
Selecting Partial Scan Flip-Flops for Circuit Partitioning

Toshinobu Ono

NEC Corporation

Kawasaki, JAPAN

Abstract

This paper presents a new method of selecting scan ip-
ops (FFs) in partial scan designs of sequential circuits.
Scan FFs are chosen so that the whole circuit can be parti-
tioned into many small subcircuits which can be dealt with
separately by a test pattern generator. This permits easy
automatic test pattern generation for arbitrarily large se-
quential circuits. Algorithms of selecting scan FFs to allow
such partitioning and of scheduling tests for subcircuits are
given. Experimental results show that the proposed method
makes it possible to generate test patterns for extra large
sequential circuits which previous approaches cannot deal
with.

1 Introduction

Partial scan has been considered as one of the most real-
istic solutions to testing of large sequential circuits. Partial
scan has possibility to give a circuit enough testability by
means of small amount of extra hardware.

Several partial scan methodologies [1]{[9] have been
proposed to obtain higher testability with smaller number
of scan ip-ops (FFs). Among them, methods based on
structural analysis [2, 3, 4, 6, 7, 8, 9] are showing relatively
good empirical results with some simple heuristics. Most
of them try to break cycles in the original circuits, most
typically to break all the cycles except self loops. How-
ever, even after all the loops except self loops are cut, it
still takes much time to generate test vectors for very large
circuits, such as ones with hundreds of FFs.

This paper proposes a new partial scan method for arbi-
trarily large circuits. It makes circuits have enough testa-
bility regardless of their scale. With partial scan, circuits
are partitioned into many small subcircuits which can be
easily handled by the sequential test pattern generators
available today. Since the size of each subcircuit can be
set reasonably small, test pattern generation can be well
in control no matter how large the whole circuit is.

Its another advantage is that the length of test patterns
can be reduced. Vectors for two or more subcircuits can
be applied simultaneously if they do not share any pri-
mary input. This allows test vector compaction even for
sequential circuits.

In the following sections, �rst a new scheme of circuit
partitioning for test pattern generation is given. Next, a
method of partial scan FF selection is presented to allow
partitioning of a circuit into small subcircuits. Then, some
experimental results are shown, followed by conclusion and
future work.

2 Partitioning for Test Generation

A partitioning method for sequential circuit is pro-
posed. A sequential circuit can be partitioned into sub-
circuits so that a test pattern generator can handle each
of them separately. In general, di�culty of test pattern
generation may possibly increase exponentially according
to the circuit size. Therefore, signi�cant reduction in test
pattern generation time can be achieved by generating test
patterns for partitioned circuits.

2.1 Conditions for Partitioning

It is necessary to guarantee that test vectors generated
separately for each subcircuit can be applied to the whole
circuit. In order to allow valid but independent test pat-
tern generation for each subcircuit, partitioning must be
done under the following conditions.

� Every primary input (PI)/primary output (PO) of the
subcircuits must be a PI/PO of the whole circuit.

� All the gates and PIs reachable to a PO in the whole
circuit must be included in the subcircuit that has the
PO.

Subcircuits thus obtained may not be necessarily dis-
joint. Subcircuits may share gates or PIs. Such overlap-
ping allows more partitionings. However, POs should not
be shared by di�erent partitions.

Overlapping of subcircuits may cause overhead in test
pattern generation because overlapped areas are processed
more than once. However, overhead can be suppressed
minimally by avoiding test generation for faults which have
been detected in other subcircuits. This will be discussed
later.

2.2 Partitioning Example

Figure 1 shows an example of partitioning. In this case,
one sequential circuit, which has six FFs, can be parti-
tioned into three subcircuits with some overlap. Test vec-
tors generated for partitions A and C can be applied si-
multaneously because the two circuits do not share any
PIs.

To illustrate the concept of the partitioning more easily,
a graph description of circuits is introduced. A sequential
circuit is represented as a graph called dependency graph.
A dependency graph is de�ned as follows:

De�nition 1 (Dependency Graph) A dependency
graph is a directed graph with nodes corresponding to either
the FFs or the POs of the circuit. There is an arc from
node A to node B if and only if there is a combinational
path from FF A to FF/PO B in the circuit.

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission. 1994 ACM 0-89791-690-5/94/0011/0646 $3.50

Figure 1: Example of partitioning

Partitioning can be considered in dependency graphs in
stead of gate level circuits. Partitioning of the dependency
graph can be translated to that of the gate level circuit
without ambiguity. In the following sections, dependency
graphs are used to represent sequential circuits and parti-
tioning is considered in dependency graphs.

