, and the

first k
 
= min{k 

 
A(k)

i = Ai}, if there are ties.

Lemma 5

1. For the case A(2)
1 ≤ A(1)

1 , we have L(c) ≤ 0, Ai = A(1)
i , and

k
 
= 1.

2. For the case A(2)
1 > A(1)

1  and L(c) ≤ 0, we have Ai = A(1)
i  and

k
 
= 1 for i ≥ i0; Ai = A(2)

i and k
 
= 2 for i < i0, where

i0 = min{i 
 
A(2)

2i = B2i}.

3. For the case A(2)
1 > A(1)

1  and L(c) > 0, we have A(k)
i = A(2)

i +
(k − 2) × L(c) which is unbounded ink, andAi andk do not
exist.

Proof: The case A(2)
1 ≤ A(1)

1 . follows from the fact that A(k)
i

is monotonically non-increasing in k.

We next consider the case A(2)
1 > A(1)

1 . A(k)
i  is monotonically

non-decreasing in k. If L(c) > 0, then according to Lemma 3,
A(2)

2i > A(1)
2i ≥ B2i which means that the computed signal arrival

times are all flush in the second loop and hence also in the sub-
sequent loops. By the repeated application of Lemma 3, we
obtain A(k)

i = A(2)
i + (k − 2) × L(c), which is unbounded ink. Fig-

ure 5(a) shows such an example. On the other hand, if
L(c) ≤ 0, then not all signals in the second loop are flush. Let
the first non-flush signal be A(2)

2i0 . Then A(1)
2i0  must be also non-

flush. So A(k)
i = A(1)

i  for i ≥ i0, and A(k)
i = A(2)

i  otherwise. Figure 5(b)
shows an example. Q.E.D.
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Figure 5. Long loop path examples (a)A positive loop. (b)A zero-gain
loop. Squares mark the maximum arrival times.

In the third case of Lemma 5, if L(c) =  is a very small
positive number, then after each loop A(k)

i  grows by , and it will
take a large number of loopskmax = O(( − Si − Bi)/ ) for A(k)

i  to
reach the time which violates the setup constraint. Therefore
when there are positive loops, algorithm in [2] will run until k
is equal to the number of latches in G, and algorithms in [1,4]
will run until k reaches the bound kmax.

4. Latest arrival times (latest paths)

Lemma 6: The latest arrival time, Ai, defined by Equation (3,4),
is the same as the longest path length from V0 to Vi on G.

Proof: Let us re-examine Equation (4). Let Vi be a latch
output node and Vj its corresponding latch input node. Since the
long weight on (V0, Vi) is Bi, max

j → i
(Aj + Λj,i) ≥ Bi, and hence Ai =

max
j → i

(Aj + Λj,i) also for triangular nodes. ThereforeAi is indeed
equal to the longest path length from V0 to Vi. Q.E.D.

Therefore, the late-mode timing problem is equivalent to
the longest path problem, which has been studied extensively in
graph theory. In Algorithm LATE, Yen's modification [9] to the
Bellman-Ford method is adopted to take advantage of the sort
order provided by Algorithm SORT. The search for the longest
paths is done iteratively with alternating passes through Ef and
Eb. During the forward pass through edges in Ef, the nodes are
examined in the breadth-first order as produced by algorithm
SORT. During the backward pass through edges in Eb, nodes
are examined in the reverse order. If an edge (Vj, Vi) examined
generates a new longest path, then Ai is updated by the new
longest path length. Also the dominant predecessor ti of Vi is set



 

to Vj. The dominant graph T formed from these dominant edges
(ti, Vi) contains V − 1 edges (V0 has no predecessor). Such a
graph may either be a tree which represents the longest paths,
or contain loops all of which have positive gains. (A proof can
be found in [8]). We shall illustrate this with two examples:
For the example with a positive-gain loop in Figure 6(a), T
contains the loop. For the example without a positive loop in
Figure 6(b), T is a longest path tree.
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Figure 6. Dominant graphs: (a)T contains a positive loop. (b)T is a tree.

