
Efficient Breadth-First Manipulation of Binary Decision Diagrams

Pranav Ashar Matthew Cheong
C&C Research Labs, NEC USA

Princeton, NJ 08540

Abstract
We propose new techniques for efficient breadth-first iterative ma-
nipulation of ROBDDs. Breadth-first iterative ROBDD manipula-
tion can potentially reduce the total elapsed time by multiple orders
of magnitude compared to the conventional depth-first recursive al-
gorithms when the memory requirement exceeds the available phys-
ical memory. However, the breadth-first manipulation algorithms
proposed so far [5] have had a large enough overhead associated
with them to make them impractical. Our techniques are geared
towards minimizing the overhead without sacrificing the speed up
potential. Experimental results indicate considerable success in that
regard.

1 Drawbacks of Conventional DF Re-
cursive ROBDD Manipulation

There is a need today for manipulating ROBDDs with tens to hun-
dreds of millions of nodes which cannot be met by means of con-
ventional depth-first (DF) recursive algorithms. There are two good
reasons why DF recursive algorithms have been the algorithms of
choice for ROBDD manipulation until now. One is that the recur-
sive formulation for ROBDD manipulation[2] lends itself naturally
to a compact depth-first recursive implementation. An outline of
such an implementation (from [1]) of the ITE(F;G;H) operation is
illustrated in Figure 1.1 In addition, the DF recursive paradigm has
been exploited [1] to eliminate the temporary creation of redundant
ROBDD nodes by performing the isomorphism check on the nodes
on the fly - a new node is created only if a node with the same
attributes does not already exist (Line 12 in Figure 1). However,
the use of DF algorithms has its downside for very large ROBDDs
arising from an extremely disorderly memory access pattern[5].

The depth-first approach is characterized by the fact that a new
ITE computation request with some top-variable can be issued only
after the final results of all the previous ITE requests with the
same top-variable are known. It is apparent from Figure 1 that
successive memory accesses correspond to successive nodes on
paths in the ROBDDs F , G and H . Given that a typical node in
a large ROBDD generally has a large indegree, it is impossible to
ensure that an arbitrary pair of nodes next to each other on some path
in an ROBDD are located at contiguous memory addresses or even
in the same page.2 The latency of fetching a page from secondary
storage is multiple orders of magnitude greater than fetching a word
from main memory. With current technology, a page fetch takes of
the order of 10ms. If the process size exceeds the available main
memory, the part of the process that is needed immediately can be
moved from secondary storage to main memory only at the expense
of moving some part of it out from main memory to secondary
storage. In the case of ROBDD manipulation, if the ROBDDs that
are being traversed are too large to fit in main memory, it is unlikely
that the desired node will ever be in main memory. Therefore,
each time an ROBDD node is visited, the complete page containing

1For basic ROBDD related terminology and the recursive formulation of ROBDD
manipulation, please refer to [1].

2In UNIX memory management,read and writes from secondarystorage are always
in units of one page. While the size of a page may depend on the environment, a page
is usually a 4KB block of memory located at 4KB boundaries in UNIX on current
processors.

df ite(F;G;H) f
1. if (terminal case(F;G;H)) f
2. return result ;
3. g else if (computed table has the entry (F;G;H)) f
4. return result ;
5. g else f
6. Determine x, the top variable of (F;G;H) ;
7. T = df ite(Fx;Gx;Hx) ;
8. E = df ite(F

x
;G

x
;H

linex

) ;
9. if (T equals E)
10. return T ;
11. R = find or add unique table(x; T;E) ;
12. insert computed table((F;G;H), R) ;
13. return R ;
14. g
g

Figure 1: Depth-First Recursive ROBDD Manipulation

the ROBDD node must be fetched from secondary storage in the
worst case. This would cause hundreds of millions of page faults
for ROBDDs of the size we are interested in, making it virtually
impossible to manipulate/create them using DF algorithms.

2 BF Iterative ROBDD Manipulation
Ochi et al.[5] have proposed that the disorderly memory access
pattern can be corrected by the use of breadth-first (BF) iterative
algorithms for ROBDD manipulation. Essentially, instead of the
ROBDD operations being executed path-by-path, they are executed
level-by-level where each level is associated with a specific variable
index in the ROBDD. A direct side-effect of the BF approach is that
the isomorphism check mentioned above cannot be done on the fly
any more and it becomes necessary to temporarily generate redun-
dant nodes. But the consequentoverhead incurred by the generation
of redundant nodes is small compared to the orders of magnitude
of savings in run time resulting from the regular memory access
pattern. A major and fundamental drawback of their algorithm is
that “pad nodes” need to be added to the ROBDD so that successive
nodes on any path in the new BDD differ in their index by exactly
1. Since successive nodes along a path in the original ROBDD can
differ in their index by an arbitrary amount, it is likely that a large
number of pad nodes may have to be added. We have implemented
their algorithm and find that the pad nodes can increase the node
count by multiple factors for many circuits. This drawback man-
ifests itself in two ways: (1) Significantly increases the run time
since the pad nodes are treated like the original nodes and must be
fetched from memory. (2) Considerably limits the size of ROBDDs
that can be built given an address space limit. We find that the
pad node approach is an impractical solution for manipulating large
ROBDDs.