3 Scan FF Selection for Partitioning

3.1 Objective and Modeling

Generally, each partition may not be small enough for
test pattern generation. In such a case, partial scan is
used to reduce the size of large partitions. To scan a FF
means to delete the out-going arcs of the corresponding
node in the dependency graph. This elimination of arcs
sometimes allows partitioning that is not possible in the
original graph.

Figure 2 illustrates how scan FFs enables further par-
titioning. (A) shows the dependency graph of a circuit,
where six nodes correspond to FFs (denoted by rectan-
gles) and one node corresponds to a PO (denoted by a
triangle). This circuit can be partitioned into two subcir-
cuits as shown in (B) by scanning the shaded FF.

Figure 2: Scanning a FF for partitioning

The objective of scanning FFs is to reduce the size of
each subcircuit to a certain limitation. The size of a cir-
cuit is de�ned as the number of the FFs in it because it
is assumed that the number of FFs is one of the most im-
portant factors that determine the di�culty in testing the
circuit.

To formulate the problem, the weight of each node in
a dependency graph and the weight of the graph itself are
de�ned.

De�nition 2 (Weight of Node) The weight w(n) of
node n is de�ned as the number of the nodes, including

itself, from which the node is reachable through directed
arcs in the dependency graph.

De�nition 3 (Weight of Graph) The weight W (G) of
dependency graph G is de�ned as follows:

W (G) = max
n2G

w(n)

De�nition 4 (Scanned Graph) Given dependency
graph G and a set of nodes N , the scanned graph S(G;N)
is de�ned as the graph that is obtained by removing all the
out-going arcs of the nodes in N from G.

Graph G can be partitioned into subgraphs having no
more thanW (G) nodes, and the subcircuits corresponding
to the subgraphs have W (G) � 1 FFs or fewer. S(G;N)
is the graph that is obtained by scanning the FFs corre-
sponding to the nodes in N .

To reduce the overhead for partial scan, the number of
the scan FFs should be minimized. With the above de�-
nitions, the FF selection problem is formulated as follows:

Given a dependency graph G and a size limit
s, �nd the smallest set of nodes N such that
W (S(G;N)) � s+ 1.

Figure 3 shows the weight of the nodes and the graphs
for the same circuit as �gure 2. The numbers above nodes
are the weight of the node. The original circuit (A) can be
partitioned into subcircuits with as many as 6 FFs because
W (G) = 7. After the nodes in N = feg are scanned, the
result circuit (B) can be partitioned into subcircuits with
3 or fewer FFs because W (S(G;N)) = 4.

Figure 3: Weight of nodes and graphs

3.2 A Heuristic Algorithm

Since it requires exponential time to �nd the optimal
solution, a scan FF selecting procedure using heuristics
has been developed.

The purpose of scanning FFs is to reduce the weight
of overweighted nodes. However, it is di�cult to estimate
the reduction in the weight of other nodes obtained by
scanning a FF, especially for large and complicated graphs.
Therefore, the structure of the graph is �rst simpli�ed for
easy analysis of weight reduction by scanning some FFs.
Then, more FFs are chosen to be scanned to reduce the size
of partitions. Finally, unnecessary scan FFs are restored
to normal FFs.

The procedure consists of the following three phases.

1. Graph Simpli�cation | Scan FFs to cut cycles

2. Partition Size Reduction | Scan FFs to break parti-
tions larger than the size limit

3. Normal FF Restoring | Restore scanned FFs to nor-
mal ones under the size limitation

3.2.1 Phase 1: Graph Simpli�cation

Scan FFs are chosen to cut cycles in the circuit. This
makes the graph acyclic, that is, no pair of nodes depends
each other. Since the weight of nodes is calculated accord-
ing to the dependencies between nodes, it is much easier
to analyze the weight reduction produced by scanning a
FF for acyclic graphs than for ones with cycles.

Although several FF selecting methods have been pro-
posed to remove cycles in the circuit [3, 4, 6, 7, 8, 9], simple
heuristics are used in the current implementation.

All the strongly connected components (SCCs) are
found in the dependency graph. Then, a node is chosen
and removed from each of the SCCs that consist of two or
more nodes. Selection continues until every SCC contains
only one FF. As the result, all the cycles are eliminated
except self loops and an acyclic dependency graph is ob-
tained.

In selecting a node from a SCC, the node which has
the largest number of arcs is chosen. The heuristics are
simple, but produce solutions close enough to the optimal
[6]. The optimal solution is not necessary here because the
�nal target is not to break cycles.

3.2.2 Phase 2: Partition Size Reduction

In this phase, FFs are chosen and scanned in order to
reduce the size of partitions larger then the given limit.