Algorithm LATE (G)

1. Initialize A0 = 0 and otherAi as undefined. Set the iteration
counter m=0.

2. For i=1, ...n do For each edge (Vi, Vj) in Ef do LateLabel(
i, j, converge). /*generate the longest path tree inEf */

3. Set converge= true, and m = m+1.

4. For each edge (Vi, Vj) in Eb do LateLabel(i, j, converge).

5. For i=1, ...n do For each edge (Vi, Vj) in Ef do LateLabel(
i, j, converge).

6. If loops are found in T, report the positive loops and exit.

7. If converge = false, go to Step 3.

8. End {LATE}

Procedure LateLabel(i, j, converge)

1. If Aj is undefined or Aj < Ai + Λi,j, then set Aj = Ai + Λi,j, tj =
Vi, and converge = false.

2. End {LateLabel}

Theorem 1 (Latest path)

1. If there are no positive loops in G, Algorithm LATE will
converge in a finite number of iterations mL ≤ b.

2. Otherwise, some positive loops will be found in T in the
mLth iteration, with mL ≤ b + 1.

Proof: Let Q(m) be the set of paths which contains m or
fewer backward-directed edges. It can be shown by mathemat-
ical induction that at the end of the (m)th iteration, {Ai} consists
of the longest path lengths in Q(m), and the maximum number of
backward-directed edges among paths in T is m. Let p(m) be such
a path which contains m feedback nodes. If the iteration con-
tinues to m = b + 1, then p(b + 1) must contain duplicated feedback
nodes(i.e. a loop). For the case that G does not contain positive
loops, this can not be true, and Part 1 of Theorem 1 follows.
For Part 2 of Theorem 1, for some m ≤ b + 1, p(m) must contain
a loop, and stop the iteration. Q.E.D.

The computational complexities for Step 4, 5 and 6 of Al-
gorithm LATE are linear in V + Eb , V + Ef , T  re-
spectively. The overall computational complexity of Algorithm
LATE is O(mL × G ) with a worst-case bound O(b × G ).
After detecting a positive loop, we may break an appropriate
edge in the loop. This way, Algorithm LATE can be continued
with all positive loops elliminated. [10]

5. Earliest arrival times (earliest paths)
Lemma 7: The search of earliest paths can be restricted to paths
which contain (1)no loop or (2)one simple loop.

The proof is omitted here. It may be constructed by the
mathematical induction on the number of distinct loops on an
earliest path. An example of a path with one simple loop is
shown in Figure 4(a). Let P be the set of paths which satisfy
Lemma 7. Let B(p) be the number of distinct backward-directed
edges in path p, and P(k) the subset {p p ∈ P andB(p) ≤ k}.
ThenP(b) = P, sinceB(p) ≤ b for any pathp.

Algorithm EARLY (G)
1. Initialize a0 = 0 and otherai as undefined. Set the iteration

counter m=0.
2. For i=1, ...n do For each edge(Vi, Vj) in Ef do EarlyLabel(

i, j, converge).
3. Set converge= true, and m = m+1.
4. For each edge(Vi, Vj) in Eb do EarlyLabel(i, j, converge).
5. For i=1, ...n do For each edge(Vi, Vj) in Ef do EarlyLabel(

i, j, converge).
6. For each loop found in T, apply Equation (7-9) and set tj

to the predecessor, if aj is flush, and NULL, otherwise.
7. If converge= false, then go to Step 3.
8. End {EARLY}
Procedure EarlyLabel(i, j, converge)
1. a′ = ai + i,j.
2. If Vj is a latch output node, a′ = max(a′, Bj).
3. If aj is undefined or aj > a′, then set aj = a′ and converge =

false. Set tj to Vi if aj is flush, and NULL, otherwise.
4. End {EarlyLabel}

Steps 3-7 in Algorithm EARLY form an iteration loop. It
consists of (1) a backward pass (Step 4), in which new early
paths are generated by adding a backward-directed edge during
the traversal in Eb, (2) a forward pass (Step 5), in which new
early paths are generated by adding a segment of forward-
directed edges during the breadth-first traversal in Ef, (3) a search
of loops in the dominant graph T (Step 6), which consists of
dominant edges (ti, Vi). For a node Vi carrying a flush signal, ti

is set to its dominant predecessor. For a node Vi carrying a non-
flush signal, ti is set to NULL. This way, paths in T are all early
flush signal paths, as shown in Figure 4(b).

Theorem 2 (Earliest path)

Algorithm EARLY will converge in a finite number of iterations
mE ≤ b, to a solution with the earliest arrival times.