Our contribution has been to propose a BF algorithm that avoids
the need for pad nodes. The algorithm achieves this with a neg-
ligible penalty in CPU time, and an insignificant perturbation of
the regular memory access pattern. Our experiments indicate that
for some large industrial circuits with greater than 10K gates for

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.  1994 ACM 0-89791-690-5/94/0011/0622 $3.50

bf ite(F;G;H) f
1. if (terminal case(F;G;H)) f
2. return result ;
3. g else f
4. bf ite apply(F;G;H) ;
5. R = bf ite reduce() ;
6. return R;
7. g

g

Figure 2: Outline of BF ROBDD Manipulation

which our algorithm finishes in about 1 hour of total elapsed time,
our faithful implementation of the algorithm of Ochi et al. does
not complete because it runs out of more than 1 Giga Bytes of sec-
ondary storage. On some circuits for which our algorithm finishes
in about 10 minutes, the pad node approach requires many hours.
Our algorithm runs faster than the pad node approach by multiple
factors consistently for circuits on which both approaches finish.
Our algorithm opens up the possibility of creating BDDs for very
large portions of chips, something considered unviable until now.
Our approach is machine independent and has been ported with no
modifications to SPARC, SGI and NEC EWS based machines.

3 Basic Algorithm for BF ROBDD Ma-
nipulation

In this section, we first describe how ROBDD manipulation can
be performed in a BF manner, and highlight the requirements (la-
beled as Problems 1, 2 and 3 in Sections 3.1 and 3.2) that need to
be met in order to ensure locality in the memory access pattern. We
then present our own solution and compare it to the approach of
Ochi et al.[5].

The basic outline of an algorithm for the BF computation of
ITE is shown in Figures 2, 3 and 4. The same code with minor
modifications can be used to execute in a BF manner any Boolean
operation with an arbitrary number of arguments. The first phase of
the algorithm, the apply phase, is where the result BDD is created.
The essential difference between the DF and BF approaches is that
in the BF approach a new ITE computation request with some top-
variable is issued before the final results of all previous ITE requests
with the same top-variable are known. As a result, isomorphism
check cannot be done on the fly, and the result BDD may contain
redundant nodes. The second phase of the algorithm, the reduce
phase, removes redundant nodes from the BDD and generates the
final ROBDD. Let us analyze the memory accesspatterns generated
during apply and reduce.

3.1 Memory Access Pattern During BF Apply

The basic operation during the apply phase (Figure 3) is the top down
(from the root variable to the leaves) processing of outstanding
requests to compute the ITE of ROBDD triples. In general, two
new ITE requests are issued each time an ITE request is processed.
The result for a new request is directly available if a terminal case
is encountered. Otherwise, a new node is allocated for a new
request if an identical request has not already been issued in the
past. Processing an ITE request requires that the root node of
each of its argument ROBDDs be fetched if the top variable of that
ROBDD is the same as the top variable of the argument triple.

The essence of the BF algorithm is that the outstanding ITE re-
quests are processedstrictly in increasing3 order of their top variable
indices. This implies that the outstanding ITE requests that have the
same top variable index are processed consecutively. In turn, this
means that there is temporal locality in the access of the ROBDD

3We follow the convention that the variable index increases from the root to leaves.

bf ite apply(F;G;H) f
1.min index = determine top variable index(F;G;H) ;
2.R = new bdd node(min index) ;
3. create new request(F;G;H;R) ;
4. add (F;G;H;R) to queue[min index] ;
5. for (index =min index; index �max index; index++) f
6. x is the variable corresponding to index index ;
7. do f
8. (F;G;H;R) = fetch next request from queue[index] ;
9. if (terminal case(Fx;Gx;Hx)) f
10. R!T = result ;
11. g else f
12. next index = determine top variable index(Fx;Gx;Hx) ;
13. if (request corresponding to (Fx; Gx;Hx) already occurs

in queue[next index]) f
14. fetch THEN node corresponding to (Fx;Gx; Hx)

from queue[next index] ;
15. R!T = THEN ;
16. g else f
17. THEN = new bdd node(next index) ;
18. R!T = THEN ;
19. create new request(Fx;Gx;Hx; THEN) ;
20. add (Fx;Gx;Hx; THEN) to queue[next index] ;
21. g