Other heuristics are introduced here. A cost function
is used and the node having the highest cost is scanned
one by one until the weight of all nodes becomes less than
the limit. The cost of each node should reect potential of
weight reduction of other nodes in case it is scanned. If a
node is scanned, its predecessor nodes lose weight. How-
ever, the predecessor nodes do not necessarily lose weight
equal to the weight of the scanned node because there may
be other paths from its ancestor nodes to its predecessor
nodes. Therefore, not only the weight of nodes but also
the graph structure should be considered. Before de�ning
the �nal cost function, another function is introduced.

De�nition 5 (Flow) The ow F (n) on node n is de�ned
as follows:

F (n) =

8>>><
>>>:

X
m2P (n)

F (m)

S(m)
(if n is a PO)

X
m2P (n)

F (m)

S(m)
+ 1 (if n is a FF)

where P (n) is the set of parent nodes of n and S(m) is the
number of child nodes of node m.

The ow F (n) counts the probabilistic number of nodes
reachable to n with the fanins and fanouts taken into ac-
count. Every node that corresponds to a FF has 1 as the

original cost, and the ow on each node is divided and dis-
tributed equally to its fanout nodes. Since there is no cycle
in the graph, calculation of F (n) for every node n can be
done easily. With this ow function, the cost function is
now de�ned.

De�nition 6 (Cost) The cost C(n) of node n is de�ned
as the sum of the reduction in the ow on the nodes that
have higher weight than the limit s if n is scanned.

A node has higher cost if greater reduction in the weight
of overweighted nodes is expected. The cost C(n) of node
n can be calculated as follows:

C(n) =

(
F (n) �R(n) (if W (n) � s)

F (n) �R(n) + 1 (if W (n) = s+ 1)

0 (if W (n) > s+ 1)

where R(n) is the number of nodes which are reachable
from n and whose weight is higher than the given size
limit s.

To reduce the weight of all overweighted nodes to less
than the limit, at least one node must be scanned among
the nodes with weight of s + 1 or less. Therefore, only
the nodes with weight of s + 1 or less are considered in
selection, that is, the cost of overweighted nodes is de�ned
as 0. If a node has weight equal to s+ 1, 1 is added to its
cost because scanning it reduces not only the ow on its
predecessor nodes but also its own ow.

In this phase, the cost C(n) for every node is calculated.
Then, the node with the highest cost is chosen as a scan
FF, and the costs are calculated again for the new graph.
Selection is repeated until no node has weight higher than
the given partition size limit.

3.2.3 Phase 3: Normal FF Restoring

This is the �nal phase where some of the scanned FFs
are restored to original normal FFs. Because of the non-
backtracking selection in the previous phases, some scan
FFs may not be necessary for the �nal objective, that is,
to keep the size of partitions within the limit.

Each scan FF is checked if it needs to be scanned or not.
Check is done by temporarily restoring the scan FF to a
normal FF and calculating the weight of all nodes again.
If some nodes become to have weight over the limit, the
scan FF is left untouched. Otherwise, it is replaced with
a normal FF. Although results depend on the order of the
scan FFs being checked, its e�ects are not considered for
the present.

Restoring some FFs may make cycles in the circuits
again. Then, another option is provided here in order to
keep the circuit acyclic. With this option selected, a scan
FF which, if restored, will make a cycle is kept scanned.
Since all the cycles are broken in the �rst phase, the �nal
circuit has no cycle in this option.

This cycle breaking option is practically very useful.
It means combination of the two methods based on cy-
cle breaking and partitioning. Because the cycle breaking
method can improve testability of each subcircuit, subcir-
cuits may be reasonably large while guaranteeing enough
testability. This results in reduction in the total number
of necessary scan FFs.

3.3 FF Selection Example

FF selection in the second phase is demonstrated using
an example. Figure 4 shows the ow and the cost of the
nodes of graphs for the circuit used in the previous sections.
Suppose that the size limit of partitions is 3. The numbers
written above and below nodes denote the ow and the
cost of the node, respectively. In the original graph (A),
node e is selected and scanned because it has the highest
cost 4.5. Comparing the graphs (A) and (B), the total ow
reduction on the overweighted nodes is 4.5 because node e
lost 1 and node g lost 3.5. The cost of node e, which was
4.5, exactly represents this ow reduction.

Figure 4: Flow and cost of nodes

4 Test Pattern Generation

Due to overlapping of subcircuits, test pattern genera-
tion may be performed more than once on some faults. If
a fault in an overlapped area is not detected in a subcir-
cuit, it must be tried in other subcircuits again. However,
the faults which are previously detected in some subcircuit
should be eliminated from the fault list for the subcircuits
handled later.