Proof: During Step 2, the dominant graph T generates a
spanning forest of early flush paths in the acyclic graph (V, Ef).
Next, during the first iteration of backward and forward passes,
some edge in T, say (Vi, Vj), may be replaced by a new dominant



 

edge (Vk, Vj). If a loop c forms in T, then the new path generating
the new time a′ j is p1c where p1 is the old path generating the old
time aj. Sincea′ j < aj, according to Lemma 4l(c) < 0 and we
may use Equation (7-9) to quickly update early times around the
loop (Step 6). Since predecessor pointers of non-flush signals
are set to NULL, loop c is broken into segments of flush paths,
and T is again a spanning forest. See Figure 4(b). Let {a(m)

i } and
T(m) be respectively the early arrival times and the dominant
graph at the end of the (m)th iteration. Then, we can prove by
mathematical induction that (1)T(m) is a spanning forest, and (2)
a(m)

i  is the minimum solution among paths in P(m). The arrival
times a(b)

i  must be the minimum solution, since P(b) = P. Algo-
rithm EARLY must converge before the iteration count reaches
b (.i.e. mE ≤ b). Q.E.D.

The computational complexities for Step 4, 5 and 6 of Al-
gorithm EARLY are respectively linear in V + Eb , V  +
 
 
Ef 

 

, and  
 
T 

 
, which add up to O( 

 
V +

 
E 

 
) for one iteration.

The overall computational complexity of Algorithm EARLY is
O(mE ×

 
G 

 
) with a worst-case bound O(b ×

 
G 

 
).

6. Results and discussion
We have implemented Algorithm SORT, LATE, and

EARLY in C and have integrated them into CYCLOPSS (CYCLe
OPtimization with Slack Sharing), a timing analysis tool. We
ran CYCLOPSS through the transformed version (as described
in [6]) of all 35 ISCAS'89 benchmark circuits, and an IBM
processor chip. The experimental results (on a 33 MIP machine
of RISC System/6000) are shown in Table 1. For ISCAS cir-
cuits, a complementary two-phase clock and a unit-delay model
were used. For the example "chip", we used the realistic clock
wave forms and delay rules, provided by an IBM CAD tool,
EinsTimer, which included the effects of clock skews, signal
slews, and capacitance loading.1 Column "b" shows the number
of feedback nodes. Column "read" shows the data read-in time.
Column "Te" shows the extraction time of latch delay graphs.
Column "T1" shows CPU times of our algorithms based on latch
delay graph. Column "T2" shows CPU times of the algorithm
from [2] we implemented. It can be seen that in most cases the
number of iterations mL and mE are less than 5, and T1 is more
than 20% better than T2.

circuit
name

s13207
s1423
s27

s35932
s38584
s5378
s9273
chip

gate
count
17240 
1462
26

35586
41410 
5916 
11650
51129

latch
count
1338
148
6

3456
2904
358
456
5338

b

407
93
3

1161
1707
80
234
22

read
sec
10.4
0.9
0.09
28.4
36.7
3.3
6.5
307

Te
sec
26.4
5.3
0.02
37.0
74.4
7.2
21.9
439

T1
sec
1.2
0.4
0.0
2.2
5.0
0.5
0.7
5.0

T2
sec
1.5
0.6
0.0
2.8
6.0
0.7
1.0
8.5

T3
sec
27.6
5.7
0.02
39.2
79.4
7.7
22.6
444

T4
sec
3.2
1.1
0.00
18.9
6.0
2.3
1.7
15.5

Table 1 Experimental results

The latch graph extraction is obtained by running longest
and shortest path algorithm through combinational logic N times,

each with one of N latches as the source node. The overall
complexity is therefore O(N × G ), which consumes a signif-
icant amount of CPU time. We experimented with the following
alternative approach by applying algorithms LATE and EARLY
directly to the full delay graph, which consists of a node set, re-
presenting pins of both latches and combinational logic gates,
and an edge set, representing pin-to-pin delays, (pins of the
combinational logic gates are considered as circular nodes).
Column "T3" showed the sum T3 = Te+ T1. Column "T4"
showed the CPU times for solving full delay graph. Depending
on the size of circuits, an additional 2 to 20 times reduction in
CPU time is achieved by switching from the latch graph ap-
proach to the direct approach. This is especially attractive for
incremental timing problem for which the overhead of reading
data may be ignored.
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