22. g

23. if (terminal case(F
x
;G

x
;H

x
)) f

24. R!E = result ;
25. g else f
26. next index = determine top variable index(F

x
;G

x
;H

x
) ;

27. if (request corresponding to (F
x
; G

x
;H

x
) already occurs

in queue[next index]) f
28. fetch ELSE node corresponding to (F

x
;G

x
;H

x
)

from queue[next index] ;
29. R!E = ELSE ;
30. g else f
31. ELSE = new bdd node(next index) ;
32. R!E = ELSE ;
33. create new request(F

x
;G

x
;H

x
; ELSE) ;

34. add (F
x
;G

x
;H

x
; ELSE) to queue[next index] ;

35. g

36. g

37. g while (queue[index] is not empty) ;
38.g
g

Figure 3: Outline of BF Apply

nodes corresponding to a given variable index. Now if we can en-
sure that the ROBDD nodes for each variable index are stored in
contiguous locations in memory, the temporal locality translates to
spatial locality. This ability to introduce spatial locality in the mem-
ory accesses during ROBDD creation is the fundamental reason for
using the BF approach.

A levelized request queue enables the processing of outstanding
ITE requests in appropriate order. One queue is created per variable
index. Each time a new request is generated, it is placed in the
appropriate queue corresponding to the top variable of its argument
triple. Obviously, a new request can only be placed in a queue with
index greater than the current index. The queues themselves are
processed in the order of increasing variable index.

Two more critical problems must be resolved to ensure the ab-
sence of randomness in the access pattern.

3.1.1 The Problem of Computing Variable Indices

Problem (1) One issue is the computation of the top-variable in-
dex. Variable index computation represents a problem because the
variable index associated with an ROBDD node is normally stored
as an entry in the node structure itself. Consequently, the variable
index for a node cannot be computed without fetching the node

bf ite reduce() f
1. for (index = max index; index � min index; index��) f
2. x is the variable corresponding to index index ;
3. do f
4. R = fetch next temporary node from queue[index] ;
5. if (R!T has been forwarded to T 0) f
6. R!T = T 0 ;
7. g

8. if (R!E has been forwarded to E0) f
9. R!E = E0 ;
10. g

11. if (R!T equals R!E) f
12. forward R to R!T ;
13. g else if (unique table[index] has

entry (x;R!T; R!E)) f
14. let R0 be the BDD node stored

at the entry (x;R!T;R!E) ;
15. forward R to R0 ;
16. g else f
17. add R to unique table[index] under

entry (x; R!T; R!E) ;
18. g

20. g while (queue[index] is not empty) ;
21. g
22. return either R or the node to which it is forwarded ;
g

Figure 4: Outline of BF Reduce

from memory. The problem manifests itself on Lines 8, 12 and 26
in Figure 3. On Line 8, the next request to be processed is fetched
from the request queue. Say that x is the top-variable of the triple
(F;G;H). We already know the top-variable index of the triple.
But, the root nodes of the individual ROBDDs F , G, and H do not
necessarily have the same variable index as x. If the variable index
of the root node of, say, F is greater than that of x, then Fx = F
and F

x
= F , meaning that we don’t need to fetch the node F from

memory to obtain the cofactors. But in order to determine that, we
had to compute the top variable index ofF , and thereby had to fetch
the node F from memory. Either way, the node for F gets fetched
from memory. If the top variable index of F is greater than that of
x, fetching it from memory corresponds to an out-of-order memory
access.

On Lines 12 and 26, we need to determine the top-variable in-
dices corresponding to the positive and negative cofactor triples,
respectively, for the newly generated requests. We need to know
the top-variable indices so that the new requests can be placed in the
appropriate queues. The computation of the top-variable indices of
these two triples is required because no relationship is imposed in
an ROBDD between the indices of parent and child nodes except
that the index of the child must be greater than that of the parent. In
order to compute the indices, we must fetch each of the six cofac-
tors in the two triples. Since these are fetches of nodes with indices
greater than that of the current index, they represent out-of-order
memory accesses. Ideally, we would like to be able to compute the
two top-variable indices without out-of-order accesses.

3.1.2 The Problem of Checking for Duplicate Requests

Problem (2) The second critical issue to be resolved manifests itself
on Lines 13 and 28 in Figure 3. It is concerned with accessing the
queue associated with a newly issued request. Before a new request
is issued, it must first be checked whether an identical request has
been issued in the past. A table lookup in the appropriate queue
with the index next index is performed for this check. If there is
a duplicate request in the queue, it must be fetched. If a duplicate
request does not exist, a new request must be issued and inserted
into the queue. There is no restriction on next index except that
it be greater than the current index index. In addition, there is

no relationship between the top-variable indices for successively
issued requests. This lack of relationship creates the potential for
randomness in the memory access pattern here. Ideally, we would
like the look ups into the queues to be done in the order of increasing
index.