Not only aborted faults but also ones declared redun-
dant must be tried again in other subcircuits because they
may be detectable on other POs in other subcircuits.

As for the order in which test pattern generation is
performed, easier subcircuits should be handled earlier.
Therefore, test pattern generation tasks are implemented
in the increasing order on the number of FFs in each sub-
circuit.

5 Test Pattern Compaction

Test vectors for the entire circuit are built from the test
vectors generated for the subcircuits. Because test vectors
for each subcircuit have values required only on part of
the PIs of the whole circuit, some vectors for di�erent sub-
circuits can be applied simultaneously. Such test vector
compaction reduces the number of test patterns for the
entire circuit.

In general, a test sequence for a subcircuit generated
by a test generation program cannot be broken into two
or more separate sequences because most vectors in the
sequence are generated depending on the previous vectors.

If testing of each subcircuit is considered as a job, and
test length as time needed to do the job, test pattern com-
paction is regarded as a kind of scheduling problem. It is
formulated as follows:

Given a set of jobs, time necessary to have each
job done, and a set of job pairs that cannot be
done simultaneously, schedule jobs so that the to-
tal time to �nish all the jobs is minimal.

The following heuristics are used to get a solution in
reasonable time.

1. Begin a job as soon as it can be begun.

2. If two or more jobs can be begun, begin the job having
the largest number of jobs that cannot be done with
it.

3. If two or more jobs can be begun and have the same
number of jobs that cannot be done with it, begin the
job that requires the longest time.

6 Experimental Results

Experiments have been performed on some of the IS-
CAS89 sequential benchmark circuits [10]. Since the pro-
posed method particularly targets very large circuits, only
the circuits having more than 100 FFs are tried.

The number of partial scan FFs required for partition-
ing is examined �rst. The size limit of partitions is changed
from 10 FFs per partition to 30. As a comparison, OPUS
[4] is used to select FFs to break all cycles except self
loops. Combination of the partitioning method and the
cycle breaking method is also examined. The results are
shown in Table 1.

Next, test patterns are generated for the partitioned
circuits by HITEC [11]. Test pattern generation is per-
formed both on the circuits with all the cycles broken by
OPUS and the ones partitioned by the proposed method
into subcircuits with no more than 30 FFs and no cycles.
The programs run on SUN SPARC Station 10. The re-
sults are shown in Table 2. FC and FE denote the fault
coverage and the fault e�ciency respectively. Some num-
bers are not available because there is not enough memory
for the test pattern generation program to process these
circuits.

Although the cycle breaking method needs fewer scan
FFs, it takes much longer time to generate test vectors,
which detect only a small number of faults for some cir-
cuits. For some large circuits, it even cannot generate pat-
terns. In contrast, with scan FFs selected by the proposed
method, the test generator can produce much higher fault
coverage for all the circuits. Since every subcircuit has only
30 FFs or fewer, it never has the problem of exhausting the
memory space. For some circuits, the fault coverage may
not be enough even with the proposed method. However,
higher coverage can be obtained by changing the aborting
conditions, which is 2 seconds per fault in this experiment.

The test vector compaction is examined next. Tests
for the partitioned circuits are scheduled by the proposed
method. Table 3 shows the results. In the table, the orig-
inal length means the sum of the test pattern length of
all the subcircuits. With the compaction, about 20 per-
cent reduction is obtained at most. However, no or very

partitioning partitioning
cycle breaking + cycle breaking

circuit #FFs �10FFs/part �20FFs/part �30FFs/part �30FFs/part
#scan %scan #scan %scan #scan %scan #scan %scan #scan %scan

s5378 179 30 16.8 95 53.1 69 38.6 57 31.8 58 32.4
s9234.1 211 55 26.1 130 61.6 106 50.2 86 40.8 106 50.2
s13207.1 638 58 9.1 267 41.9 210 32.9 174 27.3 217 34.0
s15850.1 534 91 17.0 289 54.1 233 43.6 203 38.0 216 40.5
s35932 1728 306 17.7 605 35.0 469 27.1 422 24.4 469 27.1
s38417 1636 380 23.2 913 55.8 788 48.2 687 42.0 750 45.8
s38584.1 1426 313 21.9 719 50.4 567 39.8 426 29.9 509 35.7

Table 1: FF Selection Results

little compaction can be done for some circuits. In these
circuits, all or most subcircuits share some PIs.