It is in the solution to the two above stated problems of computing
the variable indices and checking for duplicate requests without
introducing randomness in the memory accesses that our approach
differs from that of Ochi et al. Our approach solves these two
problems with a significantly lower penalty in terms of additional
memory usage and at the expense of a negligible overhead in CPU
time.

3.2 Memory Access Pattern During BF Reduce

The reduce phase (Figure 4) removes redundant nodes from the
BDD by doing a bottom-up traversal of the BDD nodes. A redundant
BDD node is a node with identical THEN and ELSE nodes, or a
node such that another node with identical attributes already exists
in the unique table. The corresponding checks are performed in
Lines 11 and 13 in Figure 4. If a node is found to be redundant,
it is forwarded to the node that should take its place. In terms of
programming, an easy way (also suggested in [5]) to implement the
forwarding is the following: Say thatR is the node to be forwarded
to R0. Set R!E to some predefined constant, and set R!T to
R0. To determine if a node R has been forwarded, one first checks
R!E for the predefined value.

As in the case of apply, the nodes to be processed are accessed
from the levelized queue, but in the order of decreasing variable
index. Therefore, if the nodes belonging to the same level are
stored in contiguous memory locations, we have spatial locality of
address when fetching these nodes. Even so, there is still potential
for randomness in the memory access pattern as described below:

3.2.1 The Problem of Checking for Node Forwarding

Problem (3): The first step in the processing of a node, say R,
involves checking if R!T and R!E have been forwarded (Lines
5 to 10 in Figure 4). If, say,R!T has been forwarded, then it must
be reassigned to the node to which it has been forwarded. Given
the way the forwarding of nodes is implemented (as indicated in the
previous paragraph), checking ifR!T has been forwarded requires
thatR!T be fetched from memory. Since the index for R!T can
be arbitrarily greater than the index for R, and since there is no
relationship between the variable indices of two nodes checked for
forwarding one after the other, this fetch introduces randomness in
the memory access pattern. This potential for random access must
be removed if we don’t want the performance of the algorithm to
degrade rapidly once the BDD sizes reach a certain point. Ideally,
all the checks for forwarding of nodes belonging to a given level
should be done consecutively. As in the case of apply, our solution
to this problem differs from the solution of Ochi et al.

3.3 The Pad Node Solution
The common reason that causes the Problems 1, 2 and 3 in Sec-
tions 3.1 and 3.2 is that the index of the child node can be arbitrarily
greater than the index of the parent. In their solution, Ochi et al.
[5] proposed that additional nodes be introduced in the ROBDD
until the index of each child node is either exactly equal to one plus
the index of its parent node, or the child node is a terminal node.
The solution is simple but naive. In effect, the solution potentially
increases the memory requirement by multiple factors in order to re-
move the randomness in memory access. In practice, the increased
memory requirement nullifies the advantage of the regular memory
access.

4 Our BF Approach
In this section, we demonstrate that orderly page access during BF
ROBDD manipulation can be achieved using the basic BF algo-
rithms outlined in Section 3 with a few enhancements and without

the need for pad nodes and associated overheads. The key ideas that
make this possible are (1) a new way of determining the variable
index of an ROBDD node (2) appropriate sorting of the requests
and nodes to be processed at a given level during apply and reduce,
respectively. These ideas are described in some detail below.

4.1 Determining the Variable Index of an ROBDD
Node

We know from earlier sections that in order to ensure spatial locality
in memory accesses, we must ensure that ROBDD nodes with the
same top-variable index are stored in contiguous memory locations.
To make this possible, the memory manager must be able to allocate
memory in the form of appropriately sized blocks with each block
being associatedwith a particular variable index. Memory for a new
ROBDD node is allocated from within the block associated with the
variable index of the node. An additional block is allocated for a
variable index when all previously allocated blocks for that index
are filled up.

A key side effect of such an organization of ROBDD nodes in
memory is that given the address of a node, one can easily determine
the block of memory to which it belongs and thereby also easily
determine its variable index. Note that this way, the variable index
of the node is determined directly from the address (pointer) of the
node. The node itself does not need to be fetched from memory.
This ability to determine the variable index without fetching the
ROBDD node from memory enables us to solve Problem 1 described
in Section 3.1.1, and hence removes the first bottleneck to ensuring
orderly page access during BF manipulation.

Of course, this method of computing the variable index is not
completely free of overhead. But we show in this section that the
overhead is small enough that it can be neglected for all practical
purposes.

Since the goal of the BF approach is to maximally utilize each
page access, a block size of one page (4 KBytes on most current
UNIX systems) is used. Note that since we can determine the
variable index directly from the address of a node, we do not need
the corresponding field in the ROBDD node structure any more. The
remaining fields in the node structure are (1) REFERENCE COUNT (2)
THEN (3) ELSE (4) NEXT. The REFERENCE COUNT field maintains
a count of the fanins to the node, the THEN and ELSE fields store
pointers to the THEN and ELSE nodes, respectively, and the NEXT field
stores a pointer to another node with the same variable index and is
used to maintain the unique table as described in [1]. Each of these
fields is 4 bytes wide, making the total size of each ROBDD node
equal to 16 bytes. A 4 KByte block would, therefore, accommodate
256 ROBDD nodes. Therefore, fetching a page from secondary
storage puts into main memory 256 ROBDD nodes.

The variable index is computed in the following manner: Given
a 32 bit address space (corresponding to 4 GBytes of maximum per
process addressablememory as provided by most microprocessors),
a 4 KByte block size implies that there can be at most 1 M blocks
at any given time. In other words, the higher 20 bits of the address
of a node determine the block to which the node belongs. The
correspondence between a block and the variable index to which it
corresponds is maintained by means of a table (call it the block-index
table) with 1 M entries4. This table can be located anywhere with
the restriction that the 1 M entries be contiguous. A table with only
1 M entries is small enough that it is relatively easy to find room for
it. In addition, given its small size and the large number of times that
variable indices need to be computed, the table is almost guaranteed
to always remain in main memory and never get swapped out to
secondary storage. To compute the variable index, the ROBDD
node address is first shifted to the right until the 20 bits identifying
the block occupy the appropriate positions. These shifted 20 bits
are now used as an offset address to index into the block-index
table to fetch the variable index. On a typical CPU architecture,
the right shift requires one instruction, and adding an offset to the
base address requires another instruction. Therefore, our approach
requires two instructions in addition to the actual memory fetch.

4Each entry is a short integer correspondingto a variable index. It is, therefore, two
bytes wide.

4.1.1 Overhead of Index Computation

How much more expensive is it to compute the variable index
in this manner rather than by a pointer indirection assuming that
the appropriate ROBDD node is already in main memory? In the
pointer indirection method, if the index field is the first field in the
ROBDD node structure, obtaining it would require a memory fetch
with no offset computation. In such a case, our method requires
two non-memory instructions more than the index determination by
indirection. If the index field is not the first field in the node struc-
ture, then obtaining it by pointer indirection requires one instruction
for adding an offset to the top address of the structure prior to the
memory fetch. In this case, our method requires one instruction
more than index computation by pointer indirection. Therefore, in
the worst case, we need to pay a penalty of only two non-memory
instructions to determine the variable index from the block-index
table. Given that the latency of a memory fetch is much higher than
the latency of a shift or an add instruction, the two additional instruc-
tions correspond to a very low real-time penalty in practice. What
this means is that in creating small ROBDDs that fit completely in
main memory, our BF approach will not be slowed down by our
method of computing variable indices compared to the conventional
depth-first approach, everything else being equal.

Now consider the penalty of our way of computing the variable
index compared to the the BF approach using pad nodes. No index
computation is required when using the pad node approach. We
know that using the basic BF approach outlined in Figures 3 and 4,
index computation is required at most 9 times5 in each iteration of
the core loop in the apply phase. The 9 index computations cor-
respond to 20 additional non-memory instructions and 9 additional
memory fetches (from the block-index table) which are practically
guaranteed to be from main memory. These 27 additional instruc-
tions for index computation correspond to an insignificant fraction
of the total number of instructions for the rest of the complete loop.
This leads us to conclude that even discounting the overhead of
using additional nodes for padding, computing the variable indices
from the block-index table would result in an insignificant run time
penalty compared to the pad node method.

4.2 Sorted Processing of Requests During Apply

The next problem to be resolved is the bottleneck associated with
checking for duplicate requests during apply (Problem 2 in Sec-
tion 3.1.2). Given a queue of requests to process at the current
level, our goal is to remove the randomness in page access. In order
to achieve this we process the requests at the current level in the
order of increasing variable indices of the two new requests that are
issued from each of them. This is done in the following manner:
In the first pass through the current request queue, requests such
that the new requests issued from them belong to the level imme-
diately below are processed immediately. Other requests are stored
in an array of lists, with each list corresponding to a level below
the current level6. After the first pass is complete, the requests in
the lists in the newly created array are processed in the order of
increasing level. Note that since there is no relationship even be-
tween the top-variable indices of the two new requests issued from
the same request, a request may appear in two lists at the same time,
one for the new request corresponding to the positive cofactor, and
the other for the negative cofactor. Processing the requests in this
manner ensures that all the look ups into a particular queue are done
consecutively, thereby removing the randomness.