cycle breaking partitioning + cycle breaking

circuit FC(%) FE(%) time(s) FC(%) FE(%) time(s)

s5378 93.5 96.2 696 96.6 100.0 169
s9234.1 72.8 75.1 4350 88.5 94.1 1573
s13207.1 5.1 9.1 17836 55.9 60.8 7564
s15850.1 17.5 26.3 15378 81.2 89.4 3553
s35932 89.8 99.7 8264 88.4 100.0 253
s38417 N/A N/A N/A 53.5 54.9 6024
s38584.1 N/A N/A N/A 49.6 54.6 11756

Table 2: Test Generation Results

#parti- original compacted reduction
circuit tions length length (%)
s5378 42 2871 2826 1.6
s9234.1 34 4027 3259 19.1
s13207.1 121 56037 48828 12.9
s15850.1 134 27775 24787 10.8
s35932 391 16778 16778 0.0
s38417 164 124468 159393 21.9
s38584.1 270 212847 212218 0.3

Table 3: Pattern Compaction Results

7 Conclusion and Future Work

A new approach to selecting scan FFs for partial scan
design has been proposed. It selects FFs to be scanned so
that the circuit can be partitioned into many small sub-
circuits. These subcircuits can be handled separately by
any sequential test pattern generation program. This par-
titioning allows easy test pattern generation for arbitrarily
large circuits.

An algorithm has been developed to select FFs e�ec-
tively in reasonable time. Experimental results on large
benchmark circuits have been given to show an advantage
of the proposed method over the previous methods, espe-
cially for extra large circuits.

Future work includes enhancement of the FF selection
algorithms to reduce the number of scan FFs, investigation
of the e�ciency in combination with other partial scan
methods, and more evaluation with many other circuits.

Acknowledgements

The author would like to thank Prof. Janak Patel of
University of Illinois for his support with the sequential
test pattern generator HITEC and the partial scan tool
OPUS.

References

[1] E. Trischler, \Incomplete Scan Path with an Auto-
matic Test Generation Methodology", International
Test Conf., pp.153-162, 1980.

[2] R. Gupta, R. Gupta and M. A. Breuer, \BALLAST:
A Methodology for Partial Scan Design", Interna-
tional Symp. on Fault-Tolerant Computing, pp.118-
125, June 1989.

[3] K.-T. Cheng and V. D. Agrawal, \A Partial Scan
Method for Sequential Circuits with Feedback", IEEE
Trans. Computers, Vol.39, No.4, pp.544-548, April
1990.

[4] V. Chickermane and J. H. Patel, \An Optimization
Based Approach to the Partial Scan Design Problem
", International Test Conf., pp.377-386, September
1990.

[5] K. S. Kim and C. R. Kime, \Partial Scan by Use
of Empirical Testability", International Conf. on
Computer-Aided Design, pp.314-317, November 1990.

[6] D. S. Lee and S. M. Reddy, \On Determining Scan
Flip-Flops in Partial-Scan", International Conf. on
Computer-Aided Design, pp.322-325, November 1990.

[7] S. Park and S. B. Akers, \A Graph Theoretic Ap-
proach to Partial Scan Design by K-Cycle Elimina-
tion", International Test Conf., pp.303-311, Septem-
ber 1992.

[8] P. Ashar and S. Malik, \Implicit Computation of
Minimum-Cost Feedback-Vertex Sets for Partial Scan
and Other Applications", Design Automation Conf.,
pp.77-80, June 1994.

[9] S. T. Chakradhar, A. Balakrishnan and
V. D. Agrawal, \An Exact Algorithm for Selection
Partial Scan Flip-Flops", Design Automation Conf.,
pp.81-86, June 1994.

[10] F. Brglez, D. Bryan and K. Kozminski, \Combina-
tional Pro�les of Sequential Benchmark Circuits", In-
ternational Symp. on Circuits and Systems, pp.1929-
1934, May 1989.

[11] T. Niermann and J. H. Patel, \HITEC: A Test Gener-
ation Package for Sequential Circuits", European De-
sign Automation Conf., pp.214-218, March 1991.

Partition A

Partition B

Partition C

scanned

(A) (B)

(A) (B)

1
a

2
b

4
e

1
c

1
d

3
f

7
g

W(G) = 7

1
a

2
b

4
e

1
c

1
d

3
f

4
g

N = {e}
W(S(G,N)) = 4

Graph G Scanned Graph S(G,N)

(B)(A)

1
a
2

2
b
4 3.5

e
4.51

c
2

1
d
1

2.5
f

2.5

6
g
0

1
a

2
b

1
c

1
d

2.5
e

2.5
f

2.5
g

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