The randomness is removed at the cost of doing more than one
pass through the current request queue. Even so, the effective
number of passes required is only some number between 1 and
2 depending on the number of requests that get processed in the
first pass itself. Also, the new array of lists is at most of size
equal to the number of levels, and is therefore, very small. The
creation of a new list per level does not cost any memory since
the requests were already in a list before (the list corresponding to

5In Lines 8, 12 and 26 of Figure 3
6Basically, this corresponds to a counting sort.

the queue to which they belong7). They just need to be removed
from the original list and put in a new list. A request may need
to be duplicated if the top-variable indices of the two new requests
issued from it (corresponding to the positive and negative cofactors)
are different. The duplication is required since the request must be
placed simultaneously in the two lists corresponding to the two
top-variable indices. In spite of the potential for some duplicate
requests, this approach is superior to the pad node approach where,
effectively,n copies of a request are created if the actual top-variable
index of a newly created request is n levels below the current level.

4.3 Sorted Processing of Nodes During Reduce

The final problem to be resolved is the potential for random page-
access during the check for forwarded nodes during reduce (Problem
3 in Section 3.2.1). This problem and the solution to it are analogous
to the case of checking for duplicate requests during apply. This
problem arises because of the lack of any relationship in the indices
of the nodes that are successively checked for forwarding. As in the
previous section, we use more than one pass, and maintain an array
of lists (one list for each level below the current level) for nodes to be
processed in the secondpass. R!T (c.f. Section 3.2.1) is processed
during the first pass only if the level of R!T is immediately below
the current level. Otherwise,R is placed in the list corresponding to
the level ofR!T . Similarly for R!E. As in the previous section,
R must effectively be placed in two lists if the levels ofR!T and
R!E are different. With this approach, all checks for forwarding of
nodes belonging to a given level get done consecutively. Therefore,
there is no randomness in the page-access pattern.

The costs associated with this solution are similar to the costs as-
sociated with avoiding random access when checking for duplicate
nodes. Again, the array size is very small and no extra memory is
needed for the new lists. The reason no new memory is needed is
that the ROBDD node structure already has a NEXT field to be used
to maintain the lists in the unique table. Since a node is not placed
in the unique table until it has been processed during reduce, the
NEXT field can be used to maintain the desired lists.

4.4 Adaptive Garbage Collection
Garbage collection should serve two purposes: (1) free up memory
for subsequent use and (2) prevent fragmentation of the memory
used by a single ROBDD. We use an adaptive scheme, consisting
of a combination of two well known garbage collection schemes, to
realize both these goals. Our scheme is described below. A number
of Boolean operations must be performed before the ROBDDs for
the primary outputs are created. Dead nodesare created as a result of
the freeing of these intermediate ROBDDs as well as by the freeing
of redundant nodes. The space occupied by the dead nodes can be
reclaimed for use by new nodes. An effective scheme for reclaim-
ing the memory used by dead nodes is called the reference-count
garbage collection strategy. In this strategy, one maintains a list of
nodes (called a FREE LIST) that can be reused. When a new node is
to be allocated, one first checks the FREE LIST for available nodes.
If a dead node is available, it is removed from the FREE LIST and
reused. A new node is allocated if no dead node is available. Given
the levelized organization of nodes in memory in our algorithm, we
maintain a separate FREE LIST for each level. In order to be able
to identify dead nodes, we maintain a REFERENCE COUNT field in
the node data structure. The REFERENCE COUNT field maintains the
number of nodes that refer to this particular node. A node is consid-
ered dead when its REFERENCE COUNT becomes zero. Once a node
is declared dead, the REFERENCE COUNT fields of its two children
must be decremented by one. Therefore, labeling a node to be dead
has a potentially cascading effect down the ROBDD. The task of
the reference-count garbage collector is to traverse the ROBDDs
top-down, and if their REFERENCE COUNT is zero then mark them
dead and decrement the REFERENCE COUNT fields of their children.
As in the case of apply and reduce, we must do this traversal in a
levelized manner to avoid random page-access. The same strategy
of using levelized queues as in apply and reduce is used for the

7Therefore, the requests already have a NEXT field in their structure which can be
used to point to the next request in a list

purpose. The queue at a level consists of the dead nodes at that
level and the nodes whose REFERENCE COUNT is to be decremented.
Also, the same strategy of sorted traversal described in Sections 4.2
and 4.3 is used here to ensure complete removal of randomness in
page access. The reference-count garbage collector is called at pe-
riodic intervals, e.g. every time the number of nodes doubles. The
advantage of reference-count is that it is very fast.

A potential problem with the reference-countscheme is that it can
lead to a fragmentation of the memory used by a particular ROBDD.
Consider the scenario where reference-count frees up 20% of the
nodes at a given level. These 20% of the nodes can potentially be
scattered over a number of pages allocated for that level. When
a new ROBDD is created, it must first use up these dead nodes
scattered all over before it can allocate new nodes for that level.
Therefore, spatial locality is partially lost for 20% of the nodes at
that level in the new ROBDD. In order to avoid such a possibility,
we use the reference-count scheme in combination with another
scheme called the stop-and-copy garbage collection scheme. The
stop-and-copy scheme copies to a new address space only those
nodes that are alive. The space that was being used before the copy
is then completely discarded. This scheme serves to remove the
fragmentation caused by the reference-count scheme. But, since
it must copy all the nodes that are alive, it is potentially much
slower than reference-count. Therefore, it is called only when
reference-count produces a large number of dead nodes. In our
implementation, the stop-and-copy scheme is only called for those
levels with a large number of dead nodes, and not for all the levels.

A similar adaptive strategy was also used in [5].

4.5 Implementation Details
4.5.1 ITE-Request Data Structure

The ITE request structure requires five fields: the arguments F, G,
and H, the result node R, and the NEXT field used for maintaining
lists. If we used a separate type for the ITE requests, we would need
to allocate 20 additional bytes for every BDD node allocated during
apply. These additional bytes would stay alive until the request is
processed. We avoid this penalty by using the BDD node structure
for the ITE requests also and overloading the meanings of the various
fields. The REFERENCE COUNT field maps to F, THEN to G, ELSE to
H, NEXT to NEXT, and the BDD node itself is the result field R. The
same 16 bytes are, therefore, initially used for the ITE request and
subsequently for the BDD node.

4.5.2 Block-Index Table

With an address space of 32 bits and a page size of 4 KB, the block-
index table would have at most 1 M entries. This number is small
enough that a flat statically allocated table can be constructed easily.
That is what we do in our implementation. For future machines
with 64 bits of address space, a flat table would be infeasible. One
solution would be to make the table hierarchical in nature, allowing
the memory used by the table to be increased dynamically. The
penalty would be increasedoverhead since more intstructions would
be required for index computation.

5 Experimental Results
We wish to illustrate the following points concerning our BF ap-
proach in this section: (1) It is orders of magnitude faster than DF
implementations when BDD sizes exceed main memory. (2) Its
overhead compared to DF implementations for ROBDDs that fit
in main memory is manageable. (3) It is superior to the pad node
approach in terms of memory requirement and run time. It should
be noted that we are not addressing the variable-ordering problem
for ROBDDs here. In fact, good variable orderings exist for all the
circuits for which we report results[6]. The comparisons between
the BF aproach and the other approaches are for a specific ordering.
Most of the circuits used for our experiments are from the IWLS
’93 benchmark set. The two circuits Indust1 and Indust2 are
from the industry.

Circuits # I/O/G # Nodes Machine ET
�106 Config.

C2670 233/140/1161 2.53 64MB sparc 10/41 0:23:34
128MB sparc 2 0:19:21

C3540 50/22/1667 4.22 64MB sparc 10/41 0:20:56
128MB sparc 2 0:11:01

C6288-X 32/32/2416 20.2 64MB sparc 10/41 9:20:26
s9234 247/250/5597 3.85 64MB sparc 10/41 0:06:01

32MB sparc 2 0:24:43
128MB sparc 2 0:06:38

s38417-X 1664/1742/22397 103.8 64MB sparc 10/41 26:07:06
Indust1 1133/1106/21698 5.37 64MB sparc 10/41 0:19:23

128MB sparc 2 0:20:58
Indust2-X 2131/2304/42617 29.6 64MB sparc 10/41 9:20:24

I/O/G: Primary Inputs/Primary Outputs/Gates
ET: Total Elapsed Time (hours:minutes:seconds)
For the circuits suffixed with "-X", ROBDDs were only built for a
subset of the gates -
C6288: for the first 1229 gates in dfs;
s38417: for the first 13933 gates in dfs;
Indust2: for the first 7509 gates in dfs

Table 1: Results of our BF Approach for Large ROBDDs

Circuits # I/O/G # Nodes Elapsed Time (s)
Ours DF PN

C1355 41/32/514 175925 13 8.8 26
C1908 33/25/880 42929 6.1 2.9 17
C432 36/7/160 146384 13 9.7 35
C499 41/32/202 55493 10 6.5 20
C5315 178/123/2290 59912 8 2.4 63
C880 60/26/357 26032 1 0.9 7
s13207 700/790/8027 28594 14 2.7 349
s1423 91/79/657 55572 3 2 22
s15850 611/684/597 136330 21 7.1 618
s35932 1763/2048/16353 26681 61 5.3 >> 1 hr
s38584 1464/1730/19407 108494 61 8.3 >> 1 hr

I/O/G: Primary Inputs/Primary Outputs/Gates; PN: Pad Node

Table 2: Results of our BF Approach for Small ROBDDs

What is the overhead of our BF approach compared to the current
DF implementations? The elapsed times on a SPARC 10/41 for cir-
cuits whose ROBDDs fit in main memory are provided in Table 2.
The comparison is with a current generation DF ROBDD pack-
age [7], and with our fair implementation of the pad node approach
of [5]. Many of the ROBDDs are too small for the comparison to
be meaningful and we only provide comparisons for circuits with
greater than 10000 nodes. It can be seen that for these small ROB-
DDs, our approach is consistently faster than the pad node approach
indicating a lower overhead. For some examples, our overhead is
markedly smaller than the pad node approach. The numbers also
demonstrate that our approach does have an overhead compared to
the DF approach for these small ROBDDs, but that the overhead
is not inordinately large unlike the pad node approach. Given that
and the fact that the absolute elapsed times involved for these small
ROBDDs are of the order of tens of seconds, we feel that the over-
head of our approach for small ROBDDs is a reasonable penalty to
pay for optimizing the times for large ROBDDs.

Elapsed times for large ROBDDs are provided in Table 1. The
numbers clearly demonstrate the ability of our BF approach to build
and manipulate very large ROBDDs in short run times. For example,
the 3.85 million node ROBDDs for s9234 were built on a SPARC
2 with only 32 MB of main memory in about 25 minutes. To make
the same ROBDDs using the current generation ROBDD package
from CMU[3] requires about 48 hours. That corresponds to a speed

up by a factor of 120. Similarly, we can build ROBDDs with about
104 million nodes for the first 7509 gates of s38417 in 26 hours on
a SPARC 10/41 with 64 MB. The CMU ROBDD package can only
build ROBDDs with 7.8 million nodes for the first 4807 gates in 43
hours on the same machine. The BF approach is faster by a factor
of about 40 for the first 4807 gates. Similar speed up is obtained
consistently when the ROBDD sizes are much greater than the
available main memory.8 For our experiments, the orderings were
generated using the ordering algorithm of [4] implemented in SIS.

Finally, as in the case of the small ROBDDs, our approach con-
sistently outperforms the pad node approach for large ROBDDs
also. For example, the pad node approach quickly exhausted the
2 GB of available swap space for Indust1 and Indust2 as a
result of the pad node overhead. 51 times more nodes were re-
quired to pad the ROBDDs for Indust1 before exhausting the
swap space. Such overheads are very common using the pad node
approach for random-logic circuits. In addition, whenever the pad
node approaches manages to build the ROBDDs for a circuit, it is
much slower than our approach. For example, our approach requires
21 minutes on a 64MB sparc 10/41 while the pad node approach
requires more than 3.5 hours.

6 Acknowledgments
Various discussions with Rick Rudell were helpful.

References
[1] K. Brace, R. Rudell, and R. Bryant. An efficient implemen-

tation of a BDD package. In The Proceedings of the Design
Automation Conference, pages 40–45, June 1990.

[2] R. Bryant. Graph-based algorithms for Boolean function ma-
nipulation. In IEEE Transactions on Computers, volume C-35,
pages 677–691, August 1986.

[3] D. Long. ROBDD Package. Carnegie Mellon University, 1993.

[4] S. Malik, A. R. Wang, R. Brayton, and A. Sangiovanni-
Vincentelli. Logic Verification using Binary Decision Diagrams
in a Logic Synthesis Environment. In Proceedings of the In-
ternational Conference on Computer-Aided Design, pages 6–9,
November 1988.

[5] H. Ochi, K. Yasuoka, and S. Yajima. Breadth-first manipulation
of very large binary-decision diagrams. In Proceedings of the
International Conference on Computer-Aided Design, pages
48–55, November 1993.

[6] R. Rudell. Dynamic variable ordering for ordered binary deci-
sion diagrams. In Proceedings of the International Conference
on Computer-Aided Design, pages 42–47, November 1993.

[7] R. Rudell. Personal Communication. 1994.

8Unfortunately, we do not have available at this time the run times using the DF
ROBDD package of Rudell on the same computingplatform on which we have run our
experimentsfor the larger ROBDDs. We do have the run times forC2670, C3540 and
s9234 using that ROBDD package on a SPARC 10/41 with 128 MB of main memory.
They are, respectively, 0:04:08, 0:05:18, and 0:03:58. These numbers, however, are
not useful for comparison because the ROBDDs for all the 3 circuits can completely
reside in 128MB of main memory.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